COURSE SPECIFICATION FORM

DEPARTMENT OF: Mathematics				Academic Session: 2020-21	
Course Code:	MT3280	Course Value:	15 credits	Status: (ie:Core, or Optional)	Optional
Course Title:	Non-Linear Dynamical Systems: Routes to Chaos			Availability: (state which teaching terms)	Term 1
Prerequisites:	MT1720 and MT1820			Recommended:	
Co-ordinator:					
Course Staff					
Learning Objectives:	This module will introduce students to the fundamentals of the analysis of nonlinear dynamical systems. Students will investigate whether the behaviour of a nonlinear system can be predicted from the corresponding linear system.				
Learning Outcomes:	On completion of the module, students should be able to: identify and classify the critical points for both discrete and continuous dynamical systems; understand when and why the direct and indirect Liapunov methods are appropriate and use them both; understand when a limit cycle can, and cannot, occur and prove the non-existence as appropriate; recognise the role of the linear system in predicting the long-term behaviour of the nonlinear system.				
Teaching & Learning Methods:	30 hours of lectures. 120 hours of private study, including work on problem sheets and examination preparation. This may include discussions with the course leader if the student wishes.				
Key Bibliography: Formative	Dynamical Systems, Differential Equations, Maps and Chaotic Behaviour – D K Arrowsmith and C M Place (Chapman & Hall). <i>Library Ref. 515.41 ARR</i> Differential Equations, Dynamical Systems and an Introduction to Chaos – M W Hirsch, S Smale and R Devaney (Academic Press). <i>Library Ref. 515.41 HIR</i> Elementary Differential Equations and Boundary Value Problems – W E Boyce & R C di Prima (Wiley). <i>Library Ref. 515.41 BOY</i> Formative assessment in the form of 8 problem sheets. The students will receive feedback				
Assessment & Feedback:	iback:				
Summative Assessment:	Exam (%) A two-hour written exam: 85% Coursework (%) Set exercises: 15%				

Updated December 2019