COURSE SPECIFICATION FORM for new course proposals and course amendments

DEPARTMENT OF MATHEMATICS				Academic Session: 2020-21	
Course Code:	MT5436	Course Value:	200 h	Status: (ie:Core, or Optional)	Optional
Course Title:	Markov Chains and Applications			Availability: (state which teaching terms)	Term 2
Prerequisites:				Recommended:	
Co-ordinator:					
Course Staff:					
Learning Objectives:	This module will introduce the student to a range of probabilistic methods used to model systems that exhibit random behaviour.				
Learning Outcomes:	On completion of the module the student should be able to: understand the structure and concepts of discrete and continuous time Markov chains with countable state space; construct a probability model for a variety of problems; understand the basic theory behind Bayesian inference; be able to formulate statistical problems such as regression in terms of a Bayesian model; understand the concept of Gibbs sampling; understand the structure of diffusion processes; understand the concept of Brownian motion. The student will also demonstrate a breadth of understanding appropriate for an M-level course.				
Teaching & Learning Methods:	40 hours of lectures. 160 hours of private study, including work on problem sheets and examination preparation. This may include discussions with the course leader if the student wishes.				
Key Bibliography: Formative	Stochastic Processes – S M Ross (Wiley 1996). <i>Library Ref.</i> 519.2 Introduction to Stochastic Modeling – H M Taylor and S Karlin (Academic Press 1998). <i>Library Ref. on order</i> Introduction to Probability Models – S M Ross (Academic Press 2003). <i>Library Ref. on order</i> Probability and Random Processes – G R Grimmett and D R Stirzaker (Oxford UP 1992). <i>Library Ref.</i> 518.1 GRI Formative assessment in the form of 8 problem sheets. The students will receive feedback				
Assessment & Feedback:	as written comments on their attempts.				
Summative Assessment:	Exam (%) A two-hour written exam: 85% Coursework (%)Set exercises: 15%				

Updated December 2019