
A Novel Approach to Clustering Malware
Behaviour to Improve Malware Detection

Rebecca Merriman

Technical Report

RHUL–ISG–2020–6

22 June 2020

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX
United Kingdom

Rebecca Merriman, 100812232, 2018/2019

A Novel Approach to Clustering
Malware Behaviour to Improve

Malware Detection

Rebecca Merriman, 100812232

Submitted as part of the requirements for the award of the

MSc in Information Security

at Royal Holloway, University of London

Supervisor: Dr Daniele Sgandurra

I declare that this assignment is all my own work and that I have acknowledged all
quotations from published or unpublished work of other people. I also declare that I
have read the statements on plagiarism in Section 1 of the Regulations Governing
Examination and Assessment Offences, and in accordance with these regulations I

submit this project report as my own work.

Signature: Date:17th August, 2019

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table of Contents

Executive Summary . 3

Acknowledgements . 4

1 Introduction . 5

1.1 My Project . 6

1.2 Statement of Objectives . 7

1.3 Motivation . 7

2 Literature . 9

2.1 Ransomware Report . 10

2.2 Backdoor Report . 12

2.3 Trojan Report . 13

2.4 Feature Selection and Model Construction Report . 13

2.5 Machine Learning Focusing On Clustering Report . 16

3 Design and Implementation for Clustering Malware . 25

3.1 Description of Program and Justification of Feature Selection and Validation Methods 26

4 Results for Clustering Malware . 35

4.1 Results of Clustering Ransomware . 36

4.2 Results of Clustering Backdoor . 45

4.3 Results of Clustering Trojan . 54

5 Discussion . 64

5.1 Comparison between Clustering Ransomware, Backdoor and Trojan 65

5.2 Accuracy of Clustering-Based Malware Detection . 71

5.3 Self-Evaluation . 75

6 Conclusion . 77

6.1 Conclusion . 78

Bibliography . 79

7 Appendices . 82

7.1 Appendix A - Program . 82

1

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

7.2 Appendix B - Text Files Of Results . 92

7.3 Appendix C - Euclidean Distance Results for Ransomware, Backdoor and Trojans . . . 100

7.4 Appendix D - Results from Clustering Android Application Behaviour 101

2

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Executive Summary

My project objective is to implement clustering for operations of three different types of malware,
specifically Ransomware, Backdoor and Trojan in order to evaluate the accuracy of clustering-
based malware detection to then conclude using these results and results from other papers
whether clustering malware behaviour improves malware detection.

To meet this aim, smaller objectives need to be met. My objectives include reviewing existing lit-
erature on Ransomware, Trojans, Backdoors and clustering and then implementing the clustering
process of Ransomware, Backdoor and Trojan families from behaviour profiles (produced from
static and dynamic analysis) to validation/results. The results are critically compared and the
accuracy of clustering-based malware detection from my and other results is evaluated.

Ransomware, Backdoor and Trojan are all types of malware. Malware is malicious software which
undermines the security of users by performing unwanted functions. The clustering of Ran-
somware, Backdoors and Trojans were compared because they can work alongside each other to
infect a victim’s system. Ransomware can be used to install Backdoors into a system and Trojans
can be used to deliver Backdoors or Ransomware into a system.

In this project, the clustering process was carried out on 3 malware families (Ransomware, Trojans
and Backdoor), making sure that samples in the same cluster were as similar as possible and sam-
ples in a different cluster were as dissimilar as possible. 12 experiments were run all together and
the best clustering for each of the different types of malware for each of the validation metrics was
evaluated. The best clustering according to all the FMS, F1, ARI and SC scores for Ransomware
was the Uni-gram with the system call representation of Category and vector representation of
Frequency Vector, for Backdoor it was the Di-gram with the system call representation of Full
Representation and vector representation of Frequency Vector and for Trojan it was the Tri-gram
with the system call representation of Category and vector representation of Frequency Vector.

The main finding was that there is a discrepancy with the accuracy of clustering-based malware
and whether clustering improves malware detection. The accuracy of clustering-based malware
detection is highly subjective as it depends on many factors including the type of machine learn-
ing algorithm, the features selected, the feature selection methods, the model construction meth-
ods and evaluation metrics. This is illustrated in my results where the different methods of feature
selection and vector representation yielded different results (scores and best clustering methods)
for the validation metrics and the accuracy was low. In contrast other papers used different meth-
ods and found that accuracy was high, providing evidence for this subjectivity and conflicting
findings. Therefore, future research should be conducted to find out all the reasons that may af-
fect the accuracy of clustering malware and discover the best methods in terms of accuracy and
a good run time for clustering malware to improve malware detection. This will then help to
conclude whether clustering improves malware detection or not.

3

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Acknowledgements

Specific gratitude is given to my supervisor Daniele Sgandurra who has provided me fantastic
guidance, knowledge, kindness, supervision and support throughout this MSc.

A big thank you to my sister Siobhan Merriman for proofreading my dissertation, for providing
suggestions and support and for helping me with decisions along the way.

A big thank you to my parents Brendan and Shree Merriman and my siblings Siobhan and Sean
Merriman for their encouragement, support and understanding throughout my education.

Finally, a big thank you to my boyfriend Athul Cyril for his motivation, encouragement and
support throughout my MSc.

4

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

1
Introduction

This chapter introduces my project including background information and the
objectives of my project.

In particular, it discusses my project and the clustering process involved (1.1), a
statement of my objectives(1.2) and motivation for my project(1.3).

5

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

1.1 My Project

My project objective is to implement clustering for recorded behaviour types of three different
types of malware, specifically Ransomware, Backdoor and Trojan in order to evaluate the accuracy
of clustering-based malware detection to then conclude whether clustering malware behaviour
improves malware detection.

Ransomware, Backdoor and Trojan are all types of malware. Malware is malicious software which
undermines the security of users by performing unwanted functions. Malware is dangerous due
to its substantial and pervasive nature. Due to the rise of the digital age, malware attacks are on
the increase and there is no evidence to suggest that it is slowing down. Therefore, we need to
find novel ways to detect and prevent these attacks from occurring in the future. Clustering is one
of these methods that can be used. The clustering of Ransomware, Backdoors and Trojans were
compared because they can work alongside each other to infect a victim’s system. Ransomware
can be used to install Backdoors into a system and Trojans can be used to deliver Backdoors or
Ransomware into a system.

The following clustering process was used:

The dataset used in this project presents features (system call category and action) extracted from
samples analysis using static and dynamic analysis. Identifying system calls from the specific
families can allow the malware behaviours to be reconstructed as system calls at different levels
of abstractions. This is more effective than the individual behavioural profiles themselves as the
behavioural profiles will contain a lot of information that is irrelevant to the behaviour of the
malware. All the irrelevant and redundant features were removed by MIST translation.

All irrelevant and redundant features were removed based on the variables measured, and the
relevant features were extracted (feature selection). Different methods of feature selection were
implemented with different levels of abstractions. The features (operation) were represented as
a vector (bit or frequency n-grams) in order to be inputted into a clustering algorithm. Different
methods of model construction were implemented with different levels of abstractions.

Hierarchical clustering was implemented on the different methods of feature selection and model
construction. Machine Learning is an application of artificial intelligence which automatically
detects patterns in data, to predict future data or to perform a decision making process under
uncertainty[1]. There are two types of machine learning, supervised and unsupervised. In su-
pervised learning, the model for predicting an output (label on future data[2]) is based/predicted
on one or more inputs and in unsupervised learning, relationships and structure or interesting
patterns can be learnt from the data[3]. Clustering is a type on unsupervised learning method
which[3] tries to group similar objects together by looking at whether the “observations fall into
distinct groups” based on the inputs. In relation to this project, hierarchical clustering was per-
formed on each of the different malware types separately to try group the samples back into the
correct family. It exposed clusters of Ransomware, Backdoor or Trojan malware families where
all objects in the same cluster exhibit similar behaviour or have similar characteristics.

After hierarchical clustering the clusters obtained from various feature selection and model con-
struction methods were evaluated to determine the best clustering from a given set of malware
samples. The best clustering from the specific feature selection and model construction meth-
ods should yield a clustering as close to the labelled dataset as possible. The evaluation metrics
Fowlkes Mallows Score (FMS), F1-Score (F1), Adjusted Rand Index Score (ARI) and Silhouette
Coefficient (SC) were used to evaluate how similar the clusters were to the dataset.

The results of the FMS, F1, ARI and SC of Ransomware, Trojans and Backdoors were compared
and then the accuracy of clustering-based malware was evaluated based on these results and
other results from papers or projects.

6

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

1.2 Statement of Objectives

1. Review and summarise relevant existing literature on Ransomware, Trojans and Backdoors
to understand their function evolution and how it works.

2. Review and summarise relevant existing literature on dynamic analysis, feature selection
and model construction.

3. Review and summarise relevant existing literature on machine learning specifically cluster-
ing and validation.

4. Implement a program to use static and dynamic analysis of malware samples and perform
feature selection, hierarchical clustering (cluster Ransomware into families) and validation
on Ransomware, Backdoor and Trojans.

5. Describe and justify my choices for the different methods of feature selection and validation
supported by results and evidence.

6. Critically compare and visualise results between clustering Ransomware into families, Back-
door into families and Trojan into families.

7. Evaluate the accuracy of clustering-based malware detection from my results of Ransomware,
Backdoors, Trojans, other papers and android malware.

1.3 Motivation

Clustering malware behaviour is useful for the information security industry in detection because
it can discover features which are useful in classifying the families of Ransomware, Backdoor
and Trojans, find commonalities between features within the same families and give them to an
antivirus program at run time to detect these families. Also if it performs with high accuracy then
the features selected can be used to detect Ransomware, Backdoors and Trojans at run time in the
future. For example if there is a new family of Ransomware which does not exist now then the
features known to be good can be used to detect a new family of Ransomware (train the classifier
to recognise the new family of Ransomware based on features of previous families) (the same
applies to Backdoors and Trojans). Also there is little literature on classification of malware using
machine learning; it mostly concentrates on detection and decoy.

I chose to carry out this project because I really enjoyed the clustering project which I completed
for my BSc last year on android applications and I wanted to extend the skills (e.g. python or
latex) and knowledge that I have learnt on my BSc project into my masters project and carry out
similar work with Ransomware, Trojans and Backdoors. Additionally I learnt about these types
of malware in a BSc course and I found it intellectually stimulating.

Due to huge amounts of data being available now compared to in the past (big data) and the rise
in computational capacity and tools available to process and analyse data in real time, one cannot
use traditional techniques or humans to analyse information. People now use machine learning
techniques to do this and instead of humans manually analysing the data to look at trends and
patterns, they now direct, develop and harness machine learning and interpret results[4]. Ma-
chine learning techniques are a good way of recognising trends and patterns in the data. It can be
used in many domains such as the security domain for example to help identify trends and mean-
ingful patterns to help predict, defend and respond to attacks in the future. Machine Learning
and AI will not only make cyber-attacks more powerful but will also make cyber defence just as
powerful. It can be used in many other domains such as the health sector or the financial sector for
example to help insurers to provide digital, personal and relevant information e.g. more focused
sales and marketing and reduced operational costs[5]. This is why machine learning techniques
are so important. It replaces human jobs which have now become impractical, less accurate (e.g.
financial services model using machine learning techniques to produce GDP estimates have said
it had been very accurate for the last 16 years[6]), less time consuming to carry out and used in
many domains.

7

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

This is why I performed clustering on malware behaviours. I wanted to see how accurate these
techniques were at predicting malware from other malware types to help organisations predict,
defend and respond to attacks in the future through the use of machine learning.

8

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

2
Literature

This chapter describes the three types of malware concentrated in this project and the
process of clustering.

In particular:

Section 2.1 discusses the two types of Ransomware2.1.1 (crypto and locker
Ransomware), the history of Ransomware2.1.2, stages of attack2.1.3 and

examples2.1.5.

Section 2.2 and Section 2.3 discuss Backdoors and Trojans respectively, the creation of
them and an example.

Section 2.4 discusses two processes (feature selection and model construction) which
are used in the clustering process to capture features from samples and produce them

into a form suitable for machine learning.

Section 2.5 discusses the two types of machine learning2.5.2 (supervised and
unsupervised learning) and examples of both and validation metrics2.5.5). It focusses

on clustering, the machine learning algorithm which is used in this project.

9

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

2.1 Ransomware Report

According to Savage et al.[7], today, Ransomware is “one of the most troublesome malware cate-
gories of our time”.

Malicious software (malware) such as viruses, Trojans, worms etc. undermine the security of
users by performing unwanted functions without their permission e.g. stealing personal data.
Ransomware is a type of malware specifically scareware which aims to prevent users from ac-
cessing their system or files (anything that they want/need) until a ransom is paid[7][8]. There
are 2 types of Ransomware; locker Ransomware and crypto Ransomware.

2.1.1 Two Types of Ransomware

Locker Ransomware aims to lock the victims computer to prevent them from using it and then
demand a fee to restore access to it. As the computer is locked, it will run with limited capabilities
to only allow the user to pay the ransom, whilst the underlying system and files are left untouched
(not encrypted, changed or damaged)[7]. It is middle grade Ransomware therefore it is not as
destructive and is less effective in extracting payment compared to crypto Ransomware[7][8].
This means that in order to extract payment from the user, the attacker may have to carry out
social-engineering techniques[7]. For example a law enforcement scam which claims that it has
detected illegal activity on the computer, and so one has to pay a fine as a punishment for this
activity[8].

Crypto Ransomware aims to encrypt personal data and files to make them inaccessible to the
user until the victim pays the ransom to decrypt the files[7]. It is the most dangerous type of
Ransomware and is very effective in extracting payment from the user[7][8]. This is because the
data stored on a computer is likely to be valuable and important to victims (such as photos or
work documents) therefore they will pay the ransom fee to get their data back instead of losing it.
Even if the computer has been infected by Ransomware, it will still work normally as the critical
system files are left untouched (it is only the encrypted files that the user cannot access)[7]. For
example a pop up message which says that all the files have been encrypted and it demands a
payment for decrypt them[8].

2.1.2 Ransomware History

Previously, few people owned a computer, less information was stored online, less attacks oc-
curred and malware was used for pranks or games with no malicious intent and everything was
designed for benign users not malicious users. Now attacks occur daily, everyone owns a com-
puter, everything is now online, it’s not just new malware but also variants of the same malware
are occurring ([9]) and malware is used for financial gain and malicious intent. Ransomware
attacks have been on the increase especially crypto Ransomware as there is no need for social
engineering, compared to locker Ransomware and the victims are more likely to pay (see above).
This increase is in terms of the ransom demand, the number of people affected (instead of attack-
ing individuals, companies/ organisation such as police, hospitals, banks, education etc. are now
being targeted more especially those who store personal information[9] and need this information
in real-time, so the victims are more likely to pay the ransom) and frequency of attacks. There is
no evidence to say that it is slowing down.

The first Ransomware occurred in 1989 with the AIDS Trojan[7]. It was introduced into systems
through floppy disks[7] and hid directories and encrypted all file names on the C: drive. The
users were asked to renew a licence to PC Cyborg Corporation by paying a $189 cheque (the
ransom demand)[10]. Another two notable Ransomware attacks are Wannacry (2017) and NOT-
PETYA (2017). Wannacry was a worldwide attack affecting thousands of computers within hours.
It used a network worm which had mechanism to spread itself automatically by exploiting vul-
nerabilities in Windows. Once installed on a computer it spread by using an EternalBlue exploit
to infect other computers on the local network and by scanning random IP addresses to spread
across the internet and infect other computers. Wanacry was stopped by a ‘kill switch’ feature.
This is because it worked by contacting a specific domain, and if it was contactable then the mal-

10

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

ware stopped spreading otherwise it would continue to spread to other computers and encrypt
files. Therefore, Wannacry was stopped by registering the used domain. Notpetya was another
Ransomware which also propagated via the ExternalBlue exploit and tried to extract logins and
passwords to spread the infection to other IP addresses linked to the organisation. Once in the
computer, it overwrote the master boot record to hijack the normal loading and encrypted other
files. After the system was rebooted, it loaded the master boot record and encrypted the entire
disc and displayed a $300 bitcoin ransom note. However it was a wiper therefore even if the
victim paid the ransom, they were not able to decrypt and recover the files [9].

2.1.3 Ransomware Stages

There are many stages of a Ransomware attack[11]. They are:

1. Propagation - This is how the victim gets infected with Ransomware and can be in many
forms including[7]:

(a) A traffic distribution service - buy redirected web traffic and point it to a website host-
ing an exploit kit which runs in the victims computer.

(b) Malvertising - malicious advertisements either clicked on by the user or hosted onto
legitimate websites to redirect traffic to a website hosting an exploit kit which runs in
the victims computer.

(c) Phishing or SPAM - via botnets usually in the form of an email containing a malicious
attachment or a link to a website hosting an exploit kit which runs in the victims com-
puter.

(d) Self propagation and social engineering - Ransomware which contains functionality to
spread such as a worm.

2. Installation - After infecting the victims computer by copying it into various locations,
the Ransomware installs itself and sets up keys in the registry to start automatically at
reboot[11].

3. Key generation - The Ransomware server generates two cryptographic keys; one stored on
the victims computer and one on the criminals’ server[11].

4. Data encryption - The Ransomware encrypts every file it finds[11]. Often attackers want
productivity files (files used the most) or valuable, important and personal user data to be
attacked. This is because they affect the users the most if lost so they will pay the ransom
fee to get their data back instead of losing it[7].

5. Extortion - The Ransomware displays a screen with a ransom fee and time limit to pay after
which the key to decrypt the files will be destroyed[11]. The Ransomware needs to convince
the victim to pay the ransom. Tactics for crypto Ransomware include scaremongering vic-
tims e.g. time limits, the endowment or fear of regret (people value their possessions) and
Ellsberg paradox (people prefer known probabilities of winning in risky situations there-
fore they will pay the ransom to get their data back instead of considering the impact of
data loss). Tactics for locker Ransomware include deception through fake authorities such
as the law enforcement, using central and peripheral route to persuasion and the influ-
ence of framing (based on the prospect theory that states people become risk-adverse over
prospects involving gains and people become risk-loving over prospects involving losses).
These tactics will pressurise them to pay the ransom. The ransom in locker Ransomware is
usually paid in the form of payment vouchers as the victim cannot get access to the system
and in crypto Ransomware the ransom is usually paid via cryptocurrencies such as bitcoin
because of the anonymity associated with it[7].

6. Recovery - in locker Ransomware the system will be unlocked and in crypto Ransomware a
decryption key will be sent to the victim[11].

11

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

2.1.4 To Pay or Not To Pay

One big talking point that needs to be considered in Ransomware is whether the victim should
pay the ransom or not. Arguments for not paying the ransom include the idea that the victim will
be fostering criminal activity and as the FBI said ([12]) it will provide criminals with an incentive
for more people to get involved and to target more organisations and there is no guarantee that
the victim will get their files decrypted (crypto Ransomware) or their system unlocked (locker
Ransomware)[8]. Also there is no guarantee that the attacker is out of the system (access is re-
voked), they may decrypt the files and unlock the system but they do not have to revoke their
access. However criminals like maintaining their reputation and a trust relationship is built be-
tween the victim and attacker so are likely to unlock the system or decrypt the files[7].

2.1.5 Ransomware Examples

Ransomware can occur anywhere. For example it has occurred in android devices such as an-
droid defender (fake antivirus and the first android Ransomware) and lockerpin (set or change
the device PIN and lock device). Android Ransomware acts similarity to a Trojan horse where it
“spreads by masquerading as a legitimate application ... that will make the victim download the
malware” such as trending games. Once the malware has been installed onto the device it reports
back to a C&C server with device information such as the device model and IMEI and the C&C
server sends commands such as lock device, steal contacts and steal/send SMS messages[13].
Ransomware has also been seen in Linux (for example Linux encoder which was the first Linux
Ransomware which exploited vulnerabilities in web-based plug-ins[14]) and databases (for ex-
ample mysql databases were attacked brute-forcing to get the root password and create a new
table to instruct the victims to pay 0.2 Bitcoins[15]). Recently Ransomware has been provided as a
service (sold to people) to those who want to carry out a Ransomware attack (Ransomware-as-a-
service (RAAS)). This allows these attackers to generate a Ransomware attack without the need to
create, maintain or run the Ransomware. Usually the vendor of the Ransomware gets paid com-
mission. For example Torlocker where the buyers will be provided with the crypto Ransomware
binary file and access to a control panel for US$300. Due to technological advancements and the
interconnectivity and mobility of devices there are many more attack targets in this world. The
new development of IOT (internet of things) devices means that they are now a target for attacks
because they are connected to the internet[7]. For example smart tv via a man-in-the-middle at-
tack where a user downloads an app onto their device, the request is redirected to another server
which sends a malicious app to the TV[16]. More serious problems can also be caused as a result
of these technical advancements such as internet-enabled cars because if these were targeted by
Ransomware (or any other type of malware) it can prevent the car from functioning properly or
can potentially take over the controls of the car and cause a crash[7].

2.2 Backdoor Report

A Backdoor can be defined as a technique which bypasses the security of a system in order to
access its data[17].

It can be created in two ways. Firstly, in a benign way by the developer or a legitimate vendor.
This can be done to access an application or OS for the purpose of troubleshooting or resolving
software issues or it can be introduced due to a programming error. Secondly, in a malicious way
by attackers whereby it is installed by an exploit or taken advantage of by viruses and worms
(other malware)[17]. The consequences of Backdoors are that security measures can be bypassed,
attackers can gain privilege access (e.g. root access in Unix), data (e.g. finance and personal) can
be stolen and it can be used as a platform to install additional malware such as Ransomware,
spyware or carry out a Dos attack[18].

Typically, Backdoors are inserted into a system by a Trojan (type of malicious software pretending
to be a legitimate program but performs malicious functions such as delivering malware, steal-
ing data or malware installing a Backdoor such as Ransomware) or the hardware or software
manufacturer in order to test applications and fix software bugs[18].

12

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

For example, Notpetya (as described above in the Ransomware report) was caused by a Backdoor
Trojan disguised as a software update[18].

2.3 Trojan Report

Trojans are malicious programs that claim to perform a benign function but perform a malicious
function instead by using deception and social engineering. Trojans can take the form of attach-
ments, downloads, and fake videos/programs. It can be described as a standalone malware or a
tool for other activities such as delivering future payloads e.g. Ransomware, Backdoors or spy-
ware, communicating with the hacker or making the system easier to attack[19].

Trojans can appear is many forms such as legitimate applications, music, software or advertise-
ments. Examples of infection methods include downloading cracked applications such as illegal
free software copies (the illegal free software copies are Trojans), downloading unknown free pro-
grams from an untrusted site which is a Trojan or opening infected attachments which execute a
Trojan when the attachment is clicked[19].

For example, Notpetya (as described above in the Ransomware report) was caused by a Backdoor
Trojan disguised as a software update[18].

To summarise, Ransomware can be used to install Backdoors into a system and Trojans can be
used to deliver Backdoors or Ransomware into a system. For this reason, I will be comparing the
clustering of Ransomware, Backdoors and Trojans.

2.4 Feature Selection and Model Construction Report

Features have been defined as “behavioural characteristics of a sample”[20]. Zheng[21] defines
features as numeric representations of data which are derived from the type of data available.
They can either be dynamic (from executing code) or static (from analysing metadata or code)
and numerical (e.g. the number of API calls) or categorical (e.g. a certificate that is signed
or unsigned). If feature selection is performed correctly (i.e. the correct features are selected)
then modelling becomes easier, the task is achieved and the process will have a higher chance of
success[21].

Feature selection is the process of removing irrelevant or redundant features based on the vari-
ables measured so that only relevant features are used in model construction. These relevant
features should have high intra-cluster similarity/ low within cluster variability (commonalities
between members of the same class) and low inter-cluster similarity/ high between cluster vari-
ability (differences between members of different classes). This is needed due to the curse of
dimensionality; the more features used, the lower the predictive performance. It reduces overfit-
ting, improves accuracy and reduces training time.

There are many methods of feature selection and model construction. The following papers pro-
vide different methods of feature selection and model construction that they used to select fea-
tures from behaviour traces or system calls.

2.4.1 Feature Selection and Model Construction Methods

Boutsidis, Mahoney and Drineas[22] carried out feature selection using a randomised algorithm.
It is described as follows:

1. Input a matrix A, the number of clusters k and an accuracy parameter E which is 0 or 1.

2. Compute the top-k right singular vectors of A.

3. Compute the normalised leverage scores pi (square of the Euclidean norm of the i-th row of

13

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Vk) Pi =
||(Vk)i ||22

k .

4. Compute a sampling parameter r (the number of features to select) by r = θ(
klog(k

ε)

ε2).

5. Loop from 1 to r, keep the ith feature with probability pi and multiply it by the factor
(rpi)−1/2.

6. Return the n x r matrix containing the selected features.

After this they performed K-means clustering.

Machine learning algorithms require features to be represented as matrices and numbers mapped
into Euclidean space therefore feature vectors are constructed out of the relevant features. There
are different types of feature vectors. Bit vectors are where each feature is a dimension and is
either present or not, histograms that splits the data into classes and counts the number of features
in each class (normalised frequency), graphs, or n-grams which contain consecutive n sequences
of system calls.

For example, Zheng[21] describes constructing vectors from text documents. There are many
ways the vectors can be constructed they are a “bag-of-words” where the vector contains the
frequency of the words (the number of appearances of that word) in each document, a “bag-of-n-
grams” where an n-gram is a sequence of n words such as a word is 1-gram (uni-gram) or “Tf-Idf”
(term frequency-inverse document frequency) which looks at the normalized count (word count
is divided by the number of documents this word appears in) of the words in the document. If
the word appears in many documents, the idf is near to 1 but 0 if it is in a few documents [21].
In contrast Canali et al.[23] used three combinations of atoms which are behavioural elements of
a program e.g. library calls, system calls. They were N-grams which are “a sequence of n atoms
that appear in consecutive order in the program execution trace”, tuples where a tuple signature
of cardinality n (called an n-tuple) “combines the strict order relation of n-gram with the always-
true matching filter of bag signatures”, and bags where a bag of cardinality n (called an n-bag)
contains n atoms with no order relation.

Mutz et al.[24] assumed that all attacks occur in the system call arguments, and anything else
which occurs in the normal execution is not detected. Models to characterise the features from
the strings of system call arguments can include:

1. String Length - strings in system calls are usually file names (< 100 characters). In the
learning phase, the system call argument string length distributions are approximated and
deviants are detected. In the detection phase, the system call argument frequency is assessed
and any length exceeding the mean of the lengths is classed as malicious.

2. String Character Distributions - to determine whether the string is normal. Strings have a
regular structure and characters in strings are “not uniformly distributed and occur with dif-
ferent frequencies”. Relative frequencies of legitimate system calls decrease in value slowly
compared to malicious which is fast or does not happen at all. In the learning phase, the
character distributions (average of all character distributions) are calculated. In the detec-
tion phase, the probability (via statistics from the idealised character distribution) that a
character distribution of an argument is a sample is calculated.

3. Structural inference - where grammar is inferred by analysing legitimate strings in the train-
ing phase. In the learning phase, structural inference is applied to the system call arguments
and over-simplification (includes all training data) or over-generalisation (arbitrary strings
produced) of the grammar can occur. Generalisation continues until the Markov models
and Bayesian probability specify that the structural information will be lost. In the detec-
tion phase, if the string arguments are valid the model returns 1 and if the value cannot be
derived from the grammar it returns 0.

4. Token finder - determines whether system call argument values are tokens or elements of
enumeration. In the learning phase, the system call argument is classified based on the
frequencies of the argument values as an enumeration or an identifier. In the detection
phase, if it is classed as tokens of enumeration (any value is in the set of identifiers) a 1 is
returned otherwise it returns 0 and if it is classed as an identifier it always returns 1.

14

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

To characterise the features of the string arguments each character was replaced by a token rep-
resenting a character class e.g. digit and any repetitions of adjacent items in the same class
were fused together into a token. For example the string “/etc/passwd” would become “slash-
lowercase-slash-lowercase”. This was inputted into the structural inference model where any
deviation was anomalous behaviour and a Bayesian network was produced. This contained
a root/hypothesis node (either normal or anomalous) and child/model nodes for every model
(captures the outputs connected to the root node). Dependencies could occur; these include cor-
relation, confidence values or additional information such as anomalous behaviour. Once the
normal behaviour profile is created, the variance of training data was evaluated. If it is high,
a low confidence value was produced and a small feature set was used then the confidence of
the correctness of the output was high. Conditional probability tables of the nodes were spec-
ified. The outputs of the model was a probability mapped onto anomaly score states (normal
(0-0.5), uncommon(0.5-0.75), irregular(0.75-0.9), suspicious(0.9-0.95) or very suspicious(0.95-1))
which describes deviations of system call arguments from the expected normal values[24].

Many techniques can address feature selection to try and select the best features. They include
using machine learning techniques that have methods to select the high importance features such
as logistic regression, SVM (Support Vector Machines) and decision trees, L1 regularization or use
a hard-coded method if the dataset is small such as “build it up” or “leave one out” approach. If
there are more features than the number of data points overfitting will occur and highly correlated
features results in instable decisions[2].

2.4.2 Feature Selection Considerations

There are many decisions to be made when selecting features from a dataset. The dataset could be
unbalanced such as containing more “good samples” (e.g. legitimate) compared to “bad samples”
(e.g. malicious). If one is using the data to cause machine learning techniques to classify rare
events, then “bad samples” may not influence the classifier and the model will perform badly. To
address this one can oversample the minority class, undersample the majority class or change the
loss function. The dataset can also have missing features from events including delays or failures.
This means that when training the data, the distribution can be wrong. To incorporate the missing
features, the value of it will need to be imputed such as computing the average or medium value
for the feature[2].

2.4.3 Examples

Some examples of how feature selection has been used in Ransomware can be seen in Zhang et
al. They performed classification of Ransomware families with machine learning based on N-
grams of opcodes[25]. Classifying Ransomware into families is useful for identifying variants of
Ransomware and to reduce the workload of analysts. Their feature selection method is described
as follows. They performed static analysis to analyse the Ransomware samples using the IDAPRO
disassembler. They transformed opcode sequences from Ransomware samples into meaningful
n-grams. They used n-grams as one opcode is not harmful but a sequence of opcodes in a specific
order can be harmful and an n-gram can be used to represent many meaningful opcode sequences.
Then (as in Zheng [21]) they calculated for each n-gram its term frequency-Inverse document
frequency (TF-IDF) to select feature n-grams so that they can discriminate between families. TF-
IDF allows the identification of important words and in a Ransomware family it evaluates the
importance of an n-gram. This “increases proportionally with the frequency of occurrence of
the n-gram in a family” and is “inversely proportional to the frequencies of occurrences of the
same N-gram in all Ransomware families” meaning that each family can be distinguished from
another family. The feature vectors were constructed using the TF values of the n-grams (values
of the feature n-grams in an n-gram sequence) and were used to train the classification models
by inputting them into supervised machine-learning methods (Decision Tree, Random Forest, K-
Nearest Neighbour, Naive Bayes, and Gradient Boosting Decision Tree) to perform Ransomware
classification[25]. Similarly Wan et al. carried out feature selection based Ransomware detection
with machine learning. They used 36 features e.g. IdleTime and the selection algorithms were
selected based on six feature correlations: gain ratio, information gain, correlation ranking, OneR
feature, ReliefF ranking, and symmetrical. The data was labelled either locky (abnormal), cerber

15

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(abnormal) or normal and then was trained. The data was then input into a decision tree[26].

There are many types of features one can select from Ransomware. For example, behaviours and
file usage patterns[27], API calls and key management (keys are either generated on victims ma-
chine, downloaded from C&C server or embedded in the binary[28]). However Mehnaz et al.[27]
said that there are several mechanisms for malware detection but a few for Ransomware. They
claim that analysisng Ransomware for file usage patterns or behaviours results in delayed detec-
tions and “monitoring only the process activities ... or file changes is not sufficient for effective
detection”. This is because it yields high false positve and false negative results. This suggests
that a combination of features should be selected to achieve the most accurate results.

2.5 Machine Learning Focusing On Clustering Report

2.5.1 Standardisation

After features are selected from behavioural profiles (feature selection) (see previous report) and
represented in a suitable form (model construction) and before they are manipulated by a ma-
chine learning algorithm such as a clustering algorithm, the features be scaled (feature scaling).
This is because many machine learning estimators work with features between 0 and 1 and they
may behave unexpectedly if the input data is not normally distributed. Also data can become
inconsistent when measuring the similarity, e.g. Euclidean distance, between features with dif-
ferent units and all features should contribute equally or if features have the same units but show
different variances. If one feature is measured on a larger scale compared to the others, the simi-
larity metric will be influenced more by that larger scaled feature. For example if one compared 2
features which vary differently due to their scales such as height (meters) and weight (kilograms)
which varies more, then PCA may “determine that the direction of maximal variance closely cor-
responds more with the feature that varies more (weight) if the features are not scaled”, even if a
change in height is considered more important[29]. Below (Figure 2.1) are two graphs. The one
on the left shows the effect of a training dataset undergoing PCA without standardisation so the
orders of magnitude are not the same. For example “feature 13 is two orders of magnitude above
the other features”. The graph on the right shows the effect of a training set undergoing PCA after
standardisation so the orders of magnitude are mostly the same. The prediction accuracy in the
scaled dataset outperforms the unscaled version at 8.15% compared to 81.48%[30].

Figure 2.1: Two graphs (one without standardisation (left) and one
with standardisation (right)) that illustrates the importance of

scaling[30].

16

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

This shows that all features should be standardised and have “properties of a standard normal
distribution with µ = 0 and standard deviation from the mean σ = 1”. The standard scores
(or z-scores) of the samples is calculated by z = x−µ

σ where x is a data point, µ is the mean

calculated by µ = 1
N ∑N

i=1(xi) and σ is the standard deviation calculated by σ =
√

1
N ∑N

i=1(xi − µ)2.
Alternativley, Min-Max scaling (normalisation) can be used where the features are scaled to 0 and
1. This is calculated by Xnorm = X−Xmin

Xmax−Xmin
.

Standardisation and normalisation are different. Normalisation scales features to have values
between 0 and 1 but standardisation transforms features to have a mean of 0 and a standard
deviation of 1. The choice of method depends on the application for example in clustering stan-
dardisation should be used to compare feature similarity based on distance measures[29].

Once features have been normalised or standardised, machine leaning techniques can be used to
classify/cluster the datapoints. Machine learning is a set of mathematical techniques for “infor-
mation mining, pattern discovery and drawing inferences from data”. It is the process of using
an algorithm to scan historical data (e.g. logs, emails or data from previous attacks) and find
the best classification rule (data is analysed for patterns to indicate malicious attacks and then
input into an algorithm that outputs malicious or legitimate) based on a mathematical definition
of “best”[2].

Due to huge amounts of data being available now compared to in the past (big data) and the rise
in computational capacity and tools available to process and analyse data in real time, one cannot
use traditional techniques or humans to analyse information. People now use machine learning
techniques to do this and instead of humans manually analysing the data to look at trends and
patterns, they now direct, develop and harness machine learning and interpret results[4]. Ma-
chine learning techniques are a good way of recognising trends and patterns in the data. It can be
used in many domains such as the security domain for example to help identify trends and mean-
ingful patterns to help predict, defend and respond to attacks in the future. Machine Learning
and AI will not only make cyber-attacks more powerful but will also make cyber defence just as
powerful. It can be used in many other domains such as the health sector or the financial sector for
example to help insurers to provide digital, personal and relevant information e.g. more focused
sales and marketing and reduced operational costs[5]. This is why machine learning techniques
are so important. It replaces human jobs which have now become impractical, less accurate (e.g.
financial services model using machine learning techniques to produce GDP estimates have said
it had been very accurate for the last 16 years[6]), less time consuming to carry out and used in
many domains.

There are two types of machine learning, supervised and unsupervised. In supervised learning,
the model for predicting an output (label on future data[2]) is based/predicted on one or more
inputs (labelled dataset of historical data[2])[3] and its goal is to learn a mapping from inputs to
outputs such that if x is the inputs and y is the outputs then y is an element from the number
of classes (yε{1, ..., C} where C is the number of classes)[3].Techniques include cross-validation,
train/validate/test and out-of-time validation[2]. Real world applications include document clas-
sification, email spam filtering, classifying flowers, image classification, handwriting recognition
and face detection and recognition[1]. In unsupervised learning, relationships and structure or
interesting patterns can be learnt from the data[3]. It is unknown what the patterns and the de-
sired outputs are for each input (no labels on historic dataset[2]), and there are no obvious error
metrics to use compared to supervised where you can “compare the prediction of y for a given x
to the observed value”[1]. Unsupervised learning methods are useful because labelling may not
exist and labelling large datasets is expensive.

2.5.2 Types of Machine Learning

Supervised Learning

Supervised Learning can be split into classification which finds a model that separates instances
into classes and regression which tries to generalize and predict real-valued numbers[1]. Clas-
sification can be binary (2 classes such as malicious or legitimate) or multi-class. Decision trees
are data structures used to make decisions. It can be used for regression or classification and can

17

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

take as input numerical or categorical data without normalisation. It works by recursively split-
ting up nodes of the tree (a binary decision) into children based on conditions (metrics measure
the quality of the split such as gini impurity, variance reduction and information gain) e.g. if the
condition is “age >= 18”, it is split into 2 children “age < 18” and “age >= 18”. It is easily
explainable as every prediction (output) can be “expressed as a sequence of boolean expressions
from the root node to a leaf node”, scales well and is efficient for training and predicting. How-
ever, there are problems with overfitting and generalisability (not generalise beyond training set),
they are less accurate (small changes in the dataset can make large changes in the tree), biases
exist towards variables with more possible values when splitting categorical values and they are
inefficient with some types of relationships. Many decision trees can be combined into random
forests. Here overfitting is reduced by taking the average of all decision trees, the algorithm can
be parallelised, but it is storage intensive[2].

Support Vector Machines (SVM’s) are a supervised learning classification algorithm where the
data points (features) are separated by a margin (smallest distance between the hyperplane (bound-
ary) and any of the samples). SVM tries to maximise the margin by taking into account the data
points which are closest to the hyperplane. This means that the location of the hyperplane is
not influenced by the data points that are further away i.e not support vectors[31]. They have
good performance, scale well in dimensional space and are efficient but the outputs cannot be
interpreted as probabilities, so extra computation and cross validation is needed[2]. Takeuchi et
al.[32] used SVM’s to detect Ransomware via the API calls with the view of detecting unseen
Ransomware. A vector (e.g. 2-grams which were frequency or bit vectors) of the number of
individual existing Ransomware API calls e.g. read or write in the execution logs of malicious
programs is created (feature selection and model construction), then a standardised vector repre-
sentation model is created to accommodate the diversity of programs, then a SVM is used which
learns the features of malicious behaviour using the vector representation model and classifies
unseen Ransomware into benign or malicious behaviour.

Linear regression predicts real numbers (future outcomes) based on feature vectors of past his-
torical data. A best fit linear model is produced where the outputs (real numbers) are mapped
onto the inputs (feature vectors). Logistical regression predicts the probability of each data point
occurring from numerical feature vectors. It is efficient, scales well and is explainable as the con-
tribution of each feature can be calculated) but it assumes each feature is linear, features should
have “little or no multicollinearity” (if independent then truly independent) and requires a large
sample size. Anomaly detection extends regression which tries to determine detect an unusual
event when comparing an observed and predicted value[2].

Other supervised learning methods include nave bayes classifier, k-nearest neighbour and neural
networks[2].

Unsupervised Learning

Unsupervised learning can be split into Principal Component Analysis (PCA) and Clustering.
PCA according to James et al.[3] is “used for data visualization / data pre-processing before su-
pervised clustering”. It is used for dimensionality reduction and looks to project high-dimensional
data to a low-dimensional subspace[1][31] to explain a good fraction of the variance[3]. The di-
mensionality of the data needs to be reduced because even though the data is high-dimensional,
there may only be a small number of degrees of variability from latent factors[1]. PCA has
been used in areas such as biology, natural language processing, signal processing, computer
graphics[1], data compression, pre-processing and visualisation[31].

Clustering[3] tries to group similar objects together by looking at whether the “observations fall
into distinct groups” based on the inputs. A cluster is a group of data points where the distance
between each point is small (objects in the same cluster are as similar to each other as possible)
and the distance between points in different clusters are large (objects in different clusters are as
dissimilar to each other)[31][33][34]. High intra-cluster similarity/ low within cluster variability
(commonalities between members of the same class) and low inter-cluster similarity/ high be-
tween cluster variability (differences between members of different classes). The greater the simi-
larity within a cluster and the greater the difference between clusters, the better and more distinct
the clustering is[35]. Clustering can be used in many areas including psychology, economics[33],

18

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

bioinformatics, image analysis, data mining[34], medicine, summarisation, compression, business
and climate[35].

Euclidean Distance is a dissimilarity metric between the features[1]. Good clustering occurs when
the “within-cluster variation (amount where each feature in a cluster differs from one another) is
as small as possible”[3]. A common dissimilarity measure is squared Euclidean Distance[36][1]
which is the distance between 2 points xij and xi’j, calculated by ∆ f (xij, xi′ j) = (xij − xi′ j)

2[1].
It finds the square of the distance between each variable and sums the squares[34]. This may
become slow as the Euclidean Distances are computed for every data point. Many proposals
have been made for speeding up the algorithms such as precomputing a data structure which
stores all data points that are close to each other e.g. a subtree that contains all nearby points[31].

There are two main types of clustering; these are hierarchical and partitional clustering. Parti-
tional clustering is where all objects in a dataset are divided into non-overlapping clusters and
each object is only assigned to one cluster. One type of partitional clustering is K-means cluster-
ing. In K-means clustering, the features from a dataset are partitioned into a “pre-specified num-
ber of clusters”[3] where each feature is assigned to exactly one cluster[34] (hard assignment[31]).
Each feature is assigned to a cluster if its centre (centroid) is the nearest to that cluster[34]. This
means that every pair of clusters are distinct[33] because if the indices of the features in each clus-
ter denote a set of {C1,, Ck}where k is the number of clusters, then a union of the indices of the
features create a set of all the indices of 1 to n ((C1 ∪ C2 ∪ ... ∪ CK = {1,, n}). Clusters are
non-overlapping so no feature belongs to more than one cluster. If the indices of the features in
each cluster denote a set of {C1,, Ck}where k is the number of clusters, then the intersection of
the features in 2 different clusters will produce the empty set (Ck ∩ Cki = ∅ f or all k 6= ki)[3].

For example below (Figure 2.2) K-means clustering has been used to cluster “150 observations
into 2 dimensions using different values of K”[3].

Figure 2.2: This graph illustrates k-means being performed using
different k values (k = 2,3 or 4)[3].

James et al.[3] provide an algorithm to partition n features into k clusters:

1. “Assign a random number, from 1 to k, to each feature.

2. Iterate until the cluster assignments stop changing.

(a) For each of the k clusters, compute the cluster centroid (mean of the features assigned
to each cluster) for the features in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest (closest is defined by
Euclidean Distance).”

However, there are some issues with K-means clustering. This algorithm finds a local rather
than a global optimum so the results will depend on the initial cluster assignment in step 1 of

19

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

the algorithm[3][33]. This means that the algorithm should be run multiple times from different
random initial configurations, until the partitioning of the features into k clusters has the smallest
within-cluster variation[3]. Another problem is determining the number of clusters k. There

are many methods such as
√
(n

2) where n is the number of objects (Madhulatha[34]) or the elbow
criterion. Choosing the value of k is hard. Different values can result in different models therefore
the analysis should be run several times, randomizing the number of clusters until an optimal
clustering is found. To find the optimal clustering, calculate the Sum-of-Squared-Error (SSE) for
each cluster and pick the clustering with the smallest SSE[35]. It is computationally fast and is
simple to understand, however it is difficult to identify and predict the value of k as it is fixed
at the start of the algorithm and the final clusterings depend this value[37]. K-means does not
work well on categorical or binary features. This is because when mapping into vector space
the values do not make sense and with binary features one feature can dominate and determine
the cluster or its information may be lost. It is less effective in high dimensions due the curse
of dimensionality (the more features used, the lower the predictive performance) therefore the
dimensionality should be reduced e.g. PCA or using k-means in low dimensions[2]. It has been
used in the real world for image segmentation and compression[31].

The other main type of clustering is hierarchical clustering. This organises the set of clusters
as a dendogram (tree-like representation), showing the clusterings for each possible number of
clusters[35]. This is used when the number of clusters is unknown as there is no pre-specified
number of clusters[3] and it only requires a similarity measure. Despite this it is slow and mem-
bership to a cluster is fixed. In contrast K-means requires stronger assumptions and the number
of clusters and initial centres are defined at the start[37].

There are 2 types of hierarchical clustering, bottom-up (agglomerative) clustering and top-down
(divisive) clustering. In bottom-up clustering, it starts from the maximum number of clusters
and works down towards a single cluster by splitting up the clusters[33][34][35]. A “dendrogram
is built from the leaves and combines clusters up to the trunk”[3]. Each leaf is a feature and as
you move up the dendrogram, branches start fusing (merging) together to the feature similarity.
The height of the branches i.e. fusion (on the y axis) denotes how different the features are; the
lower (earlier) the fusion takes place, the more similar the groups of features are to each other.
The higher the fusion occurs, the more different the features are. Below (Figure 2.3) is an image
which shows how to interpret a dendrogram of “9 features in two-dimensional space from the
raw data”[3].

Figure 2.3: This graph illustrates the interpretation of a dendrogram
(left) from raw data (right)[3].

To identify clusters, make a cut (line) horizontally through the dendrogram which splits the fea-
tures into different clusters[3][1].

Below (Figure 2.4) is an image that shows this process. If the dendrogram was cut at height 2 and
then the clustering {{{4, 5}, {1, 3}}, {2}} would be obtained[1].

20

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 2.4: This graph illustrates a dendrogram cut at height 2[1].

James et al.[3] and Murphy[1] provide an algorithm to obtain a dendrogram where initially
all individual points are clusters, and the 2 closest clusters are merged until only one cluster
remains[35]:

1. Begin with n groups and start at the bottom of the dendrogram.

2. Iterate for i = n, n− 1, ..., 2.

(a) Examine all pairwise inter-cluster dissimilarities among the i clusters via the Euclidean
Distance of all the n(n− 1)/2 pairwise dissimilarities. Identify the pair of clusters that
are most similar and fuse (merge) the 2 clusters together. The dissimilarity between
these two clusters indicates the height in the dendrogram where the fusion should be
placed.

(b) Compute the new pairwise inter-cluster dissimilarities among the i− 1 remaining clus-
ters until all of the observations belong to one single cluster i.e. there is one single
group.

The linkage defines the dissimilarity between two groups of features. There are different types of
linkages:

1. Complete - “Maximal intercluster dissimilarity”[3] which is the maximum distance between
the objects in the cluster[33]. This is known as Furthest Neighbour clustering[1] where
all pairwise dissimilarities are computed between the observations in cluster A and the
observations in cluster B, and the largest is recorded[3]. Two groups are close only “if all of
the observations in their union are relatively similar”. Its complexity is O(n3).[1]

2. Single = “Minimal intercluster dissimilarity”[3] which is the minimum distance between
the objects in the cluster[33]. This is known as Nearest Neighbour clustering[1] where all
pairwise dissimilarities are computed between the observations in cluster A and the ob-
servations in cluster B and the smallest is recorded[3]. The tree generated is a minimum
spanning tree and clusters are merged by connecting the two closest features of the clusters
together. Its complexity is O(n2)[1].

3. Average = “Mean intercluster dissimilarity”[3] which is the average distance between the
objects in the cluster[33]. This is the preferred method[1] where all pairwise dissimilarities
are computed between the observations in cluster A and the observations in cluster B, and
the average is recorded[3]. As averages are used, any change to the measurement scale can
change the result. Its complexity is O(n3)[1].

4. Centroid = “Dissimilarity between the centroid for cluster A and the centroid for cluster
B”[3]. The centroid of a cluster is the average of the objects in the cluster. “Each feature of
the centroid vector is the average feature value of the vectors of all objects in the cluster”[33].

21

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Average and complete produce more balanced dendrograms. Centroid linkage can cause inver-
sion where two clusters are fused at a height below one of the individual clusters[3].

This clustering ranks the objects so that it is easier to display objects. The algorithm is flexible as
the number of clusters is not fixed and so can be chosen dynamically. Small clusters are produced
so they are easier to understand and analyse. However, if an incorrect clustering is obtained
at an early stage then objects cannot be relocated later and results can vary depending on the
dissimilarity measure used[37].

The other type of hierarchical clustering is top-down (divisive) clustering. This starts from a
single cluster and works up towards the maximum number of clusters by merging the closet pairs
of clusters[33][34][35]. Below is an algorithm which “starts with all the data in a single cluster,
and then recursively divides each cluster into two daughter clusters, in a top-down fashion”[1]:

1. Starts with all the data in a single cluster D = {x1, ..., xN} where “Di is the set of the data
points at the leaves of a subtree Ti”.

2. Compute the probability of each data point in the cluster given the tree Ti where i = 1 to N
(p(Di|Ti)).

3. Iterate until all clusters are merged. For each pair of clusters i and j, compute the probability
of the merge of Di and Dj given the merged tree Tij (p(Dij|Tij)).

4. Find the pair Di and Dj that have the highest merge probability and merge them (Dk =
Di ∪ Dj) and delete Di and Dj.

This clustering focuses on the top levels of the dendrogram and at every stage the algorithm will
have access to all the data so the best solution should be achieved. However, difficulties in com-
putation when splitting up the clusters can arise and like bottom-up clustering, the results vary
based on the dissimilarity measure used[37]. It can work with any distance metric or similarity
function but can be more complex to analyse, has high time complexity (see above) so is inefficient
with large datasets and due to the tree, it consumes more storage compared to k-means[2].

Other unsupervised techniques include locality-sensitive hashing, K-D trees and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)[2].

An issue with clustering is that it could be affected by the order of features in the data. To over-
come this, the analysis should be carried out several times, randomizing the order of the features
and averaging the cluster centres. Another issue is that clusters maybe inappropriate as the clus-
tering algorithms try and assign everything into clusters. These clusters may become distorted
due to having outliers that do not belong to a cluster. Also “some algorithms are not robust to
perturbations of the data”[3].

An example where clustering has been used in classifying malware is in Hamid et al.[38]. They
used k-means clustering to separate the android malware into ransomware, scareware or good-
ware depending on 2 features, presence or absence of locks and encryption. If the trace had a lock
and encryption then it was classified as ransomware, if the trace had a lock but not encryption
then it was classified as scareware and if the trace did not have both a lock and encryption then it
was classified as goodware. It was performed on two datasets with one having accuracy at 98.1%
and the other at 74.7%. This means that clustering malware can be accurate but it can be made
more accurate depending on the number features used. Here only 2 features were used (presence
or absence of locks and encryption), so in theory the more features used the more accurate the
classification will be.

2.5.3 Resiliency and Trustworthiness of Machine Learning Algorithms

Chen et al.[39] looked at the resiliency and trustworthiness of machine learning algorithms for
Ransomware detection via the generative adversarial network (GAN). They collected Ransomware
samples from VirusTotal and used many machine learning techniques including classifiers includ-
ing Text-CNN, XGBoost, Linear Discriminant Analysis (LDA), Random Forest, Naive Bayes and

22

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Support Vector Machines (with Linear and Radical Kernels). Text-CNN was the most accurate
and had the highest true positive score, F-score and AUC score. This means that it is a highly
effective Ransomware classifier so will selected by a security defender. They tested resilience
of high performing Ransomware detectors (combination of the above classifiers) and found that
Text-CNN, LDA & Text-CNN, Nave Bayes & Text-CNN, SVM-linear & Text-CNN all failed to
detect any malicious samples. They also found that the most robust classifier was SVM-radial
& Text-CNN with 100% detection rate and a “weighted score between the XGBoost & Text-CNN
classifier and the SVM-radial & Text-CNN classifier gives the defender a lot of coverage in the
space of execution logs for Ransomware”.

2.5.4 Machine Learning Algorithm Problems

Two main problems with machine learning algorithms are overfitting and underfitting. Overfit-
ting is when the model does not generalise well to unseen data because it thoroughly matches
the training data. Here all points are correctly classified, but it is unlikely to separate new points
effectively. Underfitting is when the model is too simple meaning that it does not generalise to
unseen data. Here, most of the time the points are correctly classified but lots of errors can oc-
cur and it suffers from poor performance on unseen data. To minimise over and under fitting
regularisation should be used in the training procedure which adds a term to the loss function
such as the norm of the coefficient vector in logistic regression. Other factors to consider with
machine learning is the model to use based on computational and mathematical complexity and
explainability[2].

2.5.5 Validation

After clustering has been performed, the clusters obtained need to be validated and evaluated
to verify that if an independent set of features was obtained, the same set of clusters would be
displayed. This measures the correctness of clusterings without using external information.

The measures of cluster validity are split into cluster cohesion (how related the features in the
clusters are) and cluster separation (how distinct or separate one cluster is from another)[35]. As
many methods can be used the most interoperable and useful solution should be picked. One
method is calculating the inter-cluster variance (gap between different clusters which should be
large as dissimilar objects should be distant) and intra-cluster variance (objects inside the same
cluster which should be small as similar objects should be close).

If graph-based clustering algorithms are being used e.g. hierarchical clustering, cohesion is the
“sum of the weights of the links in the graph that connects points within a cluster” and the
separation between 2 clusters is the sum of the weights of the links from points in one cluster
to points in another cluster. Cohesion(Ci) = ∑xεi,yεi proximity(x, y) and Separation(Ci, Cj) =

∑xεi,yεj proximity(x, y). For prototype-based clustering algorithms e.g. K-means clustering, the
cohesion is the sum of the proximities with respect to the centroids of the cluster and separa-
tion between 2 clusters is the proximity of the 2 clusters. There are two equations to account for
the separation of clusters from an overall clustering directly relating to each other. Cohesion(Ci) =
∑xεCi

proximity(x, Ci) and Separation(Ci, Cj) = proximity(Ci, Cj) or Separation(ci, cj) = proximity
(ci, c). For Euclidean Distance dissimilarity measures, the cohesion is equivalent for both graph-
based and prototype-based clustering algorithms. A cluster with a high cohesion is better than
one with low cohesion.

To calculate the validity of clustering the sum of the validity of individual clusters is used[35].
Overall validity = ∑K

i=1(wi)validity(Ci). For partitional clusterings cluster validity can be mea-
sured using a proximity matrix. This looks at the “correlation between a similarity matrix for a
dataset and an ideal version of a matrix based on the cluster labels from a cluster analysis of the
dataset”. All points within a cluster have a similarity of 1 and all points outside the cluster have
a similarity of 0. “A high correlation between the ideal and actual similarity matrices show that
points that belong to the same cluster are close to each other and vice versa for low correlation”.
For hierarchical clusterings, cophenetic correlation can be used where the cophenetic distance
between two objects is the initial proximity of objects in the same cluster. The cophenetic corre-

23

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

lation coefficient is the correlation between the entries of the cophenetic distance matrix and the
dissimilarity matrix[35].

To evaluate the clusters obtained many metrics can be used. Firstly, purity where an empirical
distribution is defined over a class of labels to calculate a result ranging from 0 (bad) to 1 (good)
of individual clusters and the total clustering. Secondly rand index of two different clustering’s
U and V where one calculates the number of true positives (”number of pairs that are in the
same clusters in both U and V”), true negatives (”number of pairs that are in the different clusters
both U and V”), false negatives (”number of pairs that are in the different clusters in U but the
same cluster in V”) and false positives (”number of pairs that are in the same cluster in U but
different clusters in V”). The result between 0 and 1 is the fraction of clustering decisions that
were correct. Thirdly by mutual information between two different clustering’s U and V by using
“the probability that a random object belongs to cluster ui in U and vj in V, the probability that
a random object belongs to cluster ui in U and the probability that a random object belongs to
cluster vi in V”[1][3].

To measure the quality of a clustering which uses the Euclidean Distance dissimilarity measure,
the Sum-of-Squared-Error (SSE) should be used by calculating the Euclidean Distance to the clos-
est centroid and then compute the total SSE. If two different clusters are produced by different
executions of the K-means algorithm on the same data set, then pick the one with the smallest
SSE as the “centroids are a better representation of the points in their cluster”[35].

Other metrics include contingency tables that describe the association between two partitions,
silhouette value which represents each cluster as a silhouette and displays the “objects which lie
within a cluster and which objects are marginal to the cluster”. It combines both cohesion and
separation[35]. Class-based Precision and Recall can be used where the precision and recall scores
are produced by “calculating the least number of object links required to align the equivalence
classes”[33].

Li et al.[40] looked at the challenges of evaluating malware clustering and found that the make-up
of the ground-truth data (method of selection i.e. distribution sizes of the malware families) from
prior evaluations “biases their results toward high accuracy” specifically increasing the likelihood
of good precision and recall. One problem with clustering is how to determine the ground-truth
labels. A common method is to use an existing anti-virus tool as they use hard-coded rules how-
ever many anti-virus engines disagree on the labels therefore one should only use the labelling if
it is agreed by all anti-virus tools. Also the ground truth labels and the malware to cluster should
have similar cluster-size distributions e.g. both highly biased. They used the sequences of system
calls and API calls of malware and performed single-linkage hierarchical clustering, precision,
recall and F-measure. They concluded and proved that as the plagiarism detectors and BCHKK-
algo (used by Bayer et al.[20]) performed well on the clustering (greater precision, worse recall
and similar f-measure) with ground truth labels inferred by antivirus tools and was better with
the BCHKK-data dataset (used by Bayer et al.[20]) compared to the VXH-data dataset (malware
instances see[40]). This may be due to way the systems gathered the malware traces because they
can vary in the length and composition of API sequences or due to the differences in the presence
and frequencies of certain activities in each dataset. The main difference noted in the datasets
were the distribution of cluster sizes as the BCHKK-data dataset is highly biased with 2 large
clusters covering more than half of the malware instances. The effect of this could be seen when
removing the 2 large clusters as the F-measure was lower compared to when they were in. This
was also seen when introducing perturbations into the BCHKK-algo distance matrices, perform-
ing clustering and evaluating the drop of the precision and recall rate. A high precision and recall
in the VXH-data case was more significant as minor errors in the BCHKK-algo distance matrices
were more amplified (was more sensitive and less immune) when the clusters were distributed
as in the VXH-data.

24

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

3
Design and Implementation for Clustering Malware

This chapter describes the design and implementation of a novel way to cluster
malware. Different feature selection and model construction methods (Section 2.4),

clustering methods (Section 2.5), dissimilarity metrics (Section 2.5), validation metrics
(Section 2.5.5) and different aspects of the clustering process such as the importance

of scaling (Section 2.5.1) are explored in the chapter above.

Section 3.1 describes my program including the description, justification and
implementation of the clustering process. In particular:

Subsection 3.1.1 describes the generation of malware behavioural profiles [41].

Subsection 3.1.2 describes the different feature selection and model construction
methods that were carried out. This is the process of extracting features from the

behavioural profiles to produce feature vectors.

Subsection 3.1.3 describes the process of performing hierarchical clustering on the
feature vectors, including the dissimilarity metric and scaling. This process combines

samples that exhibit similar behaviour into the same cluster.

Subsection 3.1.4 describes the different processes of validating the clusters obtained for
the different methods of feature selection and model construction to evaluate how

similar the clusters were to the dataset (i.e. the accuracy of the different methods).

25

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

3.1 Description of Program and Justification of Feature

Selection and Validation Methods

A summary of the process of clustering is described below:

1. Dynamic Analysis - monitors the execution of malware samples in a controlled environ-
ment. This is performed by a sandbox such as cuckoo sandbox where a file is submitted,
and cuckoo sandbox produces a report (json) of the behaviour of the file when executed.
The dataset[41] used in this project represents features extracted from samples analysis us-
ing static and dynamic analysis. There are 15 Ransomware families, 5 Backdoor families and
9 Trojan families with several sanitized evidences in each family. Please see the all the sam-
ples in the ”Proj2/Program/”directory in my repository (https://github.com/Rebecca22/
Proj2/tree/master/Program). This contains all the malware families and json files for each
family.

2. Feature Selection - Parsing the json files and carrying out feature selection. The features from
the behavioural profiles are extracted and feature vectors are produced (feature selection
and model construction). The features are the operation and each json file is represented as
a bit or frequency feature vector (n-grams) with each dimension representing a system call.
Three types of N-grams were used; 1-gram where one system call is a dimension, 2-grams
where pairs of system calls are dimensions and 3-grams where triples of system calls are
dimensions. A bit vector is when each dimension is 1 if the system call is observed or 0 if the
system call is not observed and a frequency vector is when each dimension has the number
of system calls observed in a trace. I have used 2 feature selection methods; these are full
representation or by category. There are 12 experiments run all together (2 experiments per
system call representation for bit and frequency vectors per N-gram = 2 ∗ 4 ∗ 3 = 24). This is
because for each N-gram type, of which there are 3, there are 2 system call representations
to be represented and each vector is a bit or frequency vector.

3. Hierarchical Clustering - Clustering the vectors according to the behavioural profile where
samples that exhibit similar behaviour are combined in the same cluster. The process in-
cludes, deciding a dissimilarity matrix, scaling the feature vectors and hierarchical cluster-
ing. The dissimilarity metric I used was squared Euclidean Distance (finding the square of
the distance between each point and summing the squares) and scaling is carried out on
the frequency feature vectors by standardisation (mean of 0 and standard deviation of 1)
and centred around the norm. Hierarchical clustering produces a dendrogram constructed
by identifying the two feature vectors that were the most similar (Euclidean Distance is the
smallest) and merging them together.

4. Validation - Cut each of the dendrograms at each height to obtain clusters which are val-
idated using metrics to find the best clustering. The clusters are compared to the labelled
dataset used for the samples analysis. The evaluation metrics Fowlkes Mallows Score (FMS),
F1-Score (F1), Adjusted Rand Index Score (ARI) and Silhouette Coefficient (SC) were used
to evaluate how similar the clusters were to the dataset. The cut that was most similar to the
labelled data set was the best clustering (i.e. the one that yielded a score the closest to 1.0).
For Ransomware the best clustering method was the Uni-gram with the system call repre-
sentation of Category and vector representation of Frequency Vector. For Backdoor, the best
clustering method was the Di-gram with the system call representation of Full Representa-
tion and vector representation of Frequency Vector. For Trojan, the best clustering method
was the Tri-gram with the system call representation of Category and vector representation
of Frequency Vector.

Please see Appendix A for the installation requirements and user manual for my program. I
used a git repository (which was used to run on google colabatory) to store the code which only
produces and downloads all the text files for running the individual experiments for one malware
family at a time (please see https://github.com/Rebecca22/Proj2 for the code that produces all
the text files). Please note: The text files were too large to store on git hub which meant that I could
not run my best cluster algorithm to find the best clustering using the text files according to the
FMS, F1, ARI and SC scores. This meant only the code for the production of the text files is on

26

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

github, all the rest of the program code is stored on my local machine as it is too large to store on
github.

3.1.1 Stage 1 - Dynamic Analysis:

The dataset[41] used in this project represents features extracted from samples analysis using
static and dynamic analysis meaning that many features were collected. Static analysis involved
features such as file sections and syscall/API and dynamic analysis involved features such as
contacted IP addresses and AV signatures. Both static and dynamic analysis involved sandboxes
e.g. cuckoo to form ontologically homogeneous blocks called Analyses Results and then MIST
translation (Malware Instruction Set for Behaviour Analysis) removed all the irrelevant and re-
dundant features. It is needed due to the curse of dimensionality; the more features used, the
lower the predictive performance. It reduces overfitting, improves accuracy and reduces train-
ing time[21]. This is more effective than the individual behavioural profiles themselves as the
behavioural profiles will contain a lot of information that is irrelevant to the behaviour. MIST[42]
encodes instructions as the category of the system call, operation of the system call and argu-
ments for the system call. The dataset used in this project was based on the MIST dataset but
without encoding the operation. Sanitised techniques were used to hash the evidences such that
the algorithm speed was increased but the meaning was unaffected[41].

In each json file for each family, “properties” lists the action performed within the category of
system calls and then the sanitised evidences that perform this category action. For example
“file access: 40770804 f5ddaf0c 3d801aa5” means that the category is file, action is access
and there are 3 sanitised evidences of 40770804 f5ddaf0c 3d801aa5 where the sample accesses a
file[41].

I used this dataset because it was produced recently (2016), therefore it is relevant to today’s world
and can be generalised to today’s problems (as the features in the dataset will be similar to the
features in current malware). It looked realistic as everything was described in detail (see[41]) so
it had undergone rigorous processing, it was sanitised and as both static and dynamic analysis
were used, many features were collected and many evidences were produced. All these properties
made this dataset reliable, representative of today’s malware and accurate/valid as my program
could be based on many features and evidences that exist in current malware, and that is why I
used this dataset.

Please see the all the samples in the ”Proj2/Program/”directory in my repository (https://
github.com/Rebecca22/Proj2/tree/master/Program). This contains all the malware families
and json files for each family.

3.1.2 Stage 2 - Feature Selection and Model Construction:

I carried out feature selection before clustering to produce a better clustering where the operations
from the json files are used to represent the features in the feature vectors. The other information
in the json file is irrelevant and should not be used to construct the feature vectors as they do
not contribute to the predictive accuracy. This increases performance and decreases storage re-
quirements. Redundant features do not provide any extra information to the system calls and can
produce anomalies and inconsistencies within the vectors. The removal of irrelevant and redun-
dant features is needed due to the curse of dimensionality; the more features used, the lower the
predictive performance. It reduces overfitting, improves accuracy and reduces training time[21].

I used two feature selection methods to extract the system calls from the behavioural profiles
in the json files. Firstly, category where each system call was represented by only the name of
the category of the operation e.g. file, pe, reg. Secondly, full representation where everything
is represented (i.e. the category and action of the operation) e.g. file access, file delete,

pe imports, reg read. This enriched the feature space. This was used because the first method
groups together all operations into a category such as all the operations of file access, file delete,

file read, file write and file drop were grouped under the category file. However, this
does not fully distinguish each evidence and may not be able to distinguish between differ-
ent Ransomware, Backdoor or Trojan families therefore a greater system call representation was

27

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

needed (second experiment) to fully represent the actual behaviours. This meant more informa-
tion needed to be expressed to fully represent the behaviour of each evidence within each Ran-
somware, Backdoor or Trojan family. The first method of feature selection has the largest feature
space and the least semantics whereas the last method has the smallest feature space but the most
semantics.

After these features were extracted from the behavioural profiles, they were used to construct
feature vectors for each .json file. Each json file is represented as a feature vector where each
dimension in a vector is a system call. The dimensions of the vectors in the feature space are
worked out by looking through the whole dataset of samples and counting how many unique
system calls are in the samples (feature selection). The features (operations) from the json files
were constructed as feature vectors (model construction).

N-grams were to produce feature vectors. These are consecutive n-sequences of system calls that
are observed in the trace. Three methods of model construction were used. Firstly 1-gram (Uni-
gram) where one system call is a dimension in the feature vector e.g. if the system calls in the json
files were pe, str and sig then the dimension of the 1-gram would be {pe, str, sig}. Secondly
2-grams (Di-grams) where pairs of system calls are dimensions in the feature vector e.g. if the sys-
tem calls in the json files were pe, str and sig then the dimensions of the 2-gram would be {pe
pe, str str, pe str, str pe, sig sig, pe sig, sig pe, str sig, sig str}. Thirdly, 3-
grams (Tri-grams) where Triples of system calls are dimensions in the feature vector e.g. if the
system calls in the json files were pe, str and sig then the dimensions of the 3-gram would be
{pe pe pe, str str str, pe pe str, pe str pe, str pe pe, sig sig sig, pe pe sig,

pe sig pe, sig pe pe, pe str str, str pe str, str str pe, pe str sig, pe sig str,

str pe sig, str sig pe, sig pe str, sig str pe, pe sig sig, sig pe sig, sig sig pe,

str str sig, str sig str, sig str str, str sig sig, sig str sig, sig sig str}.

Finally, these N-grams would either be represented as a bit vector or a frequency vector. In a bit
vector the feature vector will have a 1 if the feature (system call) is present in the behavioural
profile or 0 if the feature is not present in the behavioural profile. For example in the 1-gram
above, {1, 0, 1}means that in the behavioural profile pe and sig operations were observed in
the trace but the str operation was not observed in the trace. In frequency vectors, the feature
vector will contain the number of system calls observed in the traces per json file per family for
example in relation to the 1-gram above, {6, 0, 1} means that in the behavioural profile 6 pe, 0
str and 1 sig operations were observed in the trace. From Uni-grams to Tri-grams the feature
vector dimensions (feature space) decrease but the semantics of the vectors increase.

Twelve experiments were used for all the methods of feature selection (system call representa-
tion) and model construction (feature vector representation) to find the best clustering. As this
is unknown, lots of experiments need to be run and then evaluated against the labelled dataset
provided by Ramilli[41] to obtain the best clustering.

3.1.3 Stage 3 - Hierarchical Clustering:

Firstly, the dissimilarity matrix of Squared Euclidean Distance was used. This is the distance
between two points calculated by finding the square of the distance between each point and sum-
ming the squares. The smaller the distance between the two features, the similar the feature
vectors are to each other. This means the within-cluster variation (amount where each feature in
a cluster differs from one another) is small and the between-cluster variation (amount where each
feature in different clusters differs from one another) is large. This metric was used because it is
one of the most common metrics and the Hierarchical clustering package in the “scipy” library
supports Euclidean Distances (scipy.cluster.hierarchy).

The Euclidean Distance between two feature vectors x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] is
calculated by:

√
[y1− x1]2 + [y2− x2]2 + ... + [yn− xn]2

For example if the feature vector had dimensions: file access, file delete,

sig persistence autorun, sig copies self, file write, file read} and two files had fea-
ture frequency vectors {6, 1, 6, 3, 3, 1} and {2, 1, 0, 0, 0, 2} respectively then after
standardisation (above) the feature vectors are {-1. 0. 1. 1. 1. -1.} and {-1. 0. -1.

28

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

-1. -1. 1.}. The Euclidean Distance is 4.472135955, calculated by√
[−1− 1]2 + [0− 0]2 + [1−−1]2 + [1−−1]2 + [1−−1]2 + [−1− 1]2 =√
[−2]2 + [0]2[2]2 + [2]2 + [2]2 + [−2]2 =

√
(4 + 4 + 4 + 4 + 4) =

√
20 = 4.472135955

Secondly, frequency feature vectors were scaled. The bit vectors did not need to be standardised,
as all the dimensions in the feature vector were either 1 (system call present) or 0 (system call
not present). This means the number of json files will not affect the vector dimensions and so
even if one sample has more json files than another sample, the clustering algorithm will not be
affected or influenced more by that sample. If one feature vector is measured on a larger scale than
the other feature vectors e.g. weight vs height, it will be influenced by that feature e.g. weight.
If frequency feature vectors were not scaled, they may become inconsistent when calculating
the Euclidean Distance similarity measure and many machine learning algorithms work with
features between 0 and 1. All the values in the feature vector were the frequency of the system
calls therefore the number of json files will directly affect the dimensions of the feature vectors. If
one sample has more json files than another sample, the dimensions for the first sample will have
greater values for system calls compared to the second sample and so the Euclidean Distances
between the features and the clustering algorithm will be affected and influenced greatly by that
sample. The larger the number of json files in a sample, the larger the number of values of system
calls observed in the trace, and the more the clustering algorithms and Euclidean Distances will
be affected.

Standardisation should be used in clustering to compare similarities between features[29]. For
illustration purposes, below is a graph (Figure 3.1) generated from two vectors {165, 134, 40,

37, 46, 0} and {146751, 2193, 750, 814, 5832, 501} respectively. If they were both stan-
dardised and plotted on a graph, all the points were around the same value (green) and so the
Euclidean Distances were not be affected by larger numbers in the vector dimensions and if the
vectors were not standardised then the values were all over the place (red) and were affected by
larger numbers in the vector dimensions.

Figure 3.1: This graph illustrates the difference between standardised
(red) and non-standardised (green) vectors. Standardised points are all

located around the same value whereas non-standardised are not.

Standardisation makes the mean = 0 and the standard deviation = 1. The mean is the average
of the system call frequencies amongst the dataset and the standard deviation is how much the
system call frequencies of the different feature vectors (each malware file for each family) differ
from the mean value of the group. First the means and standard deviations are calculated and

29

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

then these are used for centering and scaling. Its distribution will have a mean of 0 and standard
deviation of 1.

The mean is calculated by: 1
N ∑N

i=1(xi)[29]. In a maxtrix the mean is computed as: 1′x(1′1)−1 =
1′x(1/n) where 1 = nx1 column vector of ones and x is a nx1 column vector of scores x1,x2,...,xn
and n = number of dimensions. For example if the feature vector had dimensions: file access,
file delete, sig persistence autorun, sig copies self, file write and file read. If two
files had feature vector {6, 1, 6, 3, 3, 1} and {2, 1, 0, 0, 0, 2} respectively then the mean
would be 4 for the first dimension. This was calculated by [11](6

2)([11](1
1))
−1 = 6+ 2 ∗ (1+ 1)−1 =

8 ∗ 2−1 = 8/2 = 4. The standard deviation calculated by:
√

1
N ∑N

i=1(xi − µ)2[29]. In a maxtrix

the standard deviation is computed as: 1′x(1′1)−1 − xi = 1′x(1/n) − xi (i.e. mean − value of
column vector for the files) where 1 = nx1 column vector of ones and x is a n x1 column vec-
tor of scores x1,x2,...,xn and n = number of dimensions. For example with the same feature
vector described for the mean (above), the standard deviation would be -2 for the first dimen-
sion for the first file. This was calculated by mean − first value of column vector for the file =
[11](6

2)([11](1
1))
−1 − (6

2) = 4− 6 = −2.

Once the Euclidean Distances have been calculated for all the samples and the frequency vectors
have been standardised, hierarchical clustering is carried out by producing a dendrogram of all
the samples against Euclidean Distances. The dendrogram is produced by repeatedly identifying
the two samples that are the most similar (ie the Euclidean Distance is the smallest) and merging
the 2 clusters together until all feature vectors belong to one single cluster.

For example if the feature vector had dimensions: {file access, sig antiav servicestop,

file delete, sig persistence autorun, reg read, sig copies self, file write, file read,

reg access}. If there were four files which had feature frequency vectors 0 = {2, 0, 0, 0, 0,

0, 0, 0, 0}, 1 = {6, 0, 1, 6, 0, 3, 3, 1, 0}, 2 = {0, 1, 0, 0, 0, 0, 0, 0, 0}, 3 =

{2, 0, 1, 0, 0, 0, 0, 2, 0}, 4 = {1, 0, 0, 0, 1, 0, 0, 1, 1} respectively. The feature
vectors are transformed by its distribution having mean of 0 and standard deviation of 1 (see
above on how the mean and standard deviations are calculated). The transformed feature vectors
are: 0 = {-0.098 -0.5 -0.816 -0.5 -0.5 -0.5 -0.5 -1.069 -0.5}, 1 = {1.863 -0.5 1.225

2.

-0.5 2. 2. 0.267 -0.5}, 2 = {-1.079 2. -0.816 -0.5 -0.5 -0.5 -0.5 -1.069 -0.5},
3 = {-0.098 -0.5 1.224 -0.5 -0.5 -0.5 -0.5 1.604 -0.5}, 4 = {-0.588 -0.5 -0.816-0.5

2. 0.5 -0.5 0.267 2.}

Next the Euclidean Distances are calculated for all the samples (see above on how to calculate it)
and for every iteration the vectors that have the smallest distance are merged together. The ma-
trix below (where each row is in the format [vector1, vector1, dist, sample count]) shows
us which feature vectors were merged in each iteration. For example, the top row shows that
the cluster 0 and 2 were merged as they were the most similar with a Euclidean Distance of
2.68543078.

[[0 2 2.68543078 2]
[3 5 3.36296355 3]
[4 6 3.81131197 4]]
[1 7 4.93779993 5]]

Finally, a dendrogram is constructed from this matrix. For illustration purposes, this matrix looks
like this on a graph (Figure 3.2):

30

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 3.2: This graph is the illustration of the matrix on a
dendrogram. Vectors 0 and 2 are the most similar (smallest distance)

and vector 1 is the most dissimilar.

This dendrogram shows that the feature vectors 0 and 2 ({2, 0, 0, 0, 0, 0, 0, 0, 0} and
{0, 1, 0, 0, 0, 0, 0, 0, 0}), were the most similar followed by vectors 3 and 4. Vector 1 is
the most dissimilar.

The process of hierarchical clustering was carried out on all the 12 experiments for all the methods
of feature selection (system call representation) and model construction (feature vector represen-
tation).

3.1.4 Stage 4 - Validation:

Each dendrogram above was cut at each height to obtain clusters and these clusters were val-
idated using metrics to find the best clustering. The cuts split up the different feature vectors
into different clusters. The features in the same cluster are as similar as possible to each other
and have a small within-cluster variation/ intra-cluster variance (amount where each feature in
a cluster differs from one another). The inter-cluster variance (amount where each feature in a
cluster differs from a feature in another cluster) should be large and the samples should be as
dissimilar as possible. To illustrate the process of cutting a dendrogram a horizontal line (cut) is
made through the dendrogram which splits the features into different clusters. For example with
the dendrogram below (Figure 3.3), if the dendrogram was cut at height 2 then the clustering
would be {{{4, 5}, {1, 3}}, {2}}. This shows that the features 4, 5, 1 and 3 would be in one
cluster and 2 would be in another cluster.

Figure 3.3: This graph illustrates a dendrogram cut at height 2[1].

31

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

In the program each dendrogram was cut at every height and this obtained different clusters
at each height. For example in this diagram above, the program would cut the dendrogram at
height 1 to obtain the clustering {{4, 5}, {1, 3}, {2}}, height 2 to obtain the clustering {{{4,
5}, {1, 3}}, {2}} and height 2.5 to obtain the clustering {{4, 5}, {1, 3}, {2}}.

After the dendrogram was cut at each height the clusterings obtained for all the json files by the
cut are compared to the labelled dataset from Ramilli[41] and the evaluation metrics Fowlkes
Mallows Score (FMS), F1-Score (F1) and Adjusted Rand Index Score (ARI) were used to evaluate
how similar the clusters were to the dataset. The cut that was most similar to the labelled data set
was the best clustering (i.e. the clusters obtained were most like the labelled dataset and each of
the families had the correct/ near correct json files in them). The evaluation metric Silhouette Co-
efficient (SC) was used to compare the clusterings obtained for all the json files against Euclidean
Distance matrices and the cut that produces the highest SC score was the best clustering.

FMS works as follows. If U = true assignments of the dataset and V = the assignments of clus-
terings by the cut of the dendrogram, then FMS calculates the number of true positives (TP =
number of pairs that are in the same clusters in both U and V), true negatives (TN = number of
pairs that are in different clusters in both U and V), false positives (FP = number of pairs that are
in the same cluster in U but different clusters in V) and false negatives (FN = number of pairs that
are in different clusters in U but the same cluster in V) of the true class assignments (the dataset
where the json files are split up into families) and compares this against the clustering algorithm
assignments of the same samples (the cut of the dendrogram produced for the experiment). FMS
is calculated by tp√

(((tp+ f p)∗(tp+ f n)))
.

F1 is calculated similarly to FMS. Using U, V and calculating TP, TN, FP and FN (as described
above in FMS), F1 is calculated by 2 ∗ (precision∗recall)

(precision+recall) where precision = tp
(tp+ f p) and recall =

tp
(tp+ f n) .

Rand Index (RI) is calculated in a similar way to FMS and F1. Using U, V and calculating TP, TN,
FP and FN (as described above in FMS), RI is calculated by tp+tn

(tp+tn+ f p+ f n) .

These metrics yield a score between 0 and 1. If the true class assignments are equal to the predic-
tive assignments (clustering algorithm assignments) the score should produce a 1.0. The higher
the score (nearer to 1) the more similar the true and predictive assignments are and the lower the
score (near to 0), the more dissimilar the true and predictive assignments are and the assignments
are independent.

Silhouette coefficient (SC) is a metric where if a = mean distance between a sample and all other
samples in the same cluster and b = mean distance between a sample and all other samples in the
next nearest sample, then the SC of a sample = b−a

max(a,b) . The SC for a set of samples is the mean
of the SC for each sample. SC yields a score between -1 and 1. The higher the score (nearer to 1),
the better the clustering obtained as the model has well defined clusters. Low scores (nearer to 0)
indicate overlapping clusters and negative scores indicate that samples have been assigned to the
wrong cluster and another cluster more similar to the sample[30].

For example, a dataset consisted of two malware families with four files in each and each file
had feature bit vectors of {0: [1, 0, 0, 0, 0, 0, 0, 0, 0], 1: [1, 0, 1, 1, 0, 1, 1,

1, 0], 2: [0, 1, 0, 0, 0, 0, 0, 0, 0], 3: [1, 0, 1, 0, 0, 0, 0, 1, 0], 4: [0, 0,

0, 0, 0, 0, 0, 0, 1], 5: [0, 1, 0, 0, 1, 0, 0, 0, 1], 6: [0, 0, 0, 0, 0, 0, 0, 1,

0], 7: [0, 1, 0, 1, 1, 1, 1, 0, 0]} respectively. Next the Euclidean Distances were cal-
culated for all the samples (see above on how to calculate it) and a dendrogram (Figure 3.4) was
produced.

32

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 3.4: This graph illustrates a dendrogram of a dataset consisting
of 2 malware familes each with four files.

Next the dendrogram obtained was cut at different heights. For each cut, the true assignments
(TA) and predictive assignments (PA) were calculated and then the FMS, F1 and RI are calculated
from the number of TP, TN, FP, and FN. SC is calculated using PA and the Euclidean Distance
matrix. The true class assignments (TA = actual true assignments of the dataset (i.e. json files
split up into families)) is [0, 0, 0, 0, 1, 1, 1, 1] as four files is from one family and four
files were from another family (the number in the list denotes the cluster number that the file
is assigned to). In this example, the dendrogram should be cut 7 times. One such cut splits up
the dendrogram into one cluster at height 2.0. Here the predictive assignment (PA = clustering
algorithm assignments from the cut) is [0, 0, 0, 0, 0, 0, 0, 0]. This is because when the
dendrogram is split into one cluster, every file is in the same cluster (the number in the list denotes
the cluster number that the file is assigned to). Calculating the number of TP (number of pairs that
are in the same clusters in both TA and PA), TN (number of pairs that are in the different clusters
both TA and PA), FP (number of pairs that are in the same cluster in TA but different clusters in
PA) and FN (number of pairs that are in the different clusters in TA but the same cluster in PA)
at this cut generates 12 true positives, 16 false negatives and 0 false positives and true negatives.
The values of these can be calculated by looping through the true assignments and checking the
values of pairs in the true assignments against values of pairs in the predictive assignments.
Input : The true assignments (TA) and predictive assignments (PA)
Output: The number of True Positives (tp), True Negatives (tn), False Positives (fp) and False

Negatives (fn)

for i← 0 to len(TA) do
for j← i + 1 to len(TA): do

if TA[i] == TA[j]andPA[i] == PA[j]: then
tp+ = 1

end
if TA[i]! = TA[j]andPA[i]! = PA[j]: then

tn+ = 1
end
if TA[i] == TA[j]andPA[i]! = PA[j]: then

f p+ = 1
end
if TA[i]! = TA[j]andPA[i] == PA[j]: then

f n+ = 1
end

end
end
Algorithm 1: This algorithm calculates the number of true positives, false positives, false neg-
atives and false negatives between the true and predictive assignments.

33

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Finally the scores are calculated. FMS = tp√
(((tp+ f p)∗(tp+ f n)))

= 12√
(((12+0)∗(12+16)))

= 12√
((12∗28))

=

12√
336

= 0.654653670708, F1 = 2 ∗ (precision∗recall)
(precision+recall) where precision = tp

(tp+ f p) and recall = tp
(tp+ f n) ,

therefore precision = 12
(12+0) = 1 and recall = 12

(12+16) = 12
28 = 0.42857142857 and F1 = 2 ∗

(precision∗recall)
(precision+recall) = 2 ∗ (1∗0.42857142857)

(1+0.42857142857) = 2 ∗ 0.42857142857
1.42857142857 = 2 ∗ 0.3 = 0.6, RI = tp+tn

(tp+tn+ f p+ f n) =
12+0

(12+0+0+16) = 12
(12+16) = 12

28 = 0.4285714285714 and SC = -1 as the SC only works with a cut greater
than 1 (ie the samples should be split into more than one cluster).

This process continues for all cuts for each dendrogram and the best clustering from the 12 exper-
iments at the different cuts is the cut that has the FMS, F1, RI and SC nearest to 1. RI needs to be
adjusted as to be corrected for chance. Python has a function (Adjusted Rand Index) that already
adjusts the manual RI calculation above and so this project used ARI instead of RI.

FMS, F1 and RI were used because there was access to a labelled dataset from Ramilli[41] and
these metrics used when the true assignments are known. All ensure that any random predictive
assignment has a score close to 0 which means that the assignments are different and independent
from each other and no assumptions are made about the clustering method used or the cluster
structure produced. In reality, testing labels will not be available so the true class assignments
will not be known. Therefore, other clustering validation techniques must be used such as SC. SC
is used when the true assignments are not known. The score is higher when clusters are dense
and well separated[30].

If testing labels (ground truth) are not known, once the best clustering is obtained a programmer
would randomly select a number of objects for each cluster and count whether it is correct or not.
This result should be enriched by a confidence interval (measure of uncertainty given the whole
population) because only a certain number of objects would have been selected. In this project
I had access to labelled dataset so using FMS, F1 and ARI I could tell how close and correct the
results are to the dataset.

34

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

4
Results for Clustering Malware

This chapter visualises, explains and analyses the results from my approach for
clustering malware.

In particular:

Section 4.1 visualises the results of clustering Ransomware samples into families
including looking at the results of the system call dimensions, euclidean distances and

validation metrics.

Section 4.2 visualises the results of clustering Backdoor samples into families including
looking at the results of the system call dimensions, euclidean distances and validation

metrics.

Section 4.3 visualises the results of clustering Trojan samples into families including
looking at the results of the system call dimensions, euclidean distances and validation

metrics.

35

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

4.1 Results of Clustering Ransomware

In total, 12 experiments were run for each system call representation and feature vector represen-
tation. The results for each experiment are detailed below:

There are 15 different malware families from the Ramilli[41] dataset with 10727 evidences (in-
cludes duplicates) in total. The table below (Table 4.1) displays the Ransomware families and the
number of evidences for each family:

Name of Family Number of Evidences
Ransomware.Cryptowall-1201142 465

Ransomware.Jigsaw-1201143 898
Ransomware.Locky-1201144 863

Ransomware.Matsnu-1201145 525
Ransomware.Petya-1201146 1019
Ransomware.Petya-1201147 1909

Ransomware.Radamant-1201148 786
Ransomware.Satana-1201149 274
Ransomware.Satana-1201150 466

Ransomware.TeslaCrypt-1201151 748
Ransomware.TeslaCrypt-1201152 321
Ransomware.TeslaCrypt-1201153 368
Ransomware.Vipasana-1201154 719
Ransomware.Vipasana-1201155 722
Ransomware.Vipasana-1201156 644

Table 4.1: This table displays all the Ransomware families and the
number of evidences for each family.

There were 10727 different feature vectors for each experiment. The number of system call di-
mensions in the vectors changed depending on the system call representation and type of feature
vector used. Please see Appendix B for text files which show the results each experiment across
the three different types of malware.

4.1.1 System Call Dimensions

Trends can be seen from the results. Within a specific n-gram, the more semantics being repre-
sented (e.g. full representation compared to category), the higher the number of dimensions in a
vector and the larger the feature space. For example, the table below (Table 4.2) shows this for the
Uni-grams.

Vector System Call Dimensions
Full Representation 45

Category 8

Table 4.2: This table displays that within a specific n-gram, the more
semantics being represented the higher the number of dimensions in a

vector and the larger the feature space.

Secondly, for each n-gram the higher the number of system calls per dimension (e.g. 1-gram = 1
system call per dimension), the higher the number of dimensions in a vector. This is in compari-
son to a smaller number of system calls per dimension with the same system call representation
and type of vector. For example, the table below (Table 4.3) shows this for the Uni-gram Category
Bit Vectors. This is because the feature space increases and the number of dimensions of the fea-
ture vectors are larger.

36

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Vector System Call Dimensions
Uni-gram 8
Di-gram 64
Tri-gram 512

Table 4.3: This table displays the higher the number of system calls per
dimension, the higher the number of dimensions in a vector.

The graphs below (Figure 4.1) illustrates these trends. You will see three graphs. The first shows
the Uni-grams, Di-grams and Tri-grams all on one graph, the second shows the Uni-grams and Di-
grams and the third one shows the Tri-grams on their own. This was done because the number
of system call dimensions were much larger for the Tri-grams compared to the Uni-grams and
Di-grams so one cannot see what the graph is trying to illustrate. These graphs illustrate that the
more semantics that were being represented within an n-gram, the higher the number of system
calls per dimension and the higher the number of dimensions in a vector. This is in comparison
to a smaller number of system calls per dimension with the same system call representation and
type of vector.

(a) The Uni-grams, Di-grams and
Tri-grams.

(b) The Uni-grams and Di-grams.

37

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(c) The Tri-grams.

Figure 4.1: These graphs illustrate that the more semantics that were
being represented (higher number of system calls per dimension)

within an n-gram, the higher the number of dimensions in a vector.

4.1.2 Euclidean Distance

The tables below (Tables 4.4, 4.5, 4.6 and 4.7) display the Euclidean Distance matrices for each
system call representation and type of vector. The columns are the distances being represented,
the rows are the type of n-gram and the cells represent the number of evidences that had the
distance. A small distance between two evidences means that the two evidences are similar to
one another (dissimilar for large distances). A distance of 0 between 2 evidences means that the
two evidence feature vectors are the same:

1. Full Representation

(a) Bit Vector

Vector 0 1 1-2 2-3 3-4 Largest Distance
Uni-gram 10646 58 21 1 0 2
Di-gram 10611 66 36 11 1 3.162
Tri-gram 10588 77 38 19 4 3.606

Table 4.4: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Full Representation and Vector

Representaion of a Bit Vector.

(b) Frequency Vector

Vector 0 0-5 5-
10

10-
20

20-
50

50-
100

100-
150

150-
300

Largest Distance

Uni-gram 10524 117 38 24 16 6 1 0 103.577
Di-gram 10531 68 29 21 39 26 10 2 174.894
Tri-gram 10522 51 20 25 33 44 21 10 295.971

Table 4.5: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Full Representation and Vector

Representaion of a Frequency Vector.

2. Category

38

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) Bit Vector

Vector 0 1 1-2 Largest Distance
Uni-gram 9846 17 2 1.414
Di-gram 9839 23 3 1.732
Tri-gram 9846 17 2 1.732

Table 4.6: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Category and Vector Representaion of a

Bit Vector.

(b) Frequency Vector

Vector 0 0- 5 5-10 10-60 60-150 Largest Distance
Uni-gram 9802 40 19 4 0 52.593
Di-gram 9809 25 9 17 4 107.300
Tri-gram 9822 19 4 12 7 143.378

Table 4.7: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Category and Vector Representaion of a

Frequency Vector.

Three trends can be seen. Within a specific n-gram and system call representation, the bit vector
has a higher number of evidences at lower distances (especially at 0). In comparison, frequency
vectors that have the same n-gram and system call representation have larger range of distances
and the largest distances were bigger. For example the table below (Table 4.8) shows this with
for Uni-gram Full Representation Vectors (this also applies to Di-grams and Tri-grams). This is
because the distance between the feature vectors are larger, so there are more distances and less
vectors that are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest Distance

Bit Vector 10646 0, 1, between 1 and 2 and be-
tween 2 and 3

2

Frequency
Vector

10524 0, between 0 and 5, between 5
and 10, between 10 and 20, be-
tween 20 and 50, between 50 and
100, between 100 and 150 and
between 150 and 300

104

Table 4.8: This table displays that within a specific n-gram and system
call representation, the bit vector has a higher number of evidences at

lower distances compared to frequency vectors.

The same trend was seen was seen within an n-gram (Uni-gram, Di-gram, Tri-gram). Within an
n-gram with the same vector representation (bit or frequency), the more semantics that is rep-
resented in the feature vector (full representation), the higher the number of evidences at lower
distances (especially at 0). In comparison to the same n-gram with the same feature vector repre-
sentation but less semantics are represented. In this case, less distances are represented and the
largest distances were lower. For example, the table below (Table 4.9) shows this for Uni-gram Bit
Vectors (this also applies to Di-grams and Tri-grams). This is because the feature space decreases
and the number of dimensions of the feature vectors are smaller and the distance between the
feature vectors are smaller and so there are less distances and more vectors that are similar.

39

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

System Call Repre-
sentation

Number of evi-
dences at 0

Distances Represented Largest
Distance

Full Representa-
tion

10646 0, 1, between 1 and 2 and between 2
and 3

2

Category 9846 0, 1 and between 1 and 2 1.4

Table 4.9: This table displays that less distances were represented and
the largest distances were lower.

Another trend could be seen with respect to the type of n-gram being represented. With the
same system call representation and type of vector representation (bit or frequency), the lower the
number of system calls per dimension in an n-gram (e.g. 1-gram = 1 system call per dimension),
the lower the number of evidences at lower distances (especially at 0). When there were higher
numbers of system calls per dimension in an n-gram (e.g. 2-gram or 3-gram) with the same
system call representation and type of vector, more distances were represented and the largest
distances were bigger. For example, the table below (Table 4.10) shows this for Full Representation
Bit Vectors (this also applies to the category representation). This is because the feature space
increases and the number of dimensions of the feature vectors are larger and the distance between
the feature vectors are larger and so there are many more distances and less vectors that are
similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Uni-gram 10646 0, 1, between 1 and 2 and between 2 and 3 2
Di-gram 10611 0, 1, between 1 and 2, between 2 and 3 and

between 3 and 4
3.2

Tri-gram 10588 0, 1, between 1 and 2, between 2 and 3 and
between 3 and 4

3.6

Table 4.10: This table displays that with the same system call
representation and type of vector representation, the lower the number

of system calls per dimension, the lower the number of evidences at
lower distances.

This graph 4.2 below shows that within an n-gram, eventhough the system call representations
were the same (Full Representation), the number of evidences that had a distance 0 was higher
with the bit vectors than the frequency vectors.

Figure 4.2: This graph illustrates that the number of evidences that had
a distance 0 was higher with the bit vectors than the frequency vectors.

40

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

The graphs below (Figure 4.3) show that the fewer the semantics represented in the feature vector
by the system call representations (fewer semantics is the category representation), the lower
the number of evidences at lower distances compared to the more semantics represented. You
will see three graphs. The first shows all the distances all on one graph, the second shows just
the distance 0 and the third graph shows all the distances except 0. This was done because the
number of evidences was much larger for the distance 0 compared to the other distances so one
cannot see what the graph is trying to illustrate.

(a) Distances 0, 1, 1-2 and 2-3.

(b) Distance 0.

41

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(c) Distances 1, 1-2 and 2-3.

Figure 4.3: These graphs illustrate that the fewer the semantics
represented in the feature vector by the system call representations

(fewer semantics is the category representation), the lower the number
of evidences at lower distances compared to the more semantics

represented.

The graphs below (Figure 4.4) show that the lower the number of system calls per dimension in
an n-gram (e.g. 1-gram = 1 system call per dimension), the higher number of evidences at lower
distances (especially at 0). You will see three graphs. The first shows all the distances all on one
graph, the second shows just the distance 0 and the third graph shows all the distances except 0.
This was done because the number of evidences was much larger for the distance 0 compared to
the other distances so one cannot see what the graph is trying to illustrate.

(a) Distances 0, 1, 1-2, 2-3 and 3-4.

42

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Distance 0.

(c) Distances 1, 1-2, 2-3 and 3-4.

Figure 4.4: These graphs illustrate that the lower the number of system
calls per dimension in an n-gram (e.g. 1-gram = 1 system call per
dimension), the higher number of evidences at lower distances

(especially at 0).

These trends can be seen because when more features are being represented, the feature space
increases and the number of dimensions of the feature vectors are larger and the distance between
the feature vectors are larger and so there are many more distances and less vectors that are
similar.

4.1.3 Validation Metrics

The table below (Table 4.11) displays the best Fowlkes Mallows score (FMS), F1-Score (F1), Ad-
justed Rand Index (ARI) and Silhouette Coefficients (SC) (nearest to 1) for each dendrogram and
the cut it was obtained at. (Red indicates the highest FMS, F1, ARI or SC score for each n-gram):

Vector and Syscall Repre-
sentation

Best FMS Best F1 Best ARI Best SC

Uni-gram, Full Represen-
tation, Bit Vector

0.293 at height
4.173

0.074 at height
0.0

0.002 at height
1.0

0.997 at height
1.0

Uni-gram, Full Represen-
tation, Frequency Vector

0.293 at height
1.818

0.129 at height
1.0

0.003 at height
1.0

0.992 at height
0.0

43

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Uni-gram, Category, Bit
Vector

0.275 at height
0.0

0.076 at height
0.0

0.002 at height
1.0

0.999 at height
1.0

Uni-gram, Category, Fre-
quency Vector

0.302 at height
0.0

0.076 at height
22.390

0.002 at height
1.0

0.998 at height
1.0

Di-gram, Full Representa-
tion, Bit Vector

0.293 at height
0.0

0.0675 at height
18.667

0.001 at height
1.0

0.995 at height
1.0

Di-gram, Full Representa-
tion, Frequency Vector

0.293 at height
5.398

0.148 at height
10.329

0.001 at height
1.0

0.991 at height
1.0

Di-gram, Category, Bit
Vector

0.301 at height
4.173

0.068 at height
1.0

0.001 at height
1.0

0.999 at height
1.0

Di-gram, Category, Fre-
quency Vector

0.301 at height
14.286

0.070 at height
1.0

0.001 at height
0.0

0.998 at height
1.0

Tri-gram, Full Represen-
tation, Bit Vector

0.293 at height
3.606

0.049 at height
2.449

0.0003 at height
1.0

0.993 at height
1.0

Tri-gram, Full Represen-
tation, Frequency Vector

0.293 at height
295.971

0.049 at height
146.479

0.001 at height
13.374

0.988 at height
0.528

Tri-gram, Category, Bit
Vector

0.301 at height
4.173

0.102 at height
0.0

0.0 at height 0.0 0.999 at height
1.0

Tri-gram, Category, Fre-
quency Vector

0.301 at height
0.0

0.103 at height
0.0

0.000 at height
22.100

0.998 at height
1.0

Table 4.11: This table displays the best Fowlkes Mallows score (FMS),
F1-Score (F1), Adjusted Rand Index (ARI) and Silhouette Coefficients
(SC) (nearest to 1) for each dendrogram and the cut it was obtained at.

Looking at this table (Table 4.11), the table below (Table 4.12) shows the experiments with the best
clustering according to FMS, F1, ARI and SC.

Metric N-gram, System Call Representation and Vector Representation Score and Height
FMS Uni-gram Category Frequency Vector 0.302 at height 0.0
F1 Di-gram Full Representation Frequency Vector 0.148 at height 10.329

ARI Uni-gram Full Representation Frequency Vector 0.003 at height 1.0
SC Uni-gram Category Bit Vector 0.999 at height 1.0

Table 4.12: This table displays that the best clustering according to
FMS, F1, ARI and SC were all different.

In all evaluation metrics, the best clustering method that was chosen was different (see above).
The method of feature selection (system call representation) was the same in FMS and SC (cate-
gory) but different in F1 and ARI (full representation). The method of model construction (feature
vector representation) was the same in FMS and F1 and ARI (frequency vector) but different in
SC and the N-gram was the same in FMS, ARI and SC but different in F1. These experiments
are completely different to each other in terms of the number of dimensions in a vector (45 for
Uni-gram, 2025 for Di-gram and 91125 for Tri-gram for full representation and 8 for Uni-gram, 64
for Di-gram and 512 for Tri-gram for category) and the features abstracted from the behavioural
profiles. The type of n-gram was different and the scores produced were different. No n-gram
had the highest score at the same experiment. The highest scores for each n-gram were frequency
vectors (except for SC) and a mixture of system call representation with a few exceptions in the
vectors in SC.

In the FMS, F1 and ARI metrics, the scores produced were not high as they were closer to 0. Even
though each metric calculated the best method of feature selection and model construction for
each dendrogram cut which produced the best clustering, these experiments were not similar to
the dataset[41] (true assignments) so these results should be taken with caution. As the scores
produced were not near to 1 and the same experiment did not produce the best clustering in all
FMS, F1 and ARI, if a clustering system used either one of the best clustering methods and was
presented with another dataset, there is no guarantee that the system will group samples from

44

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

the same Ransomware families in the same clusters so the user will not be able to distinguish
between the different Ransomware families. However, in SC the best clustering was very near 1.0
(the highest score possible) and most scores produced were close to 1. This means that this model
has well defined clusters.

The table below (Table 4.13) shows the scores of each feature vector by their respective positions
in the FMS, F1, AR and SC from best to worst and then the total score of these values added up.
For example, the Uni-gram Category Frequency Vector is the best FMS score so will yield a score
of 1 whereas the Uni-gram Category Bit Vector is the worst FMS score so will yield a score of 12.
This table is ordered from lowest (best) to highest (worst) total score.

Vector FMS F1 ARI SC Total
Uni-gram Category Frequency Vector 1 6 2 5 14

Uni-gram Full Representation Frequency Vector 6 2 1 10 19
Di-gram Category Bit Vector 2 9 7 3 21

Tri-gram Category Frequency Vector 4 3 11 4 22
Uni-gram Category Bit Vector 12 5 4 1 22
Tri-gram Category Bit Vector 5 4 12 2 23

Di-gram Full Representation Frequency Vector 7 1 5 11 24
Di-gram Category Frequency Vector 3 8 8 6 25

Uni-gram Full Representation Bit Vector 8 7 3 7 25
Di-gram Full Representation Bit Vector 9 10 6 8 33

Tri-gram Full Representation Frequency Vector 10 11 9 12 42
Tri-gram Full Representation Bit Vector 11 12 10 9 42

Table 4.13: This table displays the scores of each feature vector by their
respective positions in the FMS, F1, AR and SC from best to worst and

then the total score of these values added up.

This table (Table 4.13) shows that overall the best clustering method is Uni-gram with the system
call representation of Category and vector representation of Frequency Vector.

4.2 Results of Clustering Backdoor

There are 5 different malware families from the Ramilli[41] dataset with 5003 evidences (includes
duplicates) in total. The table below (Table 4.14) displays the Backdoor families and the number
of evidences for each family:

Name of Family Number of Evidences
Backdoor.MSIL.Tyupkin-1201109 1103
Backdoor.MSIL.Tyupkin-1201110 1128
Backdoor.MSIL.Tyupkin-1201111 1106
Backdoor.MSIL.Tyupkin-1201112 1103
Backdoor.MSIL.Tyupkin-1201113 563

Table 4.14: This table displays all the Backdoor families and the
number of evidences for each family.

There were 5003 different feature vectors for each experiment. The number of system call di-
mensions in the vectors changed depending on the system call representation and type of feature
vector used. Please see Appendix B for text files which show the results each experiment across
the three different types of malware.

45

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

4.2.1 System Call Dimensions

Trends can be seen from the results. Within a specific n-gram, the more semantics being repre-
sented (e.g. full representation compared to category), the higher the number of dimensions in a
vector and the larger the feature space. For example, the table below (Table 4.15) shows this for
the Uni-grams.

Vector System Call Dimensions
Full Representation 7

Category 3

Table 4.15: This table displays that within a specific n-gram, the more
semantics being represented the higher the number of dimensions in a

vector and the larger the feature space.

Secondly, for each n-gram the higher the number of system calls per dimension (e.g. 1-gram = 1
system call per dimension), the higher the number of dimensions in a vector. This is in comparison
to a smaller number of system calls per dimension with the same system call representation and
type of vector. For example, the table below (Table 4.16) shows this for the Uni-gram Category Bit
Vectors. This is because the feature space increases and the number of dimensions of the feature
vectors are larger.

Vector System Call Dimensions
Uni-gram 3
Di-gram 9
Tri-gram 27

Table 4.16: This table displays the higher the number of system calls
per dimension, the higher the number of dimensions in a vector.

The graph below (Figure 4.5) illustrate these trends. It shows that the more semantics that were
being represented within an n-gram, the higher the number of system calls per dimension and
the higher the number of dimensions in a vector. This is in comparison to a smaller number of
system calls per dimension with the same system call representation and type of vector.

Figure 4.5: This graph illustrates that the more semantics that were
being represented (higher number of system calls per dimension)

within an n-gram, the higher the number of dimensions in a vector.

46

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

4.2.2 Euclidean Distance

The tables below (Tables 4.17, 4.18, 4.19 and 4.20) display the Euclidean Distance matrices for each
system call representation and type of vector. The columns are the distances being represented,
the rows are the type of n-gram and the cells represent the number of evidences that had the
distance. A small distance between two evidences means that the two evidences are similar to
one another (dissimilar for large distances). A distance of 0 between 2 evidences means that the
two evidence feature vectors are the same:

1. Full Representation

(a) Bit Vector

Vector 0 1 1-2 Largest Distance
Uni-gram 4995 4 3 1.414
Di-gram 4996 6 0 1.0
Tri-gram 4998 4 0 1.0

Table 4.17: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Full Representation and Vector

Representaion of a Bit Vector.

(b) Frequency Vector

Vector 0 0-5 5-10 10-20 20-50 Largest Distance
Uni-gram 4986 10 2 4 0 14.807
Di-gram 4991 6 0 2 3 31.648
Tri-gram 4996 2 0 0 3 34.320

Table 4.18: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Full Representation and Vector

Representaion of a Frequency Vector.

2. Category

(a) Bit Vector

Vector 0 1 1-2 Largest Distance
Uni-gram 4870 2 1 1.414
Di-gram 4870 3 0 1.0
Tri-gram 4871 2 0 1.0

Table 4.19: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Category and Vector Representaion of a

Bit Vector.

(b) Frequency Vector

Vector 0 0 - 5 5 - 10 10 - 60 60 - 150 Largest Distance
Uni-gram 4865 4 2 2 0 16.514
Di-gram 4867 3 0 3 0 37.335
Tri-gram 4870 0 0 2 1 69.821

47

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table 4.20: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Category and Vector Representaion of a

Frequency Vector.

Five trends can be seen. Within a specific n-gram and system call representation, the bit vector
has a higher number of evidences at lower distances (especially at 0). In comparison, frequency
vectors that have the same n-gram and system call representation have larger range of distances
and the largest distances were bigger. For example the table below (Table 4.21) shows this with
for Uni-gram Full Representation Vectors (this also applies to Di-grams and Tri-grams). This is
because the distance between the feature vectors are larger, so there are more distances and less
vectors that are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Bit Vector 4995 0, 1 and between 1 and 2 1.4
Frequency
Vector

4986 0, between 0 and 5, between 5
and 10 and between 10 and 20

14.8

Table 4.21: This table displays that within a specific n-gram and system
call representation, the bit vector has a higher number of evidences at

lower distances compared to frequency vectors.

The same trend was seen was seen within an n-gram (Uni-gram, Di-gram, Tri-gram). Within an
n-gram with the same vector representation (frequency), the more semantics that is represented
in the feature vector (full representation), the higher the number of evidences at lower distances
(especially at 0). In comparison to the same n-gram with the same feature vector representation
but less semantics are represented. In this case, more distances are represented and the largest dis-
tances were higher. For example, the table below (Table 4.22) shows this for Uni-gram Frequency
Vectors (this also applies to Di-grams and Tri-grams). This is because the feature space decreases
and the number of dimensions of the feature vectors are smaller and the distance between the
feature vectors are smaller and so there are less distances and more vectors that are similar.

System Call Repre-
sentation

Number of evi-
dences at 0

Distances Represented Largest
Distance

Full Representa-
tion

4986 0, between 0 and 5, between 5 and 10
and between 10 and 20

14.8

Category 4865 0, between 0 and 5, between 5 and 10
and between 10 and 60

16.5

Table 4.22: This table displays that less distances were represented and
the largest distances were lower.

Another aspect to note from these results is that with different system call representations but the
same vector representation of a bit vector and n-gram, the same distances are represented and
the largest distances were the same. For example, the table below (Table 4.23) shows this for the
Uni-gram bit vectors (this also applies to Di-grams and Tri-grams).

System Call Representation Number of evi-
dences at 0

Distances Represented Largest
Distance

Full Representation 4995 0, 1 and between 1 and 2 1.4
Category 4870 0, 1 and between 1 and 2 1.4

48

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table 4.23: This table displays that when there were different system
call representations but the same vector representation of a bit vector

and n-gram, the same distances were represented and the largest
distances were the same.

Another trend could be seen with respect to the type of n-gram being represented. With the same
system call representation and type of vector representation (frequency), the lower the number of
system calls per dimension in an n-gram (e.g. 1-gram = 1 system call per dimension), the lower
the number of evidences at lower distances (especially at 0). When there were higher numbers
of system calls per dimension in an n-gram (e.g. 2-gram or 3-gram) with the same system call
representation and type of vector, more distances were represented and the largest distances were
bigger. For example, the table below (Table 4.24) shows this for Full Representation Frequency
Vectors (this also applies to the category representation). This is because the distance between the
feature vectors are larger, so there are more distances and less vectors that are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Uni-gram 4986 0, between 0 and 5, between 5 and 10 and be-
tween 10 and 20

14.8

Di-gram 4991 0, between 0 and 5, between 5 and 10, be-
tween 10 and 20 and between 20 and 50

31.6

Tri-gram 4996 0, between 0 and 5, between 5 and 10, be-
tween 10 and 20 and between 20 and 50

34.3

Table 4.24: This table displays that with the same system call
representation and type of vector representation, the lower the number

of system calls per dimension, the lower the number of evidences at
lower distances.

Another aspect to note from these results is that with the same vector representation of a bit vector
and system call representation, the higher the number of system calls per dimension in an n-gram
(e.g. 2-gram or 3-gram), less distances were represented and the largest distances were lower. For
example, the table below (Table 4.25) shows this for the Full Representation bit vectors (this also
applied to the category representation).

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Uni-gram 4995 0, 1 and between 1 and 2 1.4
Di-gram 4996 0 and 1 1.0

Table 4.25: This table displays that the higher the number of system
calls per dimension in an n-gram with the same system call

representation and type of vector, less distances were represented and
the largest distances were lower.

This graph below (Figure 4.6) shows that within an n-gram, eventhough the system call represen-
tations were the same (Full Representation), the number of evidences that had a distance 0 was
higher with the bit vectors than the frequency vectors.

49

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 4.6: This graph illustrates that the number of evidences that had
a distance 0 was higher with the bit vectors than the frequency vectors.

The graphs below (Figure 4.7) show that the fewer the semantics represented in the feature vector
by the system call representations (fewer semantics is the category representation), the lower
the number of evidences at lower distances compared to the more semantics represented. You
will see three graphs. The first shows all the distances all on one graph, the second shows just
the distance 0 and the third graph shows all the distances except 0. This was done because the
number of evidences was much larger for the distance 0 compared to the other distances so one
cannot see what the graph is trying to illustrate.

(a) Distances 0, 1 and 1-2.

50

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Distance 0.

(c) Distances 1 and 1-2.

Figure 4.7: These graphs illustrate that the fewer the semantics
represented in the feature vector by the system call representations

(fewer semantics is the category representation), the lower the number
of evidences at lower distances compared to the more semantics

represented.

The graph below (Figure 4.8) shows that the lower the number of system calls per dimension in
an n-gram (e.g. 1-gram = 1 system call per dimension), the lower number of evidences at lower
distances (especially at 0).

51

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 4.8: This graph illustrates that the lower the number of system
calls per dimension in an n-gram (e.g. 1-gram = 1 system call per

dimension), the lower number of evidences at lower distances
(especially at 0).

These trends can be seen because when more features are being represented, the feature space
increases and the number of dimensions of the feature vectors are larger and the distance between
the feature vectors are larger and so there are many more distances and less vectors that are
similar.

4.2.3 Validation Metrics

The table below (Table 4.26) displays the best Fowlkes Mallows score (FMS), F1-Score (F1), Ad-
justed Rand Index (ARI) and Silhouette Coefficients (SC) (nearest to 1) for each dendrogram and
the cut it was obtained at. (Red indicates the highest FMS, F1, ARI or SC score for each n-gram):

Vector and Syscall Repre-
sentation

Best FMS Best F1 Best ARI Best SC

Uni-gram, Full Represen-
tation, Bit Vector

0.443 at height
0.0

0.221 at height
0.0

0.003 at height
1.0

1.0 at height 1.0

Uni-gram, Full Represen-
tation, Frequency Vector

0.455 at height
10.329

0.223 at height
1.0

0.003 at height
1.0

0.999 at height
1.0

Uni-gram, Category, Bit
Vector

0.453 at height
0.0

0.216 at height
0.0

0.0002 at height
1.0

1.0 at height 1.0

Uni-gram, Category, Fre-
quency Vector

0.457 at height
37.335

0.217 at height
4.173

0.002 at height
4.173

0.999 at height
1.0

Di-gram, Full Representa-
tion, Bit Vector

0.402 at height
1.0

0.213 at height
1.0

0.003 at height
1.0

1.0 at height 1.0

Di-gram, Full Representa-
tion, Frequency Vector

0.457 at height
37.335

0.221 at height
4.173

0.003 at height
1.0

0.999 at height
1.0

Di-gram, Category, Bit
Vector

0.433 at height
1.0

0.218 at height
1.0

0.001 at height
1.0

1.0 at height 1.0

Di-gram, Category, Fre-
quency Vector

0.457 at height
18.667

0.217 at height
1.0

0.001 at height
1.0

0.999 at height
1.0

Tri-gram, Full Represen-
tation, Bit Vector

0.439 at height
1.0

0.218 at height
1.0

0.002 at height
1.0

1.0 at height 1.0

Tri-gram, Full Represen-
tation, Frequency Vector

0.457 at height
18.667

0.220 at height
18.667

0.002 at height
1.0

0.999 at height
1.0

Tri-gram, Category, Bit
Vector

0.456 at height
1.0

0.216 at height
1.0

8.1e-05 at height
1.0

0.999 at height
1.0

Tri-gram, Category, Fre-
quency Vector

0.457 at height
4.173

0.216 at height
1.0

8.1-05 at height
1.0

0.999 at height
1.0

52

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table 4.26: This table displays the best Fowlkes Mallows score (FMS),
F1-Score (F1), Adjusted Rand Index (ARI) and Silhouette Coefficients
(SC) (nearest to 1) for each dendrogram and the cut it was obtained at.

Looking at this table (Table 4.26), the table below (Table 4.27) shows the experiments with the best
clustering according to FMS, F1, ARI and SC.

Metric N-gram, System Call Representation and Vector Representation Score and Height
FMS Tri-gram Full Representation Frequency Vector 0.457 at height 18.667
F1 Uni-gram Full Representation Frequency Vector 0.223 at height 1.0

ARI Di-gram Full Representation Bit Vector 0.003 at height 1.0
SC Uni-gram Full Representation Bit Vector, Uni-gram Category Bit

Vector, Di-gram Full Representation Bit Vector, Di-gram Cate-
gory Bit Vector and Tri-gram Full Representation Bit Vector

1.0 at height 1.0

Table 4.27: This table displays that the best clustering according to
FMS, F1, ARI and SC were all different.

In all evaluation metrics, the best clustering method that was chosen was different (see above).
The method of feature selection (system call representation) was the same in FMS, F1, ARI and
some of SC (full representation). The method of model construction (feature vector representa-
tion) was the same in FMS and F1 and some of SC (frequency vector), it was the type of n-gram
that was different and the scores produced were different. These experiments are completely
different to each other in terms of the number of dimensions in a vector (7 for Uni-gram, 49 for
Di-gram and 343 for Tri-gram) and the features abstracted from the behavioural profiles. The type
of n-gram was different and the scores produced were different. No n-gram had the highest score
at the same experiment. The highest scores for each n-gram were frequency vectors (except for
ARI) and full representation with a few exceptions in the vectors in SC.

In the FMS, F1 and ARI metrics, the scores produced were not high as they were closer to 0. Even
though each metric calculated the best method of feature selection and model construction for
each dendrogram cut which produced the best clustering, these experiments were not similar to
the dataset[41] (true assignments) so these results should be taken with caution. As the scores
produced were not near to 1 and the same experiment did not produce the best clustering in all
FMS, F1 and ARI, if a clustering system used either one of the best clustering methods and was
presented with another dataset, there is no guarantee that the system will group samples from the
same Backdoor families in the same clusters so the user will not be able to distinguish between
the different Backdoor families. However, in SC the best clustering was 1.0 (the highest score
possible) and most scores produced were close to 1. This means that this model has well defined
clusters. However, 5 experiments had the same value of 1.0. This is not beneficial as this means
that a programmer can use any of these experiments, despite them being different to each other in
terms of the number of dimensions in a vector and the features abstracted from the behavioural
profiles.

The table below (Table 4.28) shows the scores of each feature vector by their respective positions
in the FMS, F1, AR and SC from best to worst and then the total score of these values added up.
For example, for the Tri-gram Frequency Vector with Full Representation, it is the best FMS score
so will yield a score of 1 whereas Di-gram Bit Vector with Full Representation is the worst FMS
score so will yield a score of 12. This table is ordered from lowest (best) to highest (worst) total
score.

Vector FMS F1 ARI SC Total
Di-gram Full Representation Frequency Vector 2 3 2 4 11
Tri-gram Full Representation Frequency Vector 1 4 6 3 14

Uni-gram Full Representation Bit Vector 9 2 3 1 15
Uni-gram Full Representation Frequency Vector 7 1 4 5 17

Tri-gram Full Representation Bit Vector 10 6 5 1 22

53

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Di-gram Category Bit Vector 11 5 8 1 25
Di-gram Full Representation Bit Vector 12 12 1 1 26

Di-gram Category Frequency Vector 4 7 9 7 27
Uni-gram Category Frequency Vector 5 8 7 8 28

Uni-gram Category Bit Vector 8 10 10 1 29
Tri-gram Category Frequency Vector 3 9 12 6 30

Tri-gram Category Bit Vector 6 11 1 2 30

Table 4.28: This table displays the scores of each feature vector by their
respective positions in the FMS, F1, AR and SC from best to worst and

then the total score of these values added up.

This table (Table 4.28) shows that overall the best clustering method is Di-gram with the system
call representation of Full Representation and vector representation of Frequency Vector.

4.3 Results of Clustering Trojan

In total, 12 experiments were run for each system call representation and feature vector represen-
tation. The results for each experiment are detailed below:

There are 5 different malware families from the Ramilli[41] dataset with 5298 evidences (includes
duplicates) in total. The table below (Table 4.29) displays the Trojan families and the number of
evidences for each family:

Name of Family Number of Evidences
Trojan.Bladabindi-1201171 372

Trojan.Destover-Sony-1201172 476
Trojan.Dropper.Gen-1201173 620
Trojan.Loadmoney-1201174 236
Trojan.NSIS.Win32-1201175 363

Trojan.Regin-1201176 200
Trojan.Regin-1201177 162
Trojan.Regin-1201178 168
Trojan.Regin-1201179 199
Trojan.Regin-1201180 186
Trojan.Regin-1201181 88
Trojan.Regin-1201182 83
Trojan.Regin-1201183 252
Trojan.Regin-1201184 49
Trojan.Regin-1201185 42
Trojan.Regin-1201186 215
Trojan.Regin-1201187 83
Trojan.Regin-1201188 49

Trojan.Shylock.Skype-1201189 819
Trojan.StabUniq-1201190 303

Trojan.Win32.Bechiro.BCD-1201191 333

Table 4.29: This table displays all the Trojan families and the number of
evidences for each family.

There were 5298 different feature vectors for each experiment. The number of system call di-
mensions in the vectors changed depending on the system call representation and type of feature
vector used. Please see Appendix B for text files which show the results each experiment across
the three different types of malware.

54

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

4.3.1 System Call Dimensions

Trends can be seen from the results. Within a specific n-gram, the more semantics being repre-
sented (e.g. full representation compared to category), the higher the number of dimensions in a
vector and the larger the feature space. For example, the table below (Table 4.30) shows this for
the Uni-grams.

Vector System Call Dimensions
Full Representation 27

Category 8

Table 4.30: This table displays that within a specific n-gram, the more
semantics being represented the higher the number of dimensions in a

vector and the larger the feature space.

Secondly, for each n-gram the higher the number of system calls per dimension (e.g. 1-gram = 1
system call per dimension), the higher the number of dimensions in a vector. This is in comparison
to a smaller number of system calls per dimension with the same system call representation and
type of vector. For example, the table (Table below 4.31) shows this for the Uni-gram Category Bit
Vectors. This is because the feature space increases and the number of dimensions of the feature
vectors are larger.

Vector System Call Dimensions
Uni-gram 8
Di-gram 64
Tri-gram 512

Table 4.31: This table displays the higher the number of system calls
per dimension, the higher the number of dimensions in a vector.

The graph below (Figure 4.9) illustrates these trends. You will see three graphs. The first shows
the Uni-grams, Di-grams and Tri-grams all on one graph, the second shows the Uni-grams and Di-
grams and the third one shows the Tri-grams on their own. This was done because the number
of system call dimensions were much larger for the Tri-grams compared to the Uni-grams and
Di-grams so one cannot see what the graph is trying to illustrate. These graphs illustrate that the
more semantics that were being represented within an n-gram, the higher the number of system
calls per dimension and the higher the number of dimensions in a vector. This is in comparison
to a smaller number of system calls per dimension with the same system call representation and
type of vector.

(a) The Uni-grams, Di-grams and
Tri-grams.

55

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) The Uni-grams and Di-grams.

(c) The Tri-grams.

Figure 4.9: These graphs illustrate that the more semantics that were
being represented (higher number of system calls per dimension)

within an n-gram, the higher the number of dimensions in a vector.

4.3.2 Euclidean Distance

The tables below (Tables 4.32, 4.33, 4.34 and 4.35) display the Euclidean Distance matrices for each
system call representation and type of vector. The columns are the distances being represented,
the rows are the type of n-gram and the cells represent the number of evidences that had the
distance. A small distance between two evidences means that the two evidences are similar to
one another (dissimilar for large distances). A distance of 0 between 2 evidences means that the
two evidence feature vectors are the same:

1. Full Representation

(a) Bit Vector

Vector 0 1 1-2 2-3 3-4 Largest Distance
Uni-gram 5255 29 13 0 0 1.732
Di-gram 523 49 9 6 0 2.828
Tri-gram 5238 36 13 8 2 3.464

Table 4.32: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Full Representation and Vector

Representaion of a Bit Vector.

56

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Frequency Vector

Vector 0 0-5 5-
10

10-
20

20-
50

50-
100

100-
150

150-
200

200-
250

Largest
Distance

Uni-gram 5187 400 15 10 10 4 0 0 0 78.318
Di-gram 5166 76 11 13 21 9 0 1 0 172.931
Tri-gram 5187 50 11 6 16 19 5 2 1 220.511

Table 4.33: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Full Representation and Vector

Representaion of a Frequency Vector.

2. Category

(a) Bit Vector

Vector 0 1 1-2 Largest Distance
Uni-gram 4333 11 2 1.414
Di-gram 4332 14 0 1.0
Tri-gram 4334 11 0 1.414

Table 4.34: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Category and Vector Representaion of a

Bit Vector.

(b) Frequency Vector

Vector 0 0 - 5 5 - 10 10 - 60 60 - 150 Largest Distance
Uni-gram 4299 39 5 3 0 54.746
Di-gram 4306 20 8 12 0 55.678
Tri-gram 4315 17 3 10 1 76.145

Table 4.35: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for the System Call
Representation of Category and Vector Representaion of a

Frequency Vector.

Three trends can be seen. Within a specific n-gram and system call representation, the bit vector
has a higher number of evidences at lower distances (especially at 0). In comparison, frequency
vectors that have the same n-gram and system call representation have larger range of distances
and the largest distances were bigger. For example the table below (Table 4.36) shows this with
for Uni-gram Full Representation Vectors (this also applies to Di-grams and Tri-grams). This is
because the distance between the feature vectors are larger and so there are many more distances
and less vectors that are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Bit Vector 5255 0, 1 and between 1 and 2 1.7
Frequency
Vector

5187 0, between 0 and 5, between 5 and 10,
between 10 and 20, between 20 and 50
and between 50 and 100

78

57

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table 4.36: This table displays that within a specific n-gram and system
call representation, the bit vector has a higher number of evidences at

lower distances compared to frequency vectors.

The same trend was seen was seen within an n-gram (Uni-gram, Di-gram, Tri-gram). Within an
n-gram with the same vector representation (bit or frequency), the more semantics that is rep-
resented in the feature vector (full representation), the higher the number of evidences at lower
distances (especially at 0). In comparison to the same n-gram with the same feature vector repre-
sentation but less semantics are represented. In this case, less distances are represented and the
largest distances were lower. For example, the table below (Table 4.37) shows this for Uni-gram
Bit Vectors (this also applies to Di-grams and Tri-grams). This is because the feature space de-
creases and the number of dimensions of the feature vectors are smaller and the distance between
the feature vectors are smaller and so there are less distances and more vectors that are similar.

System Call Repre-
sentation

Number of evi-
dences at 0

Distances Represented Largest
Distance

Full Representa-
tion

5255 0, 1 and between 1 and 2 1.7

Category 4333 0, 1 and between 1 and 2 1.4

Table 4.37: This table displays that less distances were represented and
the largest distances were lower.

Another trend could be seen with respect to the type of n-gram being represented. With the
same system call representation and type of vector representation (bit or frequency), the lower the
number of system calls per dimension in an n-gram (e.g. 1-gram = 1 system call per dimension),
the lower the number of evidences at lower distances (especially at 0). When there were higher
numbers of system calls per dimension in an n-gram (e.g. 2-gram or 3-gram) with the same system
call representation and type of vector, more distances were represented and the largest distances
were bigger. For example, the table below (Table 4.38) shows this for Full Representation Bit
Vectors (this was the same for the category system call representation). This is because the feature
space increases and the number of dimensions of the feature vectors are larger and the distance
between the feature vectors are larger and so there are many more distances and less vectors that
are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Uni-gram 5255 0, 1 and between 1 and 2 1.7
Di-gram 5233 0, 1, between 1 and 2 and between 2 and 3 2.8
Tri-gram 5238 0, 1, between 1 and 2, between 2 and 3 and

between 3 and 4
3.5

Table 4.38: This table displays that with the same system call
representation and type of vector representation, the lower the number

of system calls per dimension, the lower the number of evidences at
lower distances.

An exception to this is that with the system call representation of category and vector representa-
tion of a bit vector, the lower the number of system calls per dimension in an n-gram (e.g. 1-gram
= 1 system call per dimension), the lower the number of evidences at lower distances (especially
at 0). However, when there were higher numbers of system calls per dimension in an n-gram (e.g.
2-gram or 3-gram) with the same system call representation and type of vector, less distances were
represented and the largest distances were lower or the same as the Uni-gram. For example, the
table below (Table 4.39) shows this with Trojans for the Full Representation bit vectors.

58

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Vector Number of evidences at 0 Distances Represented Largest Distance
Uni-gram 4333 0, 1 and between 1 and 2 1.4
Di-gram 4332 0 and 1 1.0
Tri-gram 4334 0 and 1 1.4

Table 4.39: This table displays that the lower the number of system
calls per dimension in an n-gram the lower the number of evidences at

lower distances.

This graph below (Figure 4.10) shows that within an n-gram, eventhough the system call repre-
sentations were the same (Full Representation), the number of evidences that had a distance 0
was higher with the bit vectors than the frequency vectors.

Figure 4.10: This graph illustrates that the number of evidences that
had a distance 0 was higher with the bit vectors than the frequency

vectors.

The graphs below (Figure 4.11) show that the fewer the semantics represented in the feature vector
by the system call representations (fewer semantics is the category representation), the lower the
number of evidences at lower distances compared to the more semantics represented. You will see
three graphs. The first shows all the distances all on one graph, the second shows just the distance
0 and the third graph shows all the distances except 0. This was done because the number of
evidences was much larger for the distance 0 compared to the other distances so one cannot see
what the graph is trying to illustrate.

(a) Distances 0, 1 and 1-2.

59

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Distance 0.

(c) Distances 1 and 1-2.

Figure 4.11: These graphs illustrate that the fewer the semantics
represented in the feature vector by the system call representations

(fewer semantics is the category representation), the lower the number
of evidences at lower distances compared to the more semantics

represented.

The graph below (Figure 4.12) shows that the lower the number of system calls per dimension in
an n-gram (e.g. 1-gram = 1 system call per dimension), the higher number of evidences at lower
distances (especially at 0).

60

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 4.12: The graph illustrates that the lower the number of system
calls per dimension in an n-gram (e.g. 1-gram = 1 system call per
dimension), the higher number of evidences at lower distances

(especially at 0).

These trends can be seen because when more features are being represented, the feature space
increases and the number of dimensions of the feature vectors are larger and the distance between
the feature vectors are larger and so there are many more distances and less vectors that are
similar.

4.3.3 Validation Metrics

The table below (Table 4.40) displays the best Fowlkes Mallows score (FMS), F1-Score (F1), Ad-
justed Rand Index (ARI) and Silhouette Coefficients (SC) (nearest to 1) for each dendrogram and
the cut it was obtained at. (Red indicates the highest FMS, F1, ARI or SC score for each n-gram):

Vector and Syscall Repre-
sentation

Best FMS Best F1 Best ARI Best SC

Uni-gram, Full Represen-
tation, Bit Vector

0.274 at height
4.173

0.154 at height
4.173

0.0002 at height
0.0

0.998 at height
1.0

Uni-gram, Full Represen-
tation, Frequency Vector

0.274 at height
9.356

0.155 at height
1.208

0.002 at height
0.0

0.987 at height
1.0

Uni-gram, Category, Bit
Vector

0.237 at height
0.0

0.145 at height
0.0

0.001 at height
0.0

1.0 at height 1.0

Uni-gram, Category, Fre-
quency Vector

0.291 at height
17.160

0.185 at height
1.0

0.001 at height
0.0

0.997 at height
1.0

Di-gram, Full Representa-
tion, Bit Vector

0.274 at height
37.335

0.154 at height
22.100

8.4e-05 at height
22.100

0.995 at height
1.0

Di-gram, Full Representa-
tion, Frequency Vector

0.274 at height
21.224

0.154 at height
4.834

0.0004 at height
0.0

0.997 at height
1.0

Di-gram, Category, Bit
Vector

0.271 at height
1.0

0.175 at height
1.0

0.0001 at height
1.0

0.999 at height
1.0

Di-gram, Category, Fre-
quency Vector

0.291 at height
17.160

0.186 at height
19.381

0.0006 at height
4.225

0.997 at height
1.0

Tri-gram, Full Represen-
tation, Bit Vector

0.274 at height
37.335

0.154 at height
4.173

8.5e-05 at height
37.335

0.994 at height
1.0

Tri-gram, Full Represen-
tation, Frequency Vector

0.274 at height
4.834

0.155 at height
1.414

0.0003 at height
69.821

0.987 at height
5.475

Tri-gram, Category, Bit
Vector

0.291 at height
0.0

0.185 at height
0.0

7.6e-05 at height
0.0

0.999 at height
1.0

Tri-gram, Category, Fre-
quency Vector

0.291 at height
19.381

0.186 at height
10.329

0.0003 at height
10.329

0.997 at height
1.0

61

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table 4.40: This table displays the best Fowlkes Mallows score (FMS),
F1-Score (F1), Adjusted Rand Index (ARI) and Silhouette Coefficients
(SC) (nearest to 1) for each dendrogram and the cut it was obtained at.

Looking at this table (Table 4.40), the table below (Table 4.41) shows the experiments with the best
clustering according to FMS, F1, ARI and SC.

Metric N-gram, System Call Representation and Vector Representation Score and Height
FMS Tri-gram Category Frequency Vector 0.291 at height 19.381
F1 Tri-gram Category Frequency Vector 0.186 at height 10.329

ARI Uni-gram Full Representation Frequency Vector 0.002 at height 0.0
SC Uni-gram Category Bit Vector 1.0 at height 1.0

Table 4.41: This table displays that the best clustering according to
FMS, F1, ARI and SC were all different.

In all evaluation metrics, the best clustering method that was chosen was different (see above).
The method of feature selection (system call representation) was the same in FMS, F1 and SC
category). The method of model construction (feature vector representation) was the same in FMS
and F1 and ARI (frequency vector), it was the type of n-gram that was different and the scores
produced were different. These experiments are completely different to each other in terms of the
number of dimensions in a vector (8 for Uni-gram, 64 for Di-gram and 512 for Tri-gram) and the
features abstracted from the behavioural profiles. The type of n-gram was different and the scores
produced were different. Only FMS and F1 had the highest score at the same experiment (system
call representation, feature vector representation and n-gram). The highest scores for each n-gram
were frequency vectors and category with a few exceptions in the ARI (system call representation)
and SC (feature vector representation).

In the FMS, F1 and ARI metrics, the scores produced were not high as they were closer to 0. Even
though each metric calculated the best method of feature selection and model construction for
each dendrogram cut which produced the best clustering, these experiments were not similar to
the dataset[41] (true assignments) so these results should be taken with caution. As the scores
produced were not near to 1 and the same experiment did not produce the best clustering in all
FMS, F1 and ARI, if a clustering system used either one of the best clustering methods and was
presented with another dataset, there is no guarantee that the system will group samples from the
same Trojan families in the same clusters so the user will not be able to distinguish between the
different Trojan families. However, in SC the best clustering was 1.0 (the highest score possible)
and most scores produced were close to 1. This means that this model has well defined clusters.

The table below (Table 4.42) shows the scores of each feature vector by their respective positions
in the FMS, F1, AR and SC from best to worst and then the total score of these values added up.
For example, for the Tri-gram Frequency Vector with Category, it is the best FMS score so will
yield a score of 1 whereas Uni-gram Bit Vector with Category is the worst FMS score so will yield
a score of 12. This table is ordered from lowest (best) to highest (worst) total score.

Vector FMS F1 ARI SC Total
Tri-gram Category Frequency Vector 1 1 6 5 13
Di-gram Category Frequency Vector 3 2 3 7 15

Uni-gram Category Frequency Vector 4 3 4 6 17
Tri-gram Category Bit Vector 2 4 12 3 21
Di-gram Category Bit Vector 11 5 9 2 27

Uni-gram Category Bit Vector 12 12 2 1 27
Tri-gram Full Representation Frequency Vector 5 6 7 10 28

Uni-gram Full Representation Bit Vector 8 9 8 4 29
Uni-gram Full Representation Frequency Vector 10 7 1 11 29
Di-gram Full Representation Frequency Vector 7 8 5 12 32

62

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Tri-gram Full Representation Bit Vector 6 11 10 9 36
Di-gram Full Representation Bit Vector 9 10 11 8 38

Table 4.42: This table displays the scores of each feature vector by their
respective positions in the FMS, F1, AR and SC from best to worst and

then the total score of these values added up.

This table (Table 4.42) shows that overall the best clustering method is Tri-gram with the system
call representation of Category and vector representation of Frequency Vector.

63

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

5
Discussion

This chapter compares the clustering of the three malware families and evaluates the
accuracy of clustering-based malware.

In particular:

Section 5.1 critically compares the clustering of Ransomware, Backdoors and Trojans
by looking at all the similarities(5.1.1) and differences(5.1.2) between them such as the
dataset, features, methods, system call dimensions, euclidean distances, and validation

metrics using results obtained from my program as examples.

Section 5.2 discusses the accuracy of clustering-based malware detection using my
results and results from other papers, limitations (running times) and future work.

Section 5.3 evaluates my project, discusses the changes made since my project
description form, challenges and what I have learnt.

64

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

5.1 Comparison between Clustering Ransomware, Backdoor

and Trojan

The clustering of Ransomware, Backdoors and Trojans were compared because they can work
alongside each other to infect a victim’s system. Ransomware can be used to install Backdoors
into a system and Trojans can be used to deliver Backdoors or Ransomware into a system.

5.1.1 Similarities

Additionally there are many similarities between Ransomware, Backdoor and Trojans.

Firstly, all the samples of Ransomware, Backdoor and Trojans were from the same dataset[41]
and this dataset was produced 3 years ago (December 2016). It represents features extracted from
the sample analysis using static and dynamic analysis. I used all the samples available in the
dataset (15 Ransomware families, 5 Backdoor families and 9 Trojan families with several sanitized
evidences in each family). Please see Description of Program and Justification of Feature Selection
and Validation Methods for the rationale for using this dataset.

Secondly, the features within the json files for the different malware families were the same. They
all had features consisting of the categories file, pe, reg, sig, str, api, cmd or mutex. As the fea-
tures were the same, I could compare the accuracy of the clustering between these three types
of malware with the different feature selection and vector representation methods. Please see
Description of Program and Justification of Feature Selection and Validation Methods for the ra-
tionale for using this dataset.

Thirdly, everything in my program (feature selection methods, vector representations and n-
grams) was kept the same, it was only the dataset (whether it was Ransomware, Backdoor or
Trojan) that changed. Therefore, for each malware family, 12 experiments were conducted (2 ex-
periments per system call representation for bit and frequency vectors per N-gram = 2 ∗ 2 ∗ 3 =
12). This is because for each N-gram type, of which there are 3, there are two system call represen-
tations to be represented and each vector is a bit or frequency vector. Therefore, once I performed
feature selection, model construction, hierarchical clustering and evaluation for each malware
type, I could compare the accuracy of clustering amongst these three types of malware families
because my analysis was kept the same.

Fourthly, with Ransomware and Trojans, the number of system call dimensions for each n-gram
for the category feature selection method were the same at 8 for Uni-grams, 64 for Di-grams and
512 for Tri-grams.

Similarities in Results

By doing this comparison, similarities within the results were found.

Firstly, with the system call dimensions (Table 5.1 and 5.2). For Ransomware, Backdoor and Tro-
jans, within a specific n-gram, the more semantics being represented (e.g. full representation
compared to category), the higher the number of dimensions in a vector and the larger the feature
space. For example, the table below (Table 5.1) shows this with Ransomware and Backdoor for
the Uni-grams.

Vector System Call Dimensions

Ransomware
Full Representation 45

Category 8

Backdoor
Full Representation 7

Category 3

65

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Table 5.1: This table displays that with Ransomware and Backdoor
within a specific n-gram, the more semantics being represented the

higher the number of dimensions in a vector and the larger the feature
space.

Also for each n-gram the higher the number of system calls per dimension (e.g. 1-gram = 1 system
call per dimension), the higher the number of dimensions in a vector. This is in comparison to a
smaller number of system calls per dimension with the same system call representation and type
of vector. For example, the table below (Table 5.2) shows this with Ransomware and Trojan for
the Uni-gram Category Bit Vectors. This is because the feature space increases and the number of
dimensions of the feature vectors are larger.

Vector System Call Dimensions

Ransomware
Uni-gram 8
Di-gram 64
Tri-gram 512

Trojan
Uni-gram 8
Di-gram 64
Tri-gram 512

Table 5.2: This table displays that with Ransomware and Trojan the
higher the number of system calls per dimension, the higher the

number of dimensions in a vector.

Secondly, with the Euclidean Distances (Table 5.3). For Ransomware, Trojan and Backdoor, within
a specific n-gram and system call representation, the bit vector has a higher number of evidences
at lower distances (especially at 0). In comparison, frequency vectors that have the same n-gram
and system call representation have larger range of distances and the largest distances were big-
ger. For example, the table below (Table 5.3) shows this with Ransomware and Backdoor for
Uni-gram Full Representation Vectors (this also applies to Di-grams and Tri-grams). This is be-
cause the distance between the feature vectors are larger, so there are more distances and less
vectors that are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Ransomware
Bit Vector 10646 0, 1, between 1 and 2 and be-

tween 2 and 3
2

Frequency
Vector

10524 0, between 0 and 5, between 5
and 10, between 10 and 20, be-
tween 20 and 50, between 50 and
100, between 100 and 150 and
between 150 and 300

104

Backdoor
Bit Vector 4995 0, 1 and between 1 and 2 1.4
Frequency
Vector

4986 0, between 0 and 5, between 5
and 10 and between 10 and 20

14.8

Table 5.3: This table displays that with Ransomware and Backdoor
within a specific n-gram and system call representation, the bit vector

has a higher number of evidences at lower distances compared to
frequency vectors.

Another similarity with the Euclidean Distances was found. In Ransomware, Backdoors and Tro-
jans, with the same system call representation and type of vector representation (bit or frequency),
the lower the number of system calls per dimension in an n-gram (e.g. 1-gram = 1 system call
per dimension), the lower the number of evidences at lower distances (especially at 0). When
there were higher numbers of system calls per dimension in an n-gram (e.g. 2-gram or 3-gram)

66

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

with the same system call representation and type of vector, more distances were represented
and the largest distances were bigger. For example, the table below (Table 5.4) shows this with
Ransomware and Trojan for Full Representation Bit Vectors (this also applies to the category rep-
resentation). This is because the distance between the feature vectors are larger, so there are more
distances and less vectors that are similar.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Ransomware
Uni-gram 10646 0, 1, between 1 and 2 and be-

tween 2 and 3
2

Di-gram 10611 0, 1, between 1 and 2, between 2
and 3 and between 3 and 4

3.2

Tri-gram 10588 0, 1, between 1 and 2, between 2
and 3 and between 3 and 4

3.6

Trojan
Uni-gram 5255 0, 1 and between 1 and 2 1.7
Di-gram 5233 0, 1, between 1 and 2 and be-

tween 2 and 3
2.8

Tri-gram 5238 0, 1, between 1 and 2, between 2
and 3 and between 3 and 4

3.5

Table 5.4: This table displays that for Ransomware and Trojan with the
same system call representation and type of vector representation, the
lower the number of system calls per dimension, the lower the number

of evidences at lower distances.

Fourthly, with the validation metrics, in Ransomware, Backdoors and Trojans, the scores pro-
duced were not high as they were closer to 0. For example the table below (Table 5.5) shows
the experiments with the best clustering for Backdoor and Trojan according to FMS, F1 and ARI.
Even though each metric calculated the best method of feature selection and model construction
which produced the best clustering, these experiments were not similar to the dataset[41] so these
results should be taken with caution. This means that if a clustering system used either one of
the best clustering methods and was presented with another dataset, there is no guarantee that
the system will group samples from the same malware families into the same clusters so the user
will not be able to distinguish between the different malware families. However, in SC the best
clustering was 1.0 (the highest score possible) and most of the scores that were produced were
close to 1. This means that this model has well defined clusters.

Metric Score

Backdoor
FMS 0.457
F1 0.223

ARI 0.003

Trojan
FMS 0.291
F1 0.186

ARI 0.002

Table 5.5: This table displays the experiments with the best clustering
for Backdoor and Trojan according to FMS, F1 and ARI.

5.1.2 Differences

There were differences between Ransomware, Backdoor and Trojans.

Firstly, the number of samples and sanitized evidences for each family. There were 15 Ran-
somware families with 10727 evidences, 5 Backdoor families with 5003 evidences and 9 Trojan
families with 5298 evidences. One could argue that this dataset is unbalanced e.g. 15 vs 5 fam-
ilies. However, as all the features were the same and the whole program was the same for each
family, it does not matter whether one malware family had more samples or evidences than an-
other and this should not affect the results.

67

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Secondly with Backdoors, the number of system call dimensions for each n-gram for the category
feature selection method was different to that of Ransomware and Trojans at 3 for Uni-grams, 9
for Di-grams and 27 for Tri-grams compared to 8 for Uni-grams, 64 for Di-grams and 512 for Tri-
grams with Ransomware and Trojans. This however should not affect the results because even
though the system call dimensions are different, it does not affect the accuracy of the clusterings
as that is dependent on the Euclidean Distances and cuts of the dendrogram and not the number
of system call dimensions. This was because of the number of different operations that existed in
the files.

Thirdly, the true-assignments, the feature vectors, the evidences, Euclidean Distances, the heights
of the dendrogram and the FMS, F1, ARI and SC scores differed between the malware families.
This was expected as each malware family has different evidences, each evidence has different
features observed and the number of features observed are different. This means that the Eu-
clidean Distances, the dendrograms and the cuts on the dendrogram will differ. Therefore, the
FMS, F1, ARI and SC scores will be different.

Differences in Results

Due to these differences, there were differences within the results.

Firstly, with the Euclidean Distances. By comparing the distances represented in Ransomware,
Trojans and Backdoor, it was found that Backdoor and Trojans had most of the evidences at lower
distances (especially at 0), whereas Ransomware had larger ranges of distances and the largest
distances were bigger. For example, the table below (Table 5.6) shows this with Uni-gram Full
Representation Bit Vectors (Frequency Vector for Backdoor) (this was the same for all feature
selection methods, vector representations and types of n-grams). This could be because there
were many more files and evidences in Ransomware (15 families with 10727 evidences) compared
to Backdoor (5 families with 5003 evidences) and Trojan (21 families with 5298 evidences). Please
see Appendix C for the collated results of the Euclidean Distances across the three different types
of malware.

Number of evi-
dences at 0

Distances Represented Largest
Distance

Ransomware 10646 0, 1, between 1 and 2 and between 2 and 3 2
Backdoor 4995 0, 1 and between 1 and 2 1.4
Trojan 5255 0, 1 and between 1 and 2 1.7

Table 5.6: This table displays that Backdoor and Trojans had most of
the evidences at lower distances, whereas Ransomware had larger

ranges of distances and the largest distances were bigger.

Another difference was found with the Euclidean Distances. Within an n-gram (Uni-gram, Di-
gram, Tri-gram) that has same vector representation (bit or frequency), it was found that the more
semantics that are represented in the feature vector (full representation), the higher the number
of evidences at lower distances (especially at 0). This pattern was found for all three types of mal-
ware. However different results were found between the three types of malware with the same
n-gram and feature vector representation but less semantics. For Ransomware and Trojans less
distances were represented and the largest distances were lower but in Backdoor more distances
were represented and the largest distances were higher. For example, the table below (Table 5.7)
shows this with Ransomware and Backdoors for the Uni-gram Bit Vectors. This is because in
Ransomware and Trojans, the feature space decreases, the number of dimensions in the feature
vectors are smaller and the distance between the feature vectors are smaller, so there are less dis-
tances and more vectors that are similar. However in Backdoor, even though the feature space
decreases and the number of dimensions in the feature vectors are smaller, these results suggests
that the distance between the feature vectors are larger so there are more distances and less vec-
tors that are similar.

68

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

System Call
Representa-
tion

Number of evi-
dences at 0

Distances Represented Largest
Distance

Ransomware
Full Repre-
sentation

10646 0, 1, between 1 and 2 and be-
tween 2 and 3

2

Category 9846 0, 1 and between 1 and 2 1.4

Backdoor
Full Repre-
sentation

4986 0, between 0 and 5, between 5
and 10 and between 10 and 20

14.8

Category 4865 0, between 0 and 5, between 5
and 10 and between 10 and 60

16.5

Table 5.7: This table displays that for Ransomware less distances were
represented and the largest distances were lower but in Backdoor more

distances were represented and the largest distances were higher.

Another difference was found with the Euclidean Distances. With Trojans but not Ransomware
or Backdoor, it was found that for the system call representation of category and vector represen-
tation (bit), the lower the number of system calls per dimension in an n-gram (e.g. 1-gram = 1
system call per dimension), the lower the number of evidences at lower distances (especially at
0). However, when there were higher numbers of system calls per dimension in an n-gram (e.g. 2-
gram or 3-gram) with the same system call representation and type of vector, less distances were
represented and the largest distances were lower or the same as the Uni-gram. For example, the
table below (Table 5.8) shows this with Trojans for the Full Representation bit vectors.

Vector Number of evidences at 0 Distances Represented Largest Distance
Uni-gram 4333 0, 1 and between 1 and 2 1.4
Di-gram 4332 0 and 1 1.0
Tri-gram 4334 0 and 1 1.4

Table 5.8: This table displays that the lower the number of system calls
per dimension in an n-gram the lower the number of evidences at

lower distances.

Another difference was found with the Euclidean Distances. It was found that with Backdoors
but not Ransomware or Trojans, when there were different system call representations but the
same vector representation of a bit vector and n-gram, the same distances were represented and
the largest distances were the same. For example, the table below (Table 5.9) shows this with
Ransomware and Backdoor for the Uni-gram bit vectors.

System Call Repre-
sentation

Number of evi-
dences at 0

Distances Represented Largest
Distance

Ransomware
Full Representa-
tion

10646 0, 1, between 1 and 2 and
between 2 and 3

2

Category 9846 0, 1 and between 1 and 2 1.4

Backdoor
Full Representa-
tion

4995 0, 1 and between 1 and 2 1.4

Category 4870 0, 1 and between 1 and 2 1.4

Table 5.9: This table displays that for Backdoors but not Ransomware,
when there were different system call representations but the same
vector representation of a bit vector and n-gram, the same distances

were represented and the largest distances were the same.

Secondly, with Backdoors but not Ransomware or Trojans, it was found that the higher the num-
ber of system calls per dimension in an n-gram (e.g. 2-gram or 3-gram), with the same system call
representation and type of vector, less distances were represented and the largest distances were

69

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

lower. For example, the table below (Table 5.10) shows this with Ransomware and Backdoor for
the Full Representation bit vectors.

Vector Number of evi-
dences at 0

Distances Represented Largest
Distance

Ransomware
Uni-gram 10646 0, 1, between 1 and 2 and be-

tween 2 and 3
2

Di-gram 10611 0, 1, between 1 and 2, between 2
and 3 and between 3 and 4

3.2

Backdoor
Uni-gram 4995 0, 1 and between 1 and 2 1.4
Di-gram 4996 0 and 1 1.0

Table 5.10: This table displays that for Backdoors but not Ransomware,
the higher the number of system calls per dimension in an n-gram
with the same system call representation and type of vector, less
distances were represented and the largest distances were lower.

Thirdly, a difference could be found with the validation metrics as the experiments with the best
clustering according to FMS, F1, ARI and SC for Ransomware, Backdoors and Trojans were dif-
ferent. The Table below (Table 5.11) shows this with the best clustering according to the FMS,
F1, ARI and SC scores. Therefore, these results do not agree on the feature selection (system call
representation), n-gram or model construction methods (feature vector representation).

Metric Malware N-gram, System Call Representation and Vector Representation

FMS
Ransomware Uni-gram Category Frequency Vector

Backdoor Tri-gram Full Representation Frequency Vector
Trojan Tri-gram Category Frequency Vector

F1
Ransomware Di-gram Full Representation Frequency Vector

Backdoor Uni-gram Full Representation Frequency Vector
Trojan Tri-gram Category Frequency Vector

ARI
Ransomware Uni-gram Full Representation Frequency Vector

Backdoor Di-gram Full Representation Bit Vector
Trojan Uni-gram Full Representation Frequency Vector

SC
Ransomware Uni-gram Category Bit Vector

Backdoor Uni-gram Full Representation Bit Vector, Uni-gram Category Bit Vector, Di-
gram Full Representation Bit Vector, Di-gram Category Bit Vector and Tri-
gram Full Representation Bit Vector

Trojan Uni-gram Category Bit Vector

Table 5.11: This table displays that the best clustering according to
FMS, F1, ARI and SC for Ransomware, Backdoors and Trojans were all

different.

Finally, with regards to the validation metrics, the best clustering method for each malware fam-
ily was different. The table below (Table 5.12) shows the best clustering methods for the three
malware families.

Malware N-gram, System Call Representation and Vector Representation
Ransomware Uni-gram Category Frequency Vector

Backdoor Di-gram Full Representation Frequency Vector
Trojan Tri-gram Category Frequency Vector

Table 5.12: This table displays that the best clustering methods for the
three malware families.

70

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

5.2 Accuracy of Clustering-Based Malware Detection

The accuracy of clustering-based malware detection depends on many factors including the type
of machine learning algorithm, the features selected, the feature selection methods, the model
construction methods and evaluation metrics. This is illustrated in my results where the differ-
ent methods of feature selection and vector representation yielded different results (scores and
best clustering methods) for the validation metrics. Therefore, the accuracy of clustering-based
malware detection is highly subjective as it is dependent on many factors.

My results suggest that clustering-based malware detection has a low validity and accuracy. This
is because each different type of malware (Ransomware, Backdoor or Trojan) produced a different
best clustering method. Please see the table below (Table 5.13) for the best clustering methods for
the three malware families. The model construction method (feature vector representation) is the
same but the feature selection (system call representation) and n-gram is different. Therefore,
these three types of malware did not agree on the feature selection or n-gram but they did agree
on the model construction method.

Malware N-gram, System Call Representation and Vector Representation
Ransomware Uni-gram Category Frequency Vector

Backdoor Di-gram Full Representation Frequency Vector
Trojan Tri-gram Category Frequency Vector

Table 5.13: This table displays that the best clustering methods for the
three malware families.

However, my program does not reflect reality as the true assignments and testing labels were
known. In malware detection these will not be known as new malware or variants of previously
seen malware (e.g. polymorphism or metamorphism)[9] can be produced. This makes detection
hard as one may not be able to identify what malware family the sample belongs to. This means
that validation techniques other than FMS, F1 and ARI (like SC) should be used because the
ground truth is unknown. The table below (Table 5.14) displays the clustering methods according
to the best clustering method determined by SC. This is because they all yielded a score of 1.0
which is the highest possible score that can be obtained. This suggests that these models had well
defined non-overlapping clusters and no samples were assigned to the wrong clusters. Therefore,
there was no cluster that was more similar to the cluster that the samples were assigned to.

Malware N-gram, System Call Representation and Vector Representation
Ransomware Uni-gram Category Bit Vector

Backdoor Uni-gram Full Representation Bit Vector, Uni-gram Category Bit Vector, Di-
gram Full Representation Bit Vector, Di-gram Category Bit Vector and Tri-
gram Full Representation Bit Vector

Trojan Uni-gram Category Bit Vector

Table 5.14: This table displays the clustering methods according to the
best clustering method determined by SC.

However, using SC can introduce problems, therefore it should be used with caution. As shown
above, for each malware family the best clustering was different and five experiments for Back-
door had the same SC value of 1.0 and this was the highest SC score. This is not beneficial as
this means that a programmer can use any of these experiments, despite them being different to
each other in terms of the number of dimensions in a vector and the features abstracted from the
behavioural profiles.

Secondly, as I had access to the ground truth (labelled dataset) I was able to see if this was cor-
rect using three evaluation metrics: FMS, F1 and ARI (which are used when the true labels are
known). Scores nearer 1.0 mean that the true class assignments are equal to the predictive assign-
ments (clustering algorithm assignments) and the higher the score (nearer to 1) the more similar
the true and predictive assignments are and the lower the score (near to 0), the more dissimilar

71

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

the true and predictive assignments are. Scores nearer 0 suggest that the assignments are in-
dependent. The table below (Table 5.15) shows the FMS, F1 and ARI for the experiment which
produced the best clustering according to SC. It illustrates that even though the SC scores were
high, the predictive assignments were not similar to the true assignments because all scores were
closer to 0 than 1. This suggests that the clustering assignments were independent.

N-gram, System Call Representa-
tion and Vector Representation

Metric Score

Ransomware Uni-gram Category Bit Vector
FMS 0.275
F1 0.076

ARI 0.002

Backdoor
Uni-gram Full Representation Bit
Vector, Uni-gram Category Bit
Vector, Di-gram Full
Representation Bit Vector, Di-gram
Category Bit Vector and Tri-gram
Full Representation Bit Vector

FMS 0.443, 0.453, 0.402,
0.433 and 0.439

F1 0.221, 0.216, 0.213,
0.218 and 0.218

ARI 0.003, 0.0002, 0.003,
0.001 and 0.002

Trojan Uni-gram Category Bit Vector
FMS 0.237
F1 0.145

ARI 0.001

Table 5.15: This table displays the FMS, F1 and ARI scores for the
experiment which produced the best clustering according to SC.

The table below (Table 5.16) shows the SC scores for the experiment which produced the best
clustering according to FMS, F1 and ARI. It shows that the clusterings obtained were not well de-
fined. This could be because there were many overlapping clusters or because there were samples
that were assigned to the wrong cluster.

Metric N-gram, System Call Representation and Vector
Representation

Score

Ransomware
FMS Uni-gram Category Frequency Vector 0.998
F1 Di-gram Full Representation Frequency Vector 0.991

ARI Uni-gram Full Representation Frequency Vector 0.992

Backdoor
FMS Tri-gram Full Representation Frequency Vector 0.999
F1 Uni-gram Full Representation Frequency Vector 0.999

ARI Di-gram Full Representation Bit Vector 1.0

Trojan
FMS Tri-gram Category Frequency Vector 0.997
F1 Tri-gram Category Frequency Vector 0.997

ARI Uni-gram Full Representation Frequency Vector 0.987

Table 5.16: This table displays the SC scores for the experiment which
produced the best clustering according to FMS, F1 and ARI.

Taking all these results into consideration, these results suggest that if either FMS, F1 or ARI have
high scores (obtain a best clustering) the SC scores will be lower (not 1.0) and if the SC scores are
high, the FMS, F1 and ARI scores will be low (less than 0.5). These evaluation metrics do not agree
on the best clusterings, therefore it can be concluded that clustering-based malware detection has
a low validity and accuracy.

This conclusion is supported by my “Clustering Android Application Behaviour” BSc Project. In
this project most of the program aspects were the same (e.g. the process of clustering such as
the vector representations, dissimilarity metrics, hierarchical clustering and evaluation metrics).
The only aspect that differed was the system call representations (feature selection methods) as
Ransomware and Android have different system calls and behaviours (android had system calls
and ioctl calls such as Binder or Intent Transactions and the Ransomware dataset consisted of
categories such as file, signature, api and registry). However, the results (please see Appendix D
for the full list of results) draw the same conclusions, as detailed above.

72

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

To summarise the results from Appendix D, the table below (Table 5.17) shows the FMS, F1 and
ARI scores for the experiment which produced the best clustering according to SC. This shows
that the predictive assignments were not similar to the true assignments. The table below (Table
5.18) shows the SC scores for the best clusterings that were determined by FMS, F1 and ARI.
Therefore, as stated above, these results suggest that clustering-based malware detection has a
low validity and accuracy.

Metric Score
FMS 0.150
F1 0.035

ARI 0.0004

Table 5.17: This table displays the SC scores for the experiment which
produced the best clustering according to FMS, F1 and ARI.

Metric N-gram, System Call Representation and Vector Representation Score
FMS Di-gram Composite Behaviours and Ioctl calls Bit Vector 0.116
F1 Uni-gram Composite Behaviours and Ioctl Calls Frequency Vector 0.872

ARI Di-gram Composite Behaviours and Binder Semantics Frequency Vector 0.388

Table 5.18: This table displays the SC scores for the experiment which
produced the best clustering according to FMS, F1 and ARI.

However, some researchers have found a high accuracy and validity for clustering-based mal-
ware.

For example, Bayer et al.[20] produced results with a precision of 0.984 and a recall of 0.930 when
using dynamic analysis, extraction of behavioural profile (feature selection) and hierarchical clus-
tering. This suggests that the clustering that they produced was very close to the reference set
(true assignments) and the system could differentiate the different malware classes as the major-
ity of the samples were grouped into the same family.

Hamid et al.[38] used k-means clustering to separate the android malware into ransomware,
scareware or goodware depending on 2 features, presence or absence of locks and encryption.
If the trace had a lock and encryption then it was classified as ransomware, if the trace had a lock
but not encryption then it was classified as scareware and if the trace did not have both a lock and
encryption then it was classified as goodware. It was performed on two datasets with one having
accuracy at 98.1% and the other at 74.7%. This means that clustering malware can be accurate but
it can be made more accurate depending on the number features used. Here only 2 features were
used (presence or absence of locks and encryption), so in theory the more features used the more
accurate the classification will be.

However, different analysis methods produce different features. For example, if Cuckoo sandbox
was used to perform the analysis on the malware samples, many features can be produced to
perform feature selection, model construction and hierarchical clustering on. If there are many
features then the dimensionality of the feature vectors will be very high. However, it could be
that many of these features are irrelevant and only some fully distinguish one sample from an-
other. Therefore, one should use a dimensionality reduction algorithm (e.g. PCA) to only select
the features that are representative of the malware family. The feature vectors I used had a high
dimensionality (e.g. 91125 system call dimensions for Ransomware Tri-grams Full Representa-
tion), many dimensions of the feature vectors has the value 0 (feature (system call) not present)
and as I did not use a dimensionality reduction algorithm they could contain irrelevant features.
This means if I had used a dimensionality reduction algorithm, my results may have been more
accurate. So future work should run a dimensionality reduction algorithm on my program before
hierarchical clustering to see whether my results become more accurate.

Also, Zhang et al.[25] performed classification of Ransomware families with machine learning
based on N-grams of opcodes. Please see Feature Selection and Model Construction Report for a

73

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

description of their feature selection method. Their different classifiers produced accuracy results
in the range of 46% - 91% (Decision Tree 83.42% to 86.57%, K-Nearest Neighbour 82.52% to 88.19
Random Forest 85.15% to 91.43%, Naive Bayes 45.89% to 70.34% and Gradient Boosting Decision
Tree 84.03% to 89.98%). Therefore, the research by Bayer et al.[20], Hamid et al.[38] and Zhang et
al.[25] suggests that clustering based malware detection is accurate.

A reason for the differences in results can be explained by the analysis, feature selection, model
construction methods and machine learning methods as they all differed between the papers. In
both my BSc project and MSc project I used the operations from the CopperDroid[43] (dynamic
analysis) or Ramilli[41](static and dynamic analysis) datasets as my features for the vectors and
then used the operation or the category of the operation to construct the bit or frequency n-gram
feature vectors (uni-grams, di-grams and tri-grams). I used an unsupervised machine learning
method called hierarchical clustering in order to perform my malware classification (please see
Description of Program and Justification of Feature Selection and Validation Methods for a de-
scription of my feature selection and model construction process). In contrast Bayer et al.[20]
used their own ANUBIS system (please see [44] for a detailed description of their system) to
perform dynamic analysis using data tainting to gather execution traces of malware programs,
extraction of traces into behavioural profiles (feature selection) and then hierarchical clustering
and Hamid et al.[38] used k-means clustering. However, Zhang et al.[25] performed static anal-
ysis to analyse the Ransomware samples using the IDAPRO Disassembler and then converted
the opcodes into n-grams (1-gram, 2-gram, 3-gram and 4-gram) and constructed feature vectors
using the term frequency-Inverse document frequency (TF-IDF) for each n-gram. They used su-
pervised machine-learning methods (Decision Tree, Random Forest, K-Nearest Neighbour, Naive
Bayes, and Gradient Boosting Decision Tree) to perform Ransomware classification. See Table
5.19 below for these differences.

Project/Research Paper Techniques For
Analysis

Feature Selection
and Model Con-
struction Methods

Machine Learning Algorithms

BSc (7.4) CopperDroid[43] System call bit/
frequency vector
n-grams (1-gram,
2-gram and 3-
gram)

Hierarchical unsupervised ma-
chine learning method

MSc (this document) Static and
dynamic
analysis[41]

Operation/ cate-
gory of operation
bit/ frequency
vector n-grams
(1-gram, 2-gram
and 3-gram)

Hierarchical unsupervised ma-
chine learning method

Bayer et al.[20] Dynamic analy-
sis

Behavioural pro-
files

Hierarchical unsupervised ma-
chine learning method

Hamid et al.[38] - - K-means unsupervised machine
learning method

Zhang et al.[25] Static analysis TF-IDF n-grams (1-
gram, 2-gram, 3-
gram and 4-gram)

Supervised machine learn-
ing methods (Decision Tree,
Random Forest, K-Nearest
Neighbour, Naive Bayes, and
Gradient Boosting Decision
Tree)

Table 5.19: This table displays that all five projects/research papers
used different techniques for analysis, feature selection and model

construction methods and machine learning algorithms.

This confirms my initial conclusion that the accuracy of clustering-based malware detection is
highly subjective; it is dependent on many factors such as the analysis to generate the features,
the method that is used to select the features and the machine learning algorithm.

74

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

However Mehnaz et al.[27] said that there are several mechanisms for malware detection but
a few for Ransomware. They claim that analysisng Ransomware for file usage patterns or be-
haviours results in delayed detections and “monitoring only the process activities ... or file
changes is not sufficient for effective detection”. This is because it yields high false positve and
false negative results. This suggests that a combination of features should be selected to achieve
the most accurate results.

Therefore, more research is needed to find out whether this difference (and/or other reasons)
affect the accuracy of clustering malware. For example, researches should conduct a validation
study where they use the Ramilli dataset that I used ([41]) in this project using the feature selec-
tion, model construction and machine learning methods that Bayer et al.[20], Hamid et al.[38] or
Zhang et al.[25] used and see if they produce a similar result (high precision and recall as in Bayer
et al.[20] or high accuracy results as in Zhang et al.[25]). This will then help to conclude whether
clustering improves malware detection or not.

Li et al.[40] found that the make-up of the ground-truth data (method of selection i.e. distribution
sizes of the malware families) from prior evaluations “biases their results toward high accuracy”
specifically increasing the likelihood of good precision and recall. They used the sequences of
system calls and API calls of malware and performed single-linkage hierarchical clustering, pre-
cision, recall and F-measure. They concluded and proved that as the plagiarism detectors and
BCHKK-algo (used by Bayer et al.[20]) performed well on the clustering (greater precision, worse
recall and similar f-measure) with ground truth labels inferred by antivirus tools and was bet-
ter with the BCHKK-data dataset (used by Bayer et al.[20]) compared to the VXH-data dataset
(malware instances see[40]). This may be due to way the systems gathered the malware traces
because they can vary in the length and composition of API sequences or due to the differences in
the presence and frequencies of certain activities in each dataset. The main difference noted in the
datasets were the distribution of cluster sizes as the BCHKK-data dataset is highly biased with 2
large clusters covering more than half of the malware instances.

Finally, the running times of the experiments need to be considered. When these experiments
were run on a local machine (CPU), unreasonable running times were produced (the shortest
time to perform one experiment (of the twelve) was 2 days and the longest time was over 4
weeks without a break and the vectors were still being constructed). This long run time could be
due to the large number of system call dimensions in the feature vectors (e.g. 2025 system call
dimensions for Ransomware Di-grams Full Represenntation) and the different heights obtained
for the dendrogram. This is because the feature space increases, the number of dimensions in the
feature vectors are larger and the distance between the feature vectors are larger and so there are
more distances and less vectors that are similar. This also meant that it was infeasible for me to
compute experiments with n-grams of more than tri-grams (3-grams). However, if I had access
to a GPU, the experiments would execute much quicker. I would be able to expand this project
and look at larger datasets or other feature selection and vector representation methods in order
to produce more accurate results. This means that the best clustering may not reflect completely
what the evaluation metrics say is the best clustering. Instead, the best clustering should be based
on the ground truths (evaluation metrics) and running times. This is because if it takes too long
to run, people will be reluctant to use it to detect malware.

5.3 Self-Evaluation

Overall the project went well and I was able to achieve all the project aims and deliverables that I
had intended to achieve. I created a program which extracted features from behavioural profiles
of three different malware families and implemented clustering on the resulting data.

The objectives of my project are slightly different to the objectives stated in my project description
form. Initially I was going to compare clustering results between Ransomware and Android ap-
plications (BSc Project). However, both datasets did not have similar features and are not from the
same year and both malware types are independent therefore it did not make sense to compare
them to each other. For example, if it was Ransomware for Android or both Ransomware and
Android had similar families then it would make sense to compare them. Instead I looked at the

75

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

other malware types in the dataset and I noticed that similar features were occurring in Backdoor
and Trojan. Therefore, I decided to cluster each malware type individually into families and then
compare the results between them. This also meant that my title changed from “A Novel Ap-
proach To Clustering: Clustering Ransomware Behaviour As An Aid For Ransomware Detection
In The Future” to “A Novel Approach To Clustering Malware Behaviour To Improve Malware
Detection”. As I added two more malware families and had to run the analysis and process the
results for each family, I did not have time to optimise both the Ransomware and Android pro-
grams to see if this makes a difference to the result. All other objectives (including the optional
ones) in my project description form were completed.

This project enabled me to learn and develop new and existing skills such as expand my knowl-
edge of Python (a programming language I learnt for my BSc project last year) and Latex (a report
writing software which I learnt about last year but learnt more features such as captions on fig-
ures and tables, chapter headings, bibtex etc). I stuck to my project plan timeline which meant
I finished my tasks on time and then I could concentrate on my report structure in August. I
was not rushing or struggling to complete my work on time. As I stuck to my timings well, it
meant that I could send most of my report to my supervisor for feedback instead of sending him
incomplete sections.

A difficulty I encountered during my project was the running-times of my program. The feature
selection, model construction and the validation parts of my program took time to compute and
produced unreasonable running times. Therefore, the program was taking a long time to run
one experiment (12 all together) and so the overall programming time was large. This long run
time could be due to the large number of system call dimensions in the feature vectors (e.g. 2025
system call dimensions for Ransomware Di-grams Full Representation) and the different heights
obtained for the dendrogram. My solution to this was to use google colabatory (use the GPU) to
produce all the text files needed to compute the best clustering. However, this was also limited to
a 12 hour runtime and had to be reconnected to a hosted runtime every few hours.

76

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

6
Conclusion

This chapter concludes this project by describing the main finding of this project.

77

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

6.1 Conclusion

In conclusion the results in this and other projects suggest that there is a discrepancy with the
accuracy of clustering-based malware and whether clustering improves malware detection. The
accuracy of clustering-based malware detection is highly subjective as it depends on many factors
including the type of machine learning algorithm, the features selected, the feature selection meth-
ods, the model construction methods and evaluation metrics (as shown in my results where the
different methods of feature selection and vector representation yielded different results (scores
and best clustering methods) for the validation metrics and the accuracy was low and other pa-
pers using different methods where the accuracy was high). Therefore, future research should
be conducted to find out all the reasons that may affect the accuracy of clustering malware and
discover the best methods in terms of accuracy and a good run time for clustering malware to
improve malware detection.

78

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Bibliography

[1] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Massachusetts Institute of Tech-
nology, 2012.

[2] C. Chio and D. Freeman, Machine Learning and Security. O’Reilly Media, 2018.

[3] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with
Applications in R. Springer, 2013.

[4] M. Tomlinson, “Outperforming the human: How can machine learning help your busi-
ness?.” https://pwc.blogs.com/data/2018/03/outperforming-the-human-how-can-

machine-learning-help-your-business.html, 2018.

[5] F. Ciais, “Meet our new head of machine learning.” https://www.pwc.co.uk/services/

audit-assurance/actuarial/insights/meet-new-head-of-machine-learning.html,
2016.

[6] PWC, “Uk gdp growth projected to be 0.5% in the third quarter of 2018 according to pwc’s
”nowcasting” model.” https://www.pwc.co.uk/press-room/press-releases/UK-GDP-

growth-projected-to-be-0.5-in-the-third-quarter-of-2018-according-to-PwCs-

nowcasting-model.html, 2018.

[7] K. Savage, P. Coogan, and H. Lau, “The evolution of ransomware.” http://www.

symantec.com/content/en/us/enterprise/media/security_response/whitepapers/

the-evolution-of-ransomware.pdf, 2015.

[8] W. Zamora, “How to protect your business from ransomware.” https://blog.

malwarebytes.com/101/2016/04/how-to-protect-your-business-from-ransomware/,
2017.

[9] D. O’Brien, “Ransomware.” https://www.symantec.com/content/dam/symantec/docs/

security-center/white-papers/istr-ransomware-2017-en.pdf, 2017.

[10] E. Wilding, “Virus bulletin.” https://www.virusbulletin.com/uploads/pdf/magazine/

1990/199001.pdf, 1990.

[11] J. Zorabedian, “Anatomy of a ransomware attack: Cryptolocker, cryptowall, and how
to stay safe.” https://news.sophos.com/en-us/2015/03/03/anatomy-of-a-ransomware-

attack-cryptolocker-cryptowall-and-how-to-stay-safe-infographic/, 2015.

[12] FBI, “Incidents of ransomware on the rise.” https://www.fbi.gov/news/stories/

incidents-of-ransomware-on-the-rise, 2016.

[13] R. Lipovsky, L. Stefanko, and G. Branisa, “The rise of android ransomware.” https://www.

welivesecurity.com/wp-content/uploads/2016/02/Rise_of_Android_Ransomware.pdf,
2016.

[14] S. Joachim, “Unix: A game changer in the ransomware landscape?.” https:

//blog.trendmicro.com/trendlabs-security-intelligence/unix-a-game-changer-

in-the-ransomware-landscape/, 2017.

[15] O. Ziv, “0.2 btc strikes back, now attacking mysql databases.” https://www.guardicore.

com/2017/02/0-2-btc-strikes-back-now-attacking-mysql-databases/, 2017.

[16] C. Wueest, “How my tv got infected with ransomware and what you can learn from
it.” https://www.symantec.com/connect/blogs/how-my-tv-got-infected-ransomware-

and-what-you-can-learn-it, 2015.

[17] M. Rouse, “What is backdoor (computing)?.” https://searchsecurity.techtarget.com/

definition/back-door, 2017.

[18] MalwareBytes, “Backdoor.” https://www.malwarebytes.com/backdoor/.

[19] MalwareBytes, “Trojan.” https://www.malwarebytes.com/trojan/.

79

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

[20] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable, behavior-
based malware clustering,” 16th Annual Network and Distributed System Security Symposium,
vol. 9, pp. 1–18, 2009.

[21] A. X. Zheng, Mastering Feature Engineering. O’Reily, Pre-Release edition, 2016.

[22] C. Boutsidis, M. W. Mahoney, and P. Drineas, “Unsupervised feature selection for the k-
means clustering problem,” Proceedings of the 22nd International Conference on Neural Informa-
tion Processing Systems (NIPS’09), pp. 153–161, 2009.

[23] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda, “A quan-
titative study of accuracy in system call-based malware detection,” Proceedings of the 2012
International Symposium on Software Testing and Analysis (ISSTA 2012), pp. 122–132, 2012.

[24] D. Mutz, F. Valeur, C. Kruegel, and G. Vigna, “Anomalous system call detection,” ACM
Transactions on Information and System Security (TISSEC), pp. 61–93, 2006.

[25] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, and F. Martinelli, “Classification of ransomware fami-
lies with machine learning based on n-gram of opcodes,” Future Generation Computer Systems,
vol. 90, pp. 211–221, 2019.

[26] Y.-L. Wan, J.-C. Chang, R.-J. Chen, and W. Shiuh-Jeng, “Feature-selection-based ransomware
detection with machine learning of data,” 3rd International Conference on Computer and Com-
munication Systems, pp. 85–88, 2018.

[27] S. Mehnaz, A. Mudgerikar, and E. Bertino, “Rwguard: A real-time detection system against
cryptographic ransomware,” International Symposium on Research in Attacks, Intrusions and
Defenses, pp. 114–136, 2018.

[28] Z. A. Genc, G. Lenzini, and P. Y. Ryan, “No random, no ransom: A key to stop cryptographic
ransomware,” International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 234–255, 2018.

[29] S. Raschka, “About feature scaling and normalization.” http://sebastianraschka.com/

Articles/2014_about_feature_scaling.html, 2014.

[30] S. Learn, “Importance of feature scaling scikit-learn 0.19.0 documentation.” http://scikit-
learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html.

[31] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[32] Y. Takeuchi, K. Sakai, and S. Fukumoto, “Detecting ransomware using support vector ma-
chines,” Proceedings of the 47th International Conference on Parallel Processing Companion, pp. 1–
6, 2018.

[33] S. S. im Walde, “Experiments on the automatic induction of german semantic verb classes,”
Arbeitspapiere des Instituts fr Maschinelle Sprachverarbeitung (AIMS) report, pp. 1–343, 2003.

[34] T. S. Madhulatha, “An overview of clustering methods,” IOSR Journal of Engineering, vol. 2,
no. 4, pp. 719–725, 2012.

[35] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson, 2005.

[36] Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature selection using principal feature analysis,”
Proceedings of the Fifteenth ACM International Conference on Multimedia, pp. 301–304, 2007.

[37] M. Namratha, “A comprehensive overview of clustering algorithms in pattern recognition,”
IOSR Journal of Computer Engineering, vol. 4, no. 6, pp. 23–30, 2012.

[38] I. R. A. Hamid, N. S. Khalid, N. A. Abdullah, N. H. A. Rahman, and C. C. Wen, “Android
malware classification using k-means clustering algorithm,” IOP Conference Series: Materials
Science and Engineering, vol. 226, 2017.

[39] L. Chen, Y. Chih-Yuan, P. Anindya, and R. Sahita, “Towards resilient machine learning for
ransomware detection,” Computing Research Repository, 2018.

80

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

[40] P. Li, L. Liu, D. Gao, and M. Reiter, “On challenges in evaluating malware clustering,” Recent
Advances in Intrusion Detection, Springer Berlin Heidelberg, pp. 238–25, 2010.

[41] M. Ramilli, “Malware training sets: a machine learning dataset for everyone.”
https://marcoramilli.com/2016/12/16/malware-training-sets-a-machine-

learning-dataset-for-everyone/, 2016.

[42] P. Trinius, C. Willems, T. Holz, and K. Rieck, “A malware instruction set for behavior-based
analysis,” Proceedings of 5th GI Conference ”Safety, Protection and Reliability”, 2010.

[43] K. Tam, S. J. Khan, A. Fattoriy, and L. Cavallaro, “Copperdroid: Automatic reconstruction of
android malware behaviors,” NDSS Symposium, 2015.

[44] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool for analyzing malware,” 15th European
Institute for Computer Antivirus Research (EICAR 2006) Annual Conference, 2006.

81

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

7
Appendices

7.1 Appendix A - Program

7.1.1 Installation Requirements

A Ransomware dataset was provided by Ramilli[41] (please see Description of Program and Jus-
tification of Feature Selection and Validation Methods for a description of this dataset and the
rationale for using it. The JSON files were used to perform hierarchical clustering. The program
consisted of feature selection, vector representation (model construction), hierarchical clustering
and validation. It was written in python 2.7 with the libraries Scikit-learn, Numpy, Scipy, Pandas,
Matplotlib.

I used a git repository (which was used to run on google colabatory) to store the code which
only produces and downloads all the text files for running the individual experiments for one
malware family at a time (please see https://github.com/Rebecca22/Proj2 for the code that
produces all the text files). Please note: The text files were too large to store on git hub which
meant that I could not run my best cluster algorithm to find the best clustering using the text files
according to the FMS, F1, ARI and SC scores. This meant only the code for the production of the
text files is on github, all the rest of the program code is stored on my local machine as it is too
large to store on github.

To install the various applications/ libraries:

1. Python 2.7.13 - Install the correct python version for https://www.Python.org/downloads/
release/Python-2713/ e.g. for a 64-bit operating system in windows install the Windows
x86-64 MSI installer. Note: Make sure the “Add to path” task is ticked so the Python pro-
grams are easier to type into cmd.

2. “Scikit-learn” library (including numpy and scipy that scikit-learn depends on):

(a) Python has a special library installer program called ”pip”, install and update it to its
latest version by typing in cmd: Python -m pip install -U pip setuptools

(b) The Scikit-learn website needs the “nunpy” and “scipy” libraries to be installed. For
windows (other versions of OS may be readily available on the pip website) as there
is no version available on the pip website, special files that pip can interpret need
to be installed. Download Numpy: http://www.lfd.uci.edu/~gohlke/Pythonlibs/
#numpy ((numpy − 1.13.1 + mkl − cp27 − cp27m − winamd64.whl)) and Scipy: http:

//www.lfd.uci.edu/~gohlke/Pythonlibs/#scipy ((scipy− 0.19.1− cp27− cp27m−
winamd64.whl))

(c) Using cmd, navigate to “downloads” folder and type pip install numpy file name”
and after this repeat this for scipy (as scipy depends on numpy).

(d) Finally type in cmd: pip install −U scikit-learn

82

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

3. Any other Python libraries that are not supported by pip e.g. pandas

(a) Go to https://www.lfd.uci.edu/~gohlke/pythonlibs/#pandas and download the
correct version(the same version as numpy and scipy (pandas− 0.24.2− cp27− cp27m−
winamd64.whl)).

(b) Using cmd, navigate to the “downloads” folder.
(c) Type in cmd: “pip install “pandas file name”

4. Any other Python libraries that are supported by pip e.g. matplotlib In cmd type:

(a) In cmd type: Python −mpip install −U pip
(b) In cmd type: Python −mpip install −U matplotlib

7.1.2 User Manual

Google Colabatory and Git Hub(to produce the text files)

Description of the classes in src package:

1. main.py - used to run my program by running the main method which runs experiments
for each system call and vector representations.

2. HierarchicalClustering package - contains a class that standardises the frequency feature
vectors (not bit vectors), calculates the Euclidean Distances of each of the feature vectors
and then produces a dendrogram.

3. JsonFiles package - contains a class that gets all the folders in the specified samples folder
(either Ransomware, Backdoor or Trojan), and for each family of the specific malware, gets
the json files and stores the contents of the files in a list and then stores the list for each files
in a family in a dictionary and returns the dictionary.

4. ProduceVector package - contains a class which produces a vector depending on if it is a bit
vector or frequency vector and the type n-gram and returns it.

5. SystemCallRepresentation package - contains a class which produces a list of system calls
for each file and returns it depending on the type of syscall behaviour being represented ie
full representation or category.

6. Validation package - contains a class that evaluates the cuts on the dendrogram at different
heights using metrics (FMS, F1, ARI and SC) by finding the best clustering for the matrix
passed in.

I used google colabatory to produce all the text files that the best clustering method on my local
machine will use to find the best clustering for each family.

Figure 7.1: This picture displays the code written in google colabatory.

83

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

The screenshot above (Figure 7.1) shows the code for the running of my program. Please see
https://github.com/Rebecca22/Proj2 for the code that is being run. Google colab clones my
repository and then runs the main method within the program. After it has run the main method,
the text files produced by my program will be downloaded.

Below (Figure 7.2) is a screenshot of google colab once the main method is run:

Figure 7.2: This picture is a screenshot of google colabatory once the
main method is run.

This picture (Figure 7.2) asks the user what they would like to execute. If they enter ‘r’, every
experiment for each type of system call and feature vector representation will be executed for
the Ransomware malware family where the feature vectors will be constructed, standardised (if a
frequency vector), a dendrogram will be produced and the cuts of the dendrogram at the various
heights will be validated using FMS, F1, ARI and SC scores to determine the best cluster. If
they enter ‘b’ or ‘c’ then the same thing will happen as described above for Ransomware but for
Backdoor (‘b’) or Trojan (‘t’).

1. User enters ‘r’ (same thing will happen for when the user enters ‘b’ or ‘t’): Here experi-
ments for each type of vector (Uni-gram bit vector, Uni-gram frequency vector, Di-gram bit
vector, Di-gram frequency vector, Tri-gram bit vector or Tri-gram frequency vector) and for
each type of behaviour Full representation or Category). In each experiment, the feature
vectors will be extracted from all the json files in the malware families (1 vector for every
json file), standardised (if frequency vector), the Euclidean Distance is calculated on them
and a dendrogram is created of the malware samples against Euclidean Distances. Next
the dendrograms are cut at different heights to obtain different clusterings and the cluster-
ings obtained are compared to the labelled dataset from Ramilli[41] and the best clustering
obtained (the method of feature selection and model construction and the cut that is the
most similar as the labelled dataset) is when the Fowlkes Mallows Score, the F1-Score, the
Adjusted Rand Index or the Silhouette Coefficient is the closest to 1.

User enters ‘r’ (Figure 7.3):

Figure 7.3: This picture is a screenshot of google colabatory where the
use enters ‘r’.

The experiments for each feature vector will be run:

(a) Firstly the program, explains the type of feature vector and system call representation
that it being run e.g. Running experiment for Uni-gram bit vector with full representa-
tion (Figure 7.4 a).

(b) Next it says that it is producing the feature vectors. Here the program extracts the
system calls from the malware samples, creates the dimensions of the feature vectors

84

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

according to the Uni-gram, Di-gram or Tri-gram. The program prints compiled keys to
tell the user that the dimensions of the feature vectors have been produced (Figure 7.4
b).

(c) It then populates the feature vectors according to the malware samples and whether
the vector is a bit vector (1 if the system call is present in the behavioural profile or 0
otherwise) or frequency vector (the number of system calls observed in the behavioural
profile according to the Uni-gram, Di-gram or Tri-gram).The program prints the num-
ber of system call dimensions of the feature vector to the user (Figure 7.4 c).

(d) Then a dendrogram is produced for the feature vector. Firstly if the feature vector is a
frequency vector, it is standardised and then Euclidean distances are calculated and a
dendrogram is constructed (Figure 7.4 d).

Figure 7.4: This picture is a screenshot of google colabatory illustrating
the steps from a to d above.

(e) Next the dendrogram produced is cut at different heights (the number of heights is
displayed in the output to the user) to obtain different clusterings. The clusterings ob-
tained are compared to the labelled dataset from Ramilli[41] and are validated against
the FMS, F1, ARI and SC scores and a graph is produced to display the scores at the
different heights (Figure 7.5).

Figure 7.5: This picture is a screenshot of google colabatory illustrating
the step e above.

This process (steps a - e) continues for each feature vector (repeats 12 times).

Under the files tab on the left hand side of the screen, under the folder /content/ Proj2/

Program/ src, it has a list of all the text files to be produced in the format of “malware type

bit/frequency vector file produced n-gram and system call representation”. For ex-
ample the file /content/Proj2/Program/src/Ransomware b ARI uniFull Representation

Bit Vector.txt (see the file circled below) means that the file contains the ARI list for Ran-
somware of Uni-gram with the system call representation of Full Representation and the
vector representation of Bit Vector (Figure 7.6).

85

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 7.6: This picture is a screenshot of google colabatory illustrating
all the text files produced under the files tab.

Then the program downloads all the files.

2. If the user does not enter either ‘r’, ‘b’ or ‘t’ then an error will be displayed to the user
explaining to them what they did wrong (Figure 7.7).

Figure 7.7: This picture is a screenshot of google colabatory illustrating
the error if the user enters a wrong input.

Local Machine (Best Clustering)

1. User runs main:

For the best cluster for an individual malware family or for all the malware families, from
the lists of the FMS, F1, ARI and SC scores for each height stored in text files, the pro-
gram will calculate the best clustering obtained (the method of feature selection and model
construction and the cut that is the most similar as the labelled dataset). This is when the
Fowlkes Mallows Score, the F1-Score, the Adjusted Rand Index or the Silhouette Coefficient
is the closest to 1.

User runs main (Figure 7.8):

Figure 7.8: This picture is a screenshot of the program once the main
method is run.

86

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

The best clustering from the stored FMS, F1, ARI and SC scores will be produced:

Firstly the program, gets all the heights from the cut text files (cut.txt) for each experiment
and then creates and stores the heights in a list in a text file. It then asks the user what
they would like to run. If the user enters ‘r’ then the best cluster program will only run for
Ransomware, if they enter ‘b’ then the best cluster program will only run for Backdoor and
if they enter‘ t’ then the best cluster program will only run for Trojan. If the user enters “all”
then the best cluster program will run for all the malware families (Ransomware, Backdoor
and Trojan).

2. User enters ‘r’ (same thing will happen for when the user enters ‘b’ or ‘t’) (Figure 7.9):

Figure 7.9: This picture is a screenshot my program where the use
enters ‘r’.

(a) The program explains that it is getting all the FMS, F1, ARI and SC scores for the dif-
ferent vectors. The text files which store the lists containing the FMS, F1, ARI and SC
scores for each height were produced from the google colabatory program (see above)
for the corresponding feature vector and the text files which store the lists containing
the heights are produced in step 2 (directly above) for the corresponding feature vector
(Figure 7.10).

Figure 7.10: This picture is a screenshot of my program illustrating the
step a above.

(b) Next graphs are produced to display all the FMS, F1, ARI and SC scores for all the
feature vectors for Ransomware at the different heights. For example for the for Uni-
gram Bit Vector with Full Representation (Figure 7.11):

87

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 7.11: This graph displays the FMS, F1, ARI and SC scores for
the Ransomware Uni-gram Bit Vector with Full Representation vector

at the different heights.

(c) The best clustering obtained for the specific feature vector is when the Fowlkes Mal-
lows Score, the F1-Score, the Adjusted Rand Index or Silhouette Coefficient is the near-
est to 1. The program calculates the best clustering for all the feature vectors using
the various metrics and then displays the results (in the form of experiment, height
and score) in the output. For example the first line (’Ransomware uni-gram Category
Frequency Vector’, ’at height’, 52.593 with FMS score 0.301530665781 means that the
best FMS score for Ransomware was the uni-gram with the system call representation
of Category and vector representation of frequency vector at the height of 52.593 with
score of 0.3) (Figure 7.12).

Figure 7.12: This picture is a screenshot of my program illustrating the
step c above.

(d) Then the program prints out the order of the Ransomware experiments from best to
worst for each experiment for each validation metric scores (Figure 7.13).

88

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) FMS. (b) F1.

(c) ARI. (d) SC.

Figure 7.13: These pictures illustrate my program printing out the
order of the Ransomware experiments from best to worst for each

experiment for each validation metric scores.

The same thing will happen as described above for Ransomware but for Backdoor (‘b’) or
Trojan (‘t’).

3. User enters ‘all’ (Figure 7.14):

Figure 7.14: This picture is a screenshot my program where the use
enters ‘all’.

(a) The program explains that it is getting all the FMS, F1, ARI and SC scores for the dif-
ferent vectors. The text files which store the lists containing the FMS, F1, ARI and SC
scores for each height were produced from the google colabatory program (see above)
for the corresponding feature vector and the text files which store the lists containing
the heights are produced in step 2 (directly above) for the corresponding feature vector
(Figure 7.15).

Figure 7.15: This picture is a screenshot of my program illustrating the
step a above.

(b) Next graphs are produced to display all the FMS, F1, ARI and SC scores for all the
feature vectors (for Ransomware, Backdoor and Trojans) at the different heights. For

89

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

example for Ransomware for the Uni-gram Bit Vector with Full Representation (Figure
7.16):

Figure 7.16: This graph displays the FMS, F1, ARI and SC scores for
the Ransomware Uni-gram Bit Vector with Full Representation vector

at the different heights.

(c) The best clustering obtained for the specific feature vector is when the Fowlkes Mal-
lows Score, the F1-Score, the Adjusted Rand Index or Silhouette Coefficient is the near-
est to 1. The program calculates the best clustering for all the feature vectors using the
various metrics and then displays the results (in the form of experiment, height and
score) in the output. For example the first (’Backdoor tri-gram Full Representation Fre-
quency Vector’, ’at height’, 34.320) with FMS score 0.457323554014means that the best
FMS score for Ransomware, Backdoor and Trojan was the tri-gram with the system call
representation of Full Representation and vector representation of frequency vector at
the height of 34.320 with score of 0.46) (Figure 7.17).

Figure 7.17: This picture is a screenshot of my program illustrating the
step c above.

(d) Then the program prints out the order of all the experiments from best to worst for
each experiment for each validation metric scores (Figures 7.18, 7.19 and 7.20).

90

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) FMS. (b) F1.

(c) ARI. (d) SC.

Figure 7.18: These pictures illustrate my program printing out the
order of the Ransomware experiments from best to worst for each

experiment for each validation metric scores.

(a) FMS. (b) F1.

(c) ARI. (d) SC.

Figure 7.19: These pictures illustrate my program printing out the
order of the Backdoor experiments from best to worst for each

experiment for each validation metric scores.

91

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) FMS. (b) F1.

(c) ARI. (d) SC.

Figure 7.20: These pictures illustrate my program printing out the
order of the Trojan experiments from best to worst for each experiment

for each validation metric scores.

4. If the user does not enter either ‘r’, ‘b’, ‘t’ or ‘all’ then an error will be displayed to the user
explaining to them what they did wrong (Figure 7.21).

Figure 7.21: This picture is a screenshot of my program illustrating the
error if the user enters a wrong input.

7.2 Appendix B - Text Files Of Results

The results for each experiment across the three different types of malware are stored in text files
located at https://www.dropbox.com/sh/snlwhqjzh8bwc2o/AAAnh9BoAfUeKo4Vax9aBKQ7a?dl=
0.

Figure 7.22: This picture is a screenshot of the start page when clicking
on the url link above.

92

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

The text files containing the feature vector system call dimensions are stored in a list and the text
files containing the feature vectors for each evidence in each json file are stored in dictionaries.
The keys are the id’s of the evidence, this is made up of the evidence number such as f379455a
followed by the family number such as 7. For example, the id of the evidence is f379455a7.
The family number was added to make it unique as the same evidence number could appear in
multiple json files.

The text files containing the standardised feature vectors are stored in lists where each list is a
feature vector.

The text files containing the Euclidean Distance matrices are stored in lists of each iteration in the
form [vector1, vector2, dist, sample count].

The text files containing the cuts of the dendrogram at the different heights are stored in lists
where each cut is stored in a list. The number in the list denotes the cluster number that the file
is assigned to and the frequency of the cluster number is denoted by the cut of the dendrogram.
The number above each list in the file is the height of the dendrogram where it was cut.

The text files containing the Fowlkes Mallows Score (FMS), F1-Score (F1), Adjusted Rand Index
Score (ARI) and Silhouette Scores (SC) computed at each cut for each dendrogram between the
true and predictive assignments are stored in a list.

The text file containing the true assignments are stored in a list. The number in the list denotes the
cluster number that the file is assigned to and the frequency of the cluster number is denoted by
the number of files in each family e.g. “Ransomware.Cryptowall-1201142” will be represented in
the true assignments file as [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...]. The zero means that
all the files are in the same cluster (number 0) and the number zero is repeated 347 times because
the family contains 347 unique evidences.

7.2.1 Ransomware

The true assignments are attached in this text file: true assignments.

1. Uni-gram with Full Representation

There were 45 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with full representation bit vector. The
screenshot below (7.23) displays a screenshot of the webpage.

93

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 7.23: This picture is a screenshot displaying all the text files that
one can click on to view the results.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Uni-
gram with full representation frequency vector. The screenshot below (7.24) displays
a screenshot of the webpage.

Figure 7.24: This picture is a screenshot displaying all the text files that
one can click on to view the results.

2. Uni-gram with Category

There were 8 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with category bit vector. Please see the
screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Uni-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

3. Di-gram with Full Representation

94

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

There were 2025 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Digram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link Di-
gram with full representation frequency vector. Please see the screenshot (7.24) which
displays a screenshot of the webpage.

4. Di-gram with Category

There were 64 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the relevant
text files on the website link Digram with category bit vector. Please see the screen-
shot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link Di-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

5. Tri-gram with Full Representation

There were 91125 system call dimensions in the feature vector. The feature vector dimen-
sions (syscalls) are attached in this text file: Trigram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Trigram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Tri-
gram with full representation frequency vector. Please see the screenshot (7.24) which
displays a screenshot of the webpage.

6. Tri-gram with Category

There were 512 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with category.

95

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the relevant
text files on the website link Trigram with category bit vector. Please see the screen-
shot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Tri-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

7.2.2 Backdoor

The true assignments are attached in this text file: true assignments

1. Uni-gram with Full Representation

There were 7 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file:Unigram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link
Unigram with full representation frequency vector. Please see the screenshot (7.24)
which displays a screenshot of the webpage.

2. Uni-gram with Category

There were 3 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with category bit vector. Please see the
screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Uni-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

3. Di-gram with Full Representation

There were 49 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with full representation.

96

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Digram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link Di-
gram with full representation frequency vector. Please see the screenshot (7.24) which
displays a screenshot of the webpage.

4. Di-gram with Category
There were 9 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the relevant
text files on the website link Digram with category bit vector. Please see the screen-
shot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link Di-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

5. Tri-gram with Full Representation
There were 343 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Trigram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Tri-
gram with full representation frequency vector. Please see the screenshot (7.24) which
displays a screenshot of the webpage.

6. Tri-gram with Category
There were 27 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the relevant
text files on the website link Trigram with category bit vector. Please see the screen-
shot (7.23) which displays a screenshot of the webpage.

97

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Tri-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

7.2.3 Trojan

The true assignments are attached in this text file: true assignments.

1. Uni-gram with Full Representation

There were 27 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link
Unigram with full representation frequency vector. Please see the screenshot (7.24)
which displays a screenshot of the webpage.

2. Uni-gram with Category

There were 8 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with category bit vector. Please see the
screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Uni-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

3. Di-gram with Full Representation

There were 729 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Digram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

98

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link Di-
gram with full representation frequency vector. Please see the screenshot (7.24) which
displays a screenshot of the webpage.

4. Di-gram with Category

There were 64 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the relevant
text files on the website link Digram with category bit vector. Please see the screen-
shot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC
list (SC.txt) can be found by clicking on the relevant text files on the website link Di-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

5. Tri-gram with Full Representation

There were 19683 system call dimensions in the feature vector. The feature vector dimen-
sions (syscalls) are attached in this text file: Trigram with full representation.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Trigram with full representation bit vector. Please
see the screenshot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list
(SC.txt) can be found by clicking on the relevant text files on the website link Tri-
gram with full representation frequency vector. Please see the screenshot (7.24) which
displays a screenshot of the webpage.

6. Tri-gram with Category

There were 512 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with category.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), heights of the dendrogram (heights.txt), FMS list (FMS.txt), F1 list
(F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the relevant
text files on the website link Trigram with category bit vector. Please see the screen-
shot (7.23) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), heights of the den-
drogram (heights.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list

99

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(SC.txt) can be found by clicking on the relevant text files on the website link Tri-
gram with category frequency vector. Please see the screenshot (7.24) which displays
a screenshot of the webpage.

7.3 Appendix C - Euclidean Distance Results for Ransomware,

Backdoor and Trojans

The tables below show collated results of the Euclidean Distances across the three different types
of malware.

1. Full Representation

(a) Bit Vector

Vector 0 1 1-2 2-3 3-4 Largest Distance

Ransomware
Uni-gram 10646 58 21 1 0 2
Di-gram 10611 66 36 11 1 3.162
Tri-gram 10588 77 38 19 4 3.606

Backdoor
Uni-gram 4995 4 3 0 0 1.414
Di-gram 4996 6 0 0 0 1.0
Tri-gram 4998 4 0 0 0 1.0

Trojan
Uni-gram 5255 29 13 0 0 1.732
Di-gram 523 49 9 6 0 2.828
Tri-gram 5238 36 13 8 2 3.464

Table 7.1: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for each malware for
the System Call Representation of Full Representation and

Vector Representaion of a Bit Vector.

(b) Frequency Vector

Vector 0 0-5 5-
10

10-
20

20-
50

50-
100

100-
150

150-
200

200-
300

Largest
Distance

Ransomware
Uni-gram 10524 117 38 24 16 6 1 0 0 103.577
Di-gram 10531 68 29 21 39 26 10 2 0 174.894
Tri-gram 10522 51 20 25 33 44 21 7 3 295.971

Backdoor
Uni-gram 4986 10 2 4 0 0 0 0 0 14.807
Di-gram 4991 6 0 2 3 0 0 0 0 31.648
Tri-gram 4996 2 0 0 3 0 0 0 0 34.320

Trojan
Uni-gram 518 400 15 10 10 4 0 0 0 78.318
Di-gram 5166 76 11 13 21 9 0 1 0 172.931
Tri-gram 5187 50 11 6 16 19 5 2 1 220.511

Table 7.2: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for each malware for
the System Call Representation of Full Representation and

Vector Representaion of a Frequency Vector.

2. Category

(a) Bit Vector

Vector 0 1 1-2 Largest Distance

100

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Ransomware
Uni-gram 9846 17 2 1.414
Di-gram 9839 23 3 1.732
Tri-gram 9846 17 2 1.732

Backdoor
Uni-gram 4870 2 1 1.414
Di-gram 4870 3 0 1.0
Tri-gram 4871 2 0 1.0

Trojan
Uni-gram 4333 11 2 1.414
Di-gram 4332 14 0 1.0
Tri-gram 4334 11 0 1.414

Table 7.3: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for each malware for
the System Call Representation of Category and Vector

Representaion of a Bit Vector.

(b) Frequency Vector

Vector 0 0 - 5 5 - 10 10 - 60 60 - 150 Largest Distance

Ransomware
Uni-gram 9802 40 19 4 0 52.593
Di-gram 9809 25 9 17 4 107.300
Tri-gram 9822 19 4 12 7 143.378

Backdoor
Uni-gram 4865 4 2 2 0 16.514
Di-gram 4867 3 0 3 0 37.335
Tri-gram 4870 0 0 2 1 69.821

Trojan
Uni-gram 4299 39 5 3 0 54.746
Di-gram 4306 20 8 12 0 55.678
Tri-gram 4315 17 3 10 1 76.145

Table 7.4: This table displays the number of evidences
which had each Euclidean Distance (column) and the

largest distance for each N-gram (row) for each malware for
the System Call Representation of Category and Vector

Representaion of a Frequency Vector.

7.4 Appendix D - Results from Clustering Android Application

Behaviour

In total, 24 experiments were run for each system call representation and feature vector represen-
tation. The results for each experiment are detailed below:

There are 49 different malware families from the CopperDroid dataset with 1230 json files in total.
The table below (Table 7.5) displays the Android families and the number of json files for each
family:

Name of Family Number of Json Files
ADRD genome stimulated 21

AnserverBot genome stimulated 187
Asroot genome stimulated 8

BaseBridge genome stimulated 122
BeanBot genome stimulated 8
Bgserv genome stimulated 9

CoinPirate genome stimulated 1
CruseWin genome stimulated 2
DogWars genome stimulated 1

101

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

DroidCoupon genome stimulated 1
DroidDeluxe genome stimulated 1

DroidDreamLight genome stimulated 44
DroidDream genome stimulated 16

DroidKungFu1 genome stimulated 34
DroidKungFu2 genome stimulated 30
DroidKungFu3 genome stimulated 308
DroidKungFu4 genome stimulated 96

DroidKungFuSapp genome stimulated 3
DroidKungFuUpdate genome stimulated 1

Endofday genome stimulated 1
FakeNetflix genome stimulated 1
FakePlayer genome stimulated 6

GamblerSMS genome stimulated 1
Geinimi genome stimulated 63

GGTracker genome stimulated 1
GingerMaster genome stimulated 4
GoldDream genome stimulated 47

Gone60 genome stimulated 9
GPSSMSSpy genome stimulated 6
HippoSMS genome stimulated 4

Jifake genome stimulated 1
jSMSHider genome stimulated 13

KMin genome stimulated 52
LoveTrap genome stimulated 1
NickyBot genome stimulated 1
NickySpy genome stimulated 2

Pjapps genome stimulated 41
Plankton genome stimulated 11

RogueLemon genome stimulated 2
RogueSPPush genome stimulated 9
SMSReplicator genome stimulated 1

SndApps genome stimulated 10
Spitmo genome stimulated 1

Tapsnake genome stimulated 2
Walkinwat genome stimulated 1

YZHC genome stimulated 22
zHash genome stimulated 11
Zitmo genome stimulated 1
Zsone genome stimulated 12

Table 7.5: This table displays all the Android families and the number
of files for each family.

There were 1230 different feature vectors for each experiment. The number of system call di-
mensions in the vectors changed depending on the system call representation and type of fea-
ture vector used. The true assignments (i.e. json files split up into families) can be found in
True assignments. The number in the list denotes the cluster number that the file is assigned to
and the frequency of the cluster number is denoted by the number of files in each family e.g.
“ADRD genome stimulated” will be represented in the true assignments file as [0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0......]. The zero means that all the
files are in the same cluster (number 0) and the number zero is repeated 21 times because the
family contains 21 json files.

The text files containing the feature vector system call dimensions are stored in a list and the text
files containing the feature vector for each json file are stored in dictionaries. The keys are the id’s
of the json file by “md5” and the values are the vectors corresponding to the json files.

102

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

The text files containing the standardised feature vectors are stored in lists where each list is a
feature vector.

The text files containing the Euclidean Distance matrices are stored in lists of each iteration in the
form [vector1, vector2, dist, sample count].

The text files containing the cuts of the dendrogram at the different heights are stored in lists
where each cut is stored in a list. The number in the list denotes the cluster number that the file
is assigned to and the frequency of the cluster number is denoted by the cut of the dendrogram.
The number above each list in the file is the height of the dendrogram where it was cut.

The text files containing the Fowlkes Mallows Score (FMS), F1-Score (F1), Adjusted Rand Index
Score (ARI) and Silhouette Scores (SC) computed at each cut for each dendrogram between the
true and predictive assignments are stored in a list.

1. Uni-gram with syscalls and ioctls

There were 6 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with syscalls and ioctls

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Unigram with syscalls and ioctls bit vector. The screenshot below (7.25) displays a
screenshot of the webpage.

Figure 7.25: This picture is a screenshot displaying all the text files that
one can click on to view the results.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rel-
evant text files on the website link Unigram with syscalls and ioctls frequency vector.
The screenshot below (7.26) displays a screenshot of the webpage.

103

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 7.26: This picture is a screenshot displaying all the text files that
one can click on to view the results.

2. Uni-gram with syscalls and binder semantics

There were 27 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with syscalls and binder semantics.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Unigram with syscalls and binder semantics bit vector. Please see the screenshot (7.25)
which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with syscalls and binder semantics frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

3. Uni-gram with composite behaviours and ioctls

There were 4 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with composite behaviours and ioctls.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Unigram with composite behaviours and ioctls bit vector. Please see the screenshot
(7.25) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Unigram with composite behaviours and ioctls frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

4. Uni-gram with composite behaviours and binder semantics

There were 25 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Unigram with composite behaviours and binder semantics.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Unigram with composite behaviours and binder semantics bit vector. Please see the
screenshot (7.25) which displays a screenshot of the webpage.

104

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the
relevant text files on the website link
Unigram with composite behaviours and binder semantics frequency vector. Please
see the screenshot (7.26) which displays a screenshot of the webpage.

5. Di-gram with syscalls and ioctls

There were 6 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with syscalls and ioctls

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Digram with syscalls and ioctls bit vector. Please see the screenshot (7.25) which dis-
plays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rel-
evant text files on the website link Digram with syscalls and ioctls frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

6. Di-gram with syscalls and binder semantics

There were 27 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with syscalls and binder semantics.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Digram with syscalls and binder semantics bit vector. Please see the screenshot (7.25)
which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Digram with syscalls and binder semantics frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

7. Di-gram with composite behaviours and ioctls

There were 4 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with composite behaviours and ioctls.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Digram with composite behaviours and ioctls bit vector. Please see the screenshot
(7.25) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Digram with composite behaviours and ioctls frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

105

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

8. Di-gram with composite behaviours and binder semantics

There were 25 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Digram with composite behaviours and binder semantics.

(a) Bit vector
The feature vector (vector.txt), Euclidean Distance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Digram with composite behaviours and binder semantics bit vector. Please see the
screenshot (7.25) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Distance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the
relevant text files on the website link
Digram with composite behaviours and binder semantics frequency vector. Please see
the screenshot (7.26) which displays a screenshot of the webpage.

9. Tri-gram with syscalls and ioctls

There were 6 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with syscalls and ioctls

(a) Bit vector
The feature vector (vector.txt), Euclidean Tristance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Trigram with syscalls and ioctls bit vector. Please see the screenshot (7.25) which dis-
plays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Tristance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rel-
evant text files on the website link Trigram with syscalls and ioctls frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

10. Tri-gram with syscalls and binder semantics

There were 27 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with syscalls and binder semantics.

(a) Bit vector
The feature vector (vector.txt), Euclidean Tristance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Trigram with syscalls and binder semantics bit vector. Please see the screenshot (7.25)
which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Tristance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Trigram with syscalls and binder semantics frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

11. Tri-gram with composite behaviours and ioctls

There were 4 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with composite behaviours and ioctls.

106

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

(a) Bit vector
The feature vector (vector.txt), Euclidean Tristance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Trigram with composite behaviours and ioctls bit vector. Please see the screenshot
(7.25) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Tristance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the rele-
vant text files on the website link Trigram with composite behaviours and ioctls frequency vector.
Please see the screenshot (7.26) which displays a screenshot of the webpage.

12. Tri-gram with composite behaviours and binder semantics

There were 25 system call dimensions in the feature vector. The feature vector dimensions
(syscalls) are attached in this text file: Trigram with composite behaviours and binder semantics.

(a) Bit vector
The feature vector (vector.txt), Euclidean Tristance matrix (matrix.txt), cluster assign-
ments (cut.txt), FMS list (FMS.txt), F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt)
can be found by clicking on the relevant text files on the website link
Trigram with composite behaviours and binder semantics bit vector. Please see the
screenshot (7.25) which displays a screenshot of the webpage.

(b) Frequency vector
The feature vector (vector.txt), standardised feature vector (standardisation.txt), Eu-
clidean Tristance matrix (matrix.txt), cluster assignments (cut.txt), FMS list (FMS.txt),
F1 list (F1.txt), ARI list (ARI.txt) and SC list (SC.txt) can be found by clicking on the
relevant text files on the website link
Trigram with composite behaviours and binder semantics frequency vector. Please see
the screenshot (7.26) which displays a screenshot of the webpage.

7.4.1 System Call Dimensions

Trends can be seen from the results. Within a specific n-gram, the more semantics being repre-
sented (e.g. ioctl calls as binder or intent transactions), the higher the number of dimensions in a
vector and the larger the feature space. For example in the Uni-gram, the number of dimensions
for system calls and ioctls with no semantics is 6 but for system calls and ioctl calls as binder
or intent transactions (increased semantics) the number of dimensions is 27. Secondly, for each
n-gram the higher the number of system calls per dimension (e.g. 1-gram = 1 system call per
dimension), the higher the number of dimensions in a vector. This is in comparison to a smaller
number of system calls per dimension with the same system call representation and type of vec-
tor. For example, in a Uni-gram bit vector which had the system call representation of system
calls and ioctls, the number of system call dimensions is 6. For the Di-gram with the same system
call representation and type of vector (bit vector which had the system call representation of sys-
tem calls and ioctls) the number of system call dimensions is 25. For the Tri-gram with the same
system call representation and type of vector (bit vector which had the system call representation
of system calls and ioctls) the number of system call dimensions is 89. This is because the feature
space increases and the number of dimensions of the feature vectors are larger.

Below is a graph (Figure 7.27) to illustrate these trends:

107

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 7.27: This graph illustrates that the more semantics that were
being represented (higher number of system calls per dimension)

within an n-gram, the higher the number of dimensions in a vector.

This graph (Figure 7.27) illustrates that the more semantics that were being represented within a
n-gram, the higher the number of dimensions in a vector. It shows that the higher the number of
system calls per dimension, the higher the number of dimensions in a vector. This is in compari-
son to a smaller number of system calls per dimension with the same system call representation
and type of vector.

7.4.2 Euclidean Distance

The tables below (Tables 7.6, 7.7, 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13) display the Euclidean Distance
matrices for each system call representation and type of vector. The columns are the distances
being represented, the rows are the type of n-gram and the cells represent the number of json files
that had the distance. A small distance between two files means that the two json files are similar
to one another (dissimilar for large distances). A distance of 0 between 2 json files means that the
two json file feature vectors are the same:

1. Syscalls and Ioctl Calls

(a) Bit Vector

Vector 0 1 1-2 2 2-3 3 3-4 Largest Distance
Uni-gram 1212 16 1 0 0 0 0 1.414
Di-gram 948 188 90 0 3 0 0 2.236
Tri-gram 779 107 148 52 116 8 18 3.873

Table 7.6: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram
(row) for the System Call Representation of Syscalls and Ioctl Calls and

Vector Representaion of a Bit Vector.

(b) Frequency Vector

108

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Vector 0 0-1 1-10 10-15 15-20 20-30 30-50 50-55 Largest Distance
Uni-gram 672 534 23 1 0 0 0 0 11.657
Di-gram 463 473 284 7 1 1 0 0 21.054
Tri-gram 550 172 442 32 13 13 5 2 56.813

Table 7.7: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram
(row) for the System Call Representation of Syscalls and Ioctl Calls and

Vector Representaion of a Frequency Vector.

2. Syscalls and Binder Semantics

(a) Bit Vector

Vector 0 1 1-2 2 2-3 3 3-4 4 4-5 5 5-6 6 6-7 Largest
Distance

Uni-gram 1032 132 57 3 5 0 0 0 0 0 0 0 0 2.236
Di-gram 463 75 218 76 220 38 106 5 23 2 3 0 0 5.477
Tri-gram 379 31 99 49 247 49 207 21 97 4 31 2 13 6.928

Table 7.8: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram

(row) for the System Call Representation of Syscalls and Binder
Semantics and Vector Representaion of a Bit Vector.

(b) Frequency Vector

Vector 0-10 10-
20

20-
30

30-
40

40-
50

50-
60

60-
70

70-
80

80-
90

90-
100

100-
110

Largest
Distance

Uni-gram 1222 5 0 2 0 0 0 0 0 0 0 35.285
Di-gram 842 251 79 33 15 6 0 2 1 0 0 84.746
Tri-gram 540 242 170 111 76 39 18 16 6 9 2 103.078

Table 7.9: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram

(row) for the System Call Representation of Syscalls and Binder
Semantics and Vector Representaion of a Frequency Vector.

3. Composite Behaviours and Ioctl Calls

(a) Bit Vector

Vector 0 1 1-2 2 2-3 3 3-4 4 4-5 Largest
Distance

Uni-gram 1216 13 0 0 0 0 0 0 0 1
Di-gram 981 194 53 1 0 0 0 0 0 2
Tri-gram 560 147 241 89 157 5 29 0 1 4.123

Table 7.10: This table displays the number of evidences which had
each Euclidean Distance (column) and the largest distance for each

N-gram (row) for the System Call Representation of Composite
Behaviours and Ioctl Calls and Vector Representaion of a Bit Vector.

(b) Frequency Vector

109

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Vector 0 0-1 1-2 2-3 3-4 4-5 5-
10

10-
15

15-
30

30-
35

Largest
Distance

Uni-gram 776 441 6 3 2 0 0 1 0 0 11.649
Di-gram 553 440 141 54 17 6 15 3 0 0 13.542
Tri-gram 427 106 126 194 134 58 132 34 16 1 35.761

Table 7.11: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram
(row) for the System Call Representation of Composite Behaviours and

Ioctl Calls and Vector Representaion of a Frequency Vector.

4. Composite Behaviours and Binder Semantics

(a) Bit Vector

Vector 0 1 1-2 2 2-3 3 3-4 4 4-5 5 5-6 6 6-7 Largest
Distance

Uni-gram 1037 142 46 0 4 0 0 0 0 0 0 0 0 2.236
Di-gram 388 76 196 129 241 40 118 5 32 1 3 0 0 5.292
Tri-gram 339 38 109 78 285 45 168 13 97 10 39 3 5 6.245

Table 7.12: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram
(row) for the System Call Representation of Composite Behaviours and

Binder Semantics and Vector Representaion of a Bit Vector.

(b) Frequency Vector

Vector 0-10 10-
20

20-
30

30-
40

40-
50

50-
60

60-
70

70-
80

80-
90

90-
100

100-
110

110-
120

Largest
Distance

Uni-gram 1222 5 2 1 0 0 0 0 0 0 0 0 35.285
Di-gram 817 268 92 30 15 3 3 1 0 0 0 0 71.140
Tri-gram 435 293 178 130 87 49 18 16 10 9 3 1 110.816

Table 7.13: This table displays the number of evidences which had each
Euclidean Distance (column) and the largest distance for each N-gram
(row) for the System Call Representation of Composite Behaviours and

Binder Semantics and Vector Representaion of a Frequency Vector.

Three trends can be seen. Within a specific n-gram and system call representation, the bit vector
has a higher number of json files at lower distances (especially at 0). In comparison, frequency
vectors that have the same n-gram and system call representation have larger range of distances
and the largest distances were bigger e.g. in the Uni-gram which had the system call representa-
tion of syscalls and ioctls and the vector representation of a bit vector there are 1212 json files that
had a distance of 0. The distances represented were 0, 1, and between 1 and 2 with the largest
distance at approximately 1.4. In comparison to the Uni-gram which had the system call represen-
tation of syscalls and ioctls and the vector representation of a frequency vector. 672 json files had
a distance of 0 and the distances represented were 0, between 0 and 1, between 1 and 5, between
5 and 10 and between 10 and 15. The largest distance was approximately 11.7 (this also applies to
Di-grams and Tri-grams).

The same trend was seen was seen within an n-gram (Uni-gram, Di-gram, Tri-gram). Within an n-
gram with the same vector representation (bit or frequency), the less semantics that is represented
in the feature vector, the higher the number of json files at lower distances (especially at 0). In
comparison to the same n-gram with the same feature vector representation but higher semantics
are represented. In this case, more distances are represented and the largest distances were bigger.
For example, in the Uni-gram which had the system call representation of syscalls and ioctls and
the vector representation of a bit vector there are 1212 json files that had a distance of 0 and the

110

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

distances represented were 0 , 1, and between 1 and 2 with the largest distance at approximately
1.4. This can be compared to the Uni-gram which had the system call representation of syscalls
and binder semantics (ie more semantics are represented) and the vector representation of a bit
vector . There were 1032 json files that had a distance of 0 and the distances represented were 0,
1, between 1 and 2, 2 and between 2 and 3 where 2.236 was the largest distance (this also applies
to Di-grams and Tri-grams).

Another trend could be seen with respect to the type of n-gram being represented. With the
same system call representation and type of vector representation (bit or frequency), the lower the
number of system calls per dimension in an n-gram (e.g. 1-gram = 1 system call per dimension),
the higher the number of json files at lower distances (especially at 0). When there were higher
numbers of system calls per dimension in an n-gram (e.g. 2-gram or 3-gram) with the same
system call representation and type of vector, more distances were represented and the largest
distances were bigger. For example in the Uni-gram which had the system call representation
of syscalls and ioctls and the vector representation of a bit vector there were 1212 json files that
had a distance of 0 and the distances represented were 0 , 1, and between 1 and 2. The largest
distance was approximately 1.4. The Di-gram with the same system call representation and vector
representation had 948 json files that had a distance of 0, and the distances represented were 0, 1,
between 1 and 2, 2 and between 2 and 3. 2.236 was the largest distance. The Tri-gram with the
same system call representation and vector representation, had 779 json files that had a distance
of 0 and the distances represented were 0, 1, between 1 and 2, 2, between 2 and 3, 3, between 3
and 4. 3.873 was the largest distance.

This graph below (Figure 7.28) shows that within a Uni-gram, eventhough the system call repre-
sentations were the same, the number of json files that had a distance 0 was much higher with the
bit vectors than the frequency vectors.

Figure 7.28: This graph illustrates that the number of json files that had
a distance 0 was much higher with the bit vectors than the frequency

vector.

This graph below (Figure 7.29) shows that the fewer the semantics represented in the feature
vector by the system call representations, the higher the number of json files at lower distances.

111

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Figure 7.29: This graph illustrates that the fewer the semantics
represented in the feature vector by the system call representations, the

higher the number of json files at lower distances.

This graph below (Figure 7.30) shows the lower the number of system calls per dimension in
an n-gram (e.g. 1-gram = 1 system call per dimension), the higher number of json files at lower
distances (especially at 0).

Figure 7.30: This graph illustrates that he lower the number of system
calls per dimension in an n-gram (e.g. 1-gram = 1 system call per

dimension), the higher number of json files at lower distances
(especially at 0).

These trends can be seen because when more features are being represented, the feature space
increases and the number of dimensions of the feature vectors are larger and the distance between
the feature vectors are larger and so there are many more distances and less vectors that are
similar.

7.4.3 Validation Metrics

The table below (Table 7.14) displays the best Fowlkes Mallows score (FMS), F1-Score (F1), Ad-
justed Rand Index (ARI) and Silhouette Coefficients (SC) (nearest to 1) for each dendrogram and
the cut it was obtained at. (Red indicates the highest FMS, F1, ARI or SC score for each n-gram):

Vector and Syscall Repre-
sentation

Best FMS Best F1 Best ARI Best SC

112

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Uni-gram, Syscalls and
Ioctl Calls, Bit Vector

0.260 at height
1.414

0.045 at height
1.414

0.0 at height 0.0 0.998 at height
1.0

Uni-gram, Syscalls and
Ioctl Calls, Frequency
Vector

0.333 at height
11.657

0.111 at height
0.464

0.0004 at height
1.254

0.836 at height
5.219

Uni-gram, Syscalls and
Binder Semantics, Bit Vec-
tor

0.333 at height
2.236

0.037 at height
1.414

0.003 at height
1.732

0.915 at height
1.0

Uni-gram, Syscalls and
Binder Semantics, Fre-
quency Vector

0.334 at height
35.2851

0.004 at height
2.190

0.038 at height
3.245

0.838 at height
35.2851

Uni-gram, Composite Be-
haviours and Ioctl Calls,
Bit Vector

0.150 at height
1.0

0.035 at height
1.0

0.0004 at height
1.0

1.0 at height 1.0

Uni-gram, Composite Be-
haviours and Ioctl Calls,
Frequency Vector

0.333 at height
11.6491

0.132 at height
0.412

0.002 at height
0.353

0.872 at height
11.6491

Uni-gram, Composite Be-
haviours and Binder Se-
mantics, Bit Vector

0.333 at height
2.236

0.045 at height
1.0

0.003 at height
1.732

0.918 at height
1.0

Uni-gram, Composite Be-
haviours and Binder Se-
mantics, Frequency Vec-
tor

0.334 at height
35.284

0.037 at height
3.001

0.003 at height
2.138

0.845 at height
35.284

Di-gram, Syscalls and
Ioctl Calls, Bit Vector

0.333 at height
2.236

0.070 at height
1.414

0.001 at height
2.0

0.868 at height
1.0

Di-gram, Syscalls and
Ioctl Calls, Frequency
Vector

0.335 at height
21.054

0.074 at height
1.260

0.002 at height
0.501

0.831 at height
21.054

Di-gram, Syscalls and
Binder Semantics, Bit
Vector

0.334 at height
5.4772

0.039 at height
1.732

0.006 at height
3.6061

0.475 at height
1.0

Di-gram, Syscalls and
Binder Semantics, Fre-
quency Vector

0.334 at height
84.746

0.021 at height
37.227

0.001 at height
32.030

0.761 at height
84.746

Di-gram, Composite Be-
haviours and Ioctl Calls,
Bit Vector

0.335 at height
2.0

0.036 at height
1.414

0.001 at height
2.0

0.913 at height
1.0

Di-gram, Composite Be-
haviours and Ioctl Calls,
Frequency Vector

0.335 at height
13.542

0.103 at height
1.077

0.002 at height
0.689

0.791 at height
13.542

Di-gram, Composite Be-
haviours and Binder Se-
mantics, Bit Vector

0.334 at height
5.2924

0.026 at height
3.162

0.004 at height
2.646

0.395 at height
1.0

Di-gram, Composite Be-
haviours and Binder Se-
mantics, Frequency Vec-
tor

0.334 at height
71.1402

0.020 at height
37.439

0.007 at height
25.237

0.727 at height
63.699

Tri-gram, Syscalls and
Ioctl Calls, Bit Vector

0.335 at height
3.873

0.082 at height
2.0

0.001 at height
2.449

0.742 at height
1.0

Tri-gram, Syscalls and
Ioctl Calls, Frequency
Vector

0.335 at height
56.813

0.074 at height
2.842

0.002 at height
0.555

0.838 at height
56.813

Tri-gram, Syscalls and
Binder Semantics, Bit
Vector

0.334 at height
6.928

0.049 at height
2.449

0.003 at height
3.162

0.389 at height
1.0

113

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Tri-gram, Syscalls and
Binder Semantics, Fre-
quency Vector

0.334 at height
103.078

0.022 at height
63.337

0.005 at height
38.194

0.657 at height
103.078

Tri-gram, Composite Be-
haviours and Ioctl Calls,
Bit Vector

0.335 at height
4.123

0.065 at height
1.732

0.002 at height
2.449

0.570 at height
1.0

Tri-gram, Composite Be-
haviours and Ioctl Calls,
Frequency Vector

0.335 at height
33.953

0.065 at height
2.538

0.004 at height
5.599

0.749 at height
35.761

Tri-gram, Composite Be-
haviours and Binder Se-
mantics, Bit Vector

0.333 at height
6.2453

0.058 at height
2.236

0.004 at height
4.796

0.389 at height
6.2453

Tri-gram, Composite Be-
haviours and Binder Se-
mantics, Frequency Vec-
tor

0.334 at height
110.816

0.022 at height
65.038

0.004 at height
65.841

0.669 at height
110.816

Table 7.14: This table displays the best Fowlkes Mallows score (FMS),
F1-Score (F1), Adjusted Rand Index (ARI) and Silhouette Coefficients
(SC) (nearest to 1) for each dendrogram and the cut it was obtained at.

Looking at this table (7.14), the experiment with the best clustering according to FMS is the Di-
gram which had the system call representation of Composite Behaviours and Ioctl calls. The
feature vector representation was a bit vector at a score of 0.335 at height 2.0. This has the highest
FMS score (one that was closest to 1) when the dendrograms were cut for all system call and
feature vector representations. 0.335 is not close to 1. This means that despite this being the best
clustering out of all the methods of feature selection and model construction, it is not similar to
the true assignments. In the Uni-gram, 2 experiments had the same value and this was the highest
FMS score. This is not beneficial as 0.334 is not very close to 1 (closer to 0). So if a programmer
only had access to a Uni-gram, then using FMS, they can use any of these experiments, despite
them being different to each other in terms of the number of dimensions in a vector and the
features abstracted from the behavioural profiles.

The experiment with the best clustering according to F1 is the Uni-gram which had the system
call representation of Composite Behaviours and Ioctl Calls. The feature vector representation
was a frequency vector with a score of 0.132 at height 0.412. This had the highest ARI score
(one that was closest to 1) when the dendrograms were cut for all system call and feature vector
representations. Again 0.132 is not close to 1, so despite this being the best clustering out of all
the methods of feature selection and model construction, it is not similar to the true assignments.

The experiment with the best clustering according to ARI is the Di-gram which had the system
call representation of Composite Behaviours and Binder Semantics. The feature vector represen-
tation was a frequency vector at a score 0.007 at height 25.237. This had the highest ARI score
(one that was closest to 1) when the dendrograms were cut for all system call and feature vector
representations. Again 0.007 is not close to 1, so despite this being the best clustering out of all
the methods of feature selection and model construction, it is not similar to the true assignments.

The experiment with the best clustering according to SC is Uni-gram which had the system call
representation of Composite Behaviours and Ioctl Calls. The feature vector representation was
a Bit vector at a score of 1.0 at height 1.0. It had the highest SC score (one that was closest to 1)
when the dendrograms were cut for all system call and feature vector representations.

In all evaluation metrics, the best clustering method that was chosen was different. With FMS
it was the Di-gram which had the system call representation of Composite Behaviours and Ioctl
calls. The feature vector representation was a bit vector. With F1 it was the Uni-gram which
had the system call representation of Composite Behaviours and Ioctl Calls. The feature vector
representation was a frequency vector. With ARI it was the Di-gram which had the system call
representation of Composite Behaviours and Binder Semantics. The feature vector representation
was a frequency vector. With SC it was the Uni-gram which had the system call representation

114

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

of Composite Behaviours and Ioctl calls. The feature vector representation was a bit vector. The
method of feature selection (system call representation) was the same in FMS, F1 and SC. The
method of model construction (feature vector representation) was the same in FMS and SC, it was
the type of n-gram that was different and the scores produced were different. These experiments
are completely different to each other in terms of the number of dimensions in a vector (4 for Uni-
gram and 16 for Di-gram) and the features abstracted from the behavioural profiles. The type of
n-gram was different and the scores produced were different.

Similarly, within an n-gram the methods of feature selection and model construction which pro-
duced the highest score were different. For example for the Uni-gram, the methods that produced
the highest score in FMS and ARI it was the feature selection method of Syscalls and Binder Se-
mantics and the model construction method of Bit Vector. FMS had the same score in Composite
Behaviours and Binder Semantics frequency vectors. In comparison, both F1 and SC had the
feature selection method of Composite Behaviours and Ioctl Calls but the model construction
methods were different in F1 it was Frequency vector and in SC it was Bit Vector. No n-gram
had the highest score at the same experiment. The highest scores for each n-gram were frequency
vectors, not bit vectors with a few exceptions such as the Uni-gram vectors in SC.

In the FMS, F1 and ARI metrics, the scores produced were not high as they were closer to 0. Even
though each metric calculated the best method of feature selection and model construction which
produced the best clustering, these experiments were not similar to the CopperDroid dataset so
these results should be taken with caution. As the scores produced were not near to 1 and the
same experiment did not produce the best clustering in both FMS, F1 and ARI, if a clustering
system used either one of the best clustering methods and was presented with another dataset
that contained both benign and malicious behaviour, there is no guarantee that the system will
group malicious behaviour together (in the same clusters) and benign behaviour together, so the
user will not be able to distinguish between benign and malicious behaviour. However, in SC the
best clustering was 1.0 (the highest score possible) and most scores produced were close to 1. This
means that this model has well defined clusters.

The table below (Table 7.15) shows the scores of each feature vector by their respective positions
in the FMS, F1, AR and SC from best to worst and then the total score of these values added
up. For example, for the Di-gram Bit vector with Composite Behaviours and Ioctl calls, it is the
best FMS score so will yield a score of 1 whereas Uni-gram Composite Behaviours and Ioctls Bit
Vector is the worst FMS score so will yield a score of 24. This table is ordered from lowest (best)
to highest (worst) total score.

Vector SC FMS F1 ARI Total
Tri-gram Composite Behaviours and Ioctls Freq Vector 15 9 3 4 31
Di-gram Composite Behaviours and Ioctls Freq Vector 13 3 6 13 35

Tri-gram Syscalls and Ioctls Freq Vector 10 6 4 17 37
Uni-gram Composite Behaviours and Ioctls Freq Vector 6 1 17 14 38

Di-gram Syscalls and Ioctls Freq Vector 12 5 5 16 38
Uni-gram Syscalls and Binder Semantics Freq Vector 9 15 9 8 41
Di-gram Composite Behaviours and Ioctls Bit Vector 5 18 1 18 42

Tri-gram Syscalls and Ioctls Bit Vector 16 4 2 20 42
Uni-gram Composite Behaviours and Binder Semantics Freq Vector 8 16 8 11 43
Uni-gram Composite Behaviours and Binder Semantics Bit Vector 3 12 22 12 49

Tri-gram Composite Behaviours and Ioctls Bit Vector 20 8 7 15 50
Di-gram Syscalls and Binder Semantics Bit Vector 21 14 14 2 51

Uni-gram Syscalls and Binder Semantics Bit Vector 4 17 21 10 52
Di-gram Syscalls and Ioctls Bit Vector 7 7 19 19 52

Di-gram Composite Behaviours and Binder Semantics Freq Vector 17 24 11 1 53
Uni-gram Syscalls and Ioctls Freq Vector 11 2 18 23 54

Tri-gram Syscalls and Binder Semantics Freq Vector 19 22 13 3 57
Tri-gram Composite Behaviours and Binder Semantics Freq Vector 18 21 12 7 58
Tri-gram Composite Behaviours and Binder Semantics Bit Vector 24 10 20 5 59

Tri-gram Syscalls and Binder Semantics Bit Vector 23 11 16 9 59
Uni-gram Syscalls and Ioctls Bit Vector 2 13 23 24 62

115

Clustering Malware Behaviour to Improve Malware Detection Rebecca Merriman,100812232

Di-gram Composite Behaviours and Binder Semantics Bit Vector 22 20 15 6 63
Uni-gram Composite Behaviours and Ioctls Bit Vector 1 19 24 22 66

Di-gram Syscalls and Binder Semantics Freq Vector 14 23 10 21 68

Table 7.15: This table displays the scores of each feature vector by their
respective positions in the FMS, F1, AR and SC from best to worst and

then the total score of these values added up.

This table (Table 7.15) shows that overall the best clustering method is Tri-gram with the system
call representation of Composite Behaviours and Ioctls and vector representation of Frequency
Vector.

116

