
Dynamic honeypot deployment in the cloud
Ivan Beres

Technical Report

RHUL–ISG–2022–2

11 April 2022

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX
United Kingdom

1

2110981

Dynamic honeypot deployment in the
cloud

August 2021

Submitted as part of the requirements for the award of the

MSc in Information Security
at Royal Holloway, University of London.

2

Contents

LIST OF ABBREVIATIONS & ACRONYMS ... 4

EXECUTIVE SUMMARY ... 5

INTRODUCTION ... 5

1. LITERATURE REVIEW: HONEYPOTS ... 6

INTRODUCTION ... 6
WHAT ARE HONEYPOTS .. 6
TYPES OF HONEYPOTS .. 7

Production honeypots ... 7
Research honeypots .. 7
Low-interaction honeypots ... 7
High-interaction honeypots ... 8
Honeynets ... 8
Honeypot as a service ... 8

HONEYPOT DETECTION ... 9
System-level detection .. 9
Network-level detection .. 9

HONEYPOTS IN THE CLOUD.. 10
GAP ANALYSIS SUMMARY ... 10

2. PROBLEM STATEMENT ... 11

BELIEVABILITY .. 11
SECURITY .. 11
AVAILABILITY.. 11
AUTOMATION .. 12
ENERGY AND COST-SAVING ... 12
SUMMARY ... 12

3. DESIGN SPECIFICATION ... 13

INTRODUCTION ... 13
AWS GLOBAL INFRASTRUCTURE ... 13
AWS TEST ENVIRONMENT .. 14
NETWORK COMPONENTS .. 14

Virtual Private Cloud (VPC) .. 14
Subnets .. 14
Internet gateway ... 14
Route tables .. 15
Elastic Load Balancer .. 15
Target groups .. 16
EC2 instances... 16
Security Groups ... 16

PATCHING CYCLE ... 17
LAMBDA ... 18

Boto3 ... 18
Lambda functions .. 18

CLOUDWATCH ... 20
DYNAMIC HONEYPOT PROVISIONING ... 20
ELASTIC LOAD BALANCER RECONFIGURATION ... 21
NORMAL MODE AND DEFENCE MODE .. 22

4. TESTS .. 26

TEST AND COMPONENT MATRIX ... 26
TEST RESULTS ... 30

3

5. ANALYSIS OF TEST RESULTS .. 36

FUNCTIONAL TEST RESULTS ... 36
TIMING TEST RESULTS .. 36
BELIEVABILITY TEST ANALYSIS... 37
COSTS... 38
ENVIRONMENTAL IMPACT ... 39

6. CONCLUSION .. 40

7. FURTHER RESEARCH OPPORTUNITIES ... 41

FULL-STACK HONEYPOT PROVISIONING .. 41
CAPTURING THREAT ANALYTICS .. 41
STRATEGIC HONEYPOT POSITIONING ... 41
USING LAMBDA FUNCTION AS A HONEYPOT WEB SERVER .. 41

REFERENCES ... 42

APPENDIX .. 44

COMPLETE TEST RESULTS .. 44

4

List of Abbreviations & Acronyms

ELB Elastic Load Balancer
WS Webserver
WTG Webserver target group
HTG Honeypot Target Group
PS Public Subnet
PRS Private Subnet
RT Route table
IG Internet Gateway
WLB Webserver Load Balancer
AMI Amazon Machine Image
EC2 Elastic Compute Cloud
VPC Virtual Private Cloud
AWS Amazon Web Services
IDS Intrusion Detection System
VPN Virtual Private Network
SSH Secure Shell
HaaS Honeypot as a Service
API Application Programming Interface

5

Executive Summary

Honeypots are security defence tools, fake hosts designed to lure attackers away from real
systems and capture malware threat analytics and attacker behaviour data for later analysis.
This project sets out to research honeypots, their efficacy and the state of the art of honeypot
development. Based on the research, a novel honeypot deployment concept is designed,
implemented, tested and analysed leveraging cloud technologies.

Introduction

Honeypots are security defence tools. They are fake hosts designed to lure attackers away
from real systems and capture malware threat analytics and attacker behaviour data for later
analysis. The efficacy of a honeypot in attack mitigation and collecting attack behaviour
analysis lies in its ability to obfuscate itself as a real system. Attackers are often successful in
identifying honeypots because of the limitations inherent to fake systems. Honeypots are a
vital part of the defence against attacks on computer networks. Their ability to lure attackers
away from real targets makes them a crucial security tool. However, attackers are coming up
with new ways of identifying and taking over honeypots. In the never-ending race against
novel attacks, honeypots and how we use them must also be further developed.

This project solves some of the inherent limitations of honeypots by designing, building and
evaluating a novel honeypot deployment concept leveraging cloud technologies. This new
concept, a small, substantial contribution in the field, shifts the approach of deploying
honeypots into the cloud. It is a new development in how honeypots are used and deployed
in the cloud reducing the maintenance costs of honeypots in mitigating attacks by relying on
resources that do not exist when the attack is started.

In section one of the project, the efficacy of common honeypots is researched, and gaps are
identified in the literature to explore the state of the art of honeypot development and to
pinpoint the issues with common honeypots, how attackers can identify them and the lack of
research in leveraging the possibilities of the cloud in honeypot deployment. Section two
breaks down the issues identified to honeypot believability, security, availability, automation
and resource usage, setting the objectives to deploy honeypots in a resource-aware, timely
and stealthy manner to resist identification by attackers by making honeypots
indistinguishable from legitimate hosts. A novel, dynamic honeypot deployment concept is
designed and implemented on a cloud platform in section three. Tests are set up, executed,
and test results are captured in section four to prove the feasibility of the novel honeypot
deployment design. Section five contains the analysis of the test results, and section 6
concludes the project. In section seven, further research opportunities of interest are
discussed.

6

1. Literature review: honeypots

Introduction

The following section explores the different types and classes of honeypots, their
shortcomings in self-obfuscation, common issues with honeypot deployment and
maintenance and how attackers can detect them.

What are honeypots

Honeypots are services or entire servers set up to lure and expose a target for attackers to
interact with it, wasting their time and resources. A honeypot is an innovative information
security tool designed to capture information on attacker behaviour, attack tactics and
malware. This way, honeypots can detect and mitigate attacks and collect threat intelligence
to be analysed to strengthen defences. A honeypot may be any private or internet-facing
computer, virtual machine, server, or endpoint connected to a network. When interacting
with a honeypot, attackers are unaware that they are trying to hack into a fake system. A
honeypot server uses vulnerable services, operating system versions and misconfigured
software as a lure to entice attackers for interaction. A honeypot must disguise itself as a real
system for as long as possible. A honeypot can only be effective as a diversion away from real
hosts or services on the network if an attacker is unaware that they are being misled. When
attackers realise they are wasting their time, the honeypot is revealed to them as a fake
system. Attacker's move away from the honeypot and look for other targets, or they may try
to attack and take over the honeypot and use it to attack other hosts. Honeypots underpin
the research on new attack vectors and exploits, aiding in keeping information security
defences ready for the next attack. Honeypots improve security by enabling threat analysis
through observation and logging of attacker actions and providing a decoy for attackers. They
also overcome some of the limitations of traditional intrusion detection systems (IDS).

The problem with traditional IDSs is that they generate false positives due to the high
sensitivity needed to capture all malicious traffic. Installing and configuring an IDS is a
challenge and often results in a flood of tickets overloading the security team. In order to
detect an attack, an IDS must be aware of the type of behaviour it has to detect in attack
signatures. An IDS is unlikely to detect attacks that are unknown to it. Because honeypots
receive only malicious traffic, they are less likely to generate false positives and are capable
of capturing novel and previously known attacks as well (Peter & Schiller, 2008).

However, while the traffic hitting honeypots is likely malicious, it does not mean that all
malicious traffic is hitting the honeypot. Despite honeypots presenting a low hanging fruit for
attackers, they may not be interested in interacting with them. The honeypot may be
compromised for being too obvious or for being online too long. Attackers may ignore it
depending on their ultimate goal in compromising a network. Thus, while installing honeypots
enhances intrusion detection by capturing novel attacks and reducing noise, IDSs are still
necessary to detect malicious traffic not hitting the honeypots.

7

Types of honeypots

Their purpose classifies honeypots into production and research honeypots. Their interaction
level classifies them into low-interaction and high-interaction honeypots.

Production honeypots

Easy to use production honeypots are deployed into the enterprise networks owned by
organisations to improve security. Production honeypots deployed to the network among
other production systems provide a decoy for attackers to interact with instead of attacking
real systems by exposing vulnerable services. Production honeypots are usually low-
interaction and provide limited information about attackers and their tactics.

Research honeypots

Research honeypots are complex, high-interaction systems that are difficult to maintain.
Government institutions, military and research organisations deploy them to collect
information about attacker behaviour, strategies and tactics in vulnerability exploitation.
Research honeypots do not improve the security of an organisation directly. They aid
organisations to strengthen their defences by researching the threats they face.

Low-interaction honeypots

Low-interaction honeypots emulate operating systems and services without allowing in-
depth interaction with the system (Kambow & Passi, 2014). These honeypots are easy to
deploy and require little maintenance. Low-interaction honeypots provide intelligence based
on captured connection attempts by exposing potentially vulnerable services such as telnet,
FTP and SSH. Organisations deploy low-interaction honeypots to detect sources of malicious
activity. Information about attack attempts is captured and sent to the IDS. Attackers' IP
addresses are then blocked to avoid further connection attempts. Nothing is stopping the
attacker from repeating the attack attempt.

Open-source developments such as Honeyd, deployed to a single host, can virtualise an entire
network of hosts and services. Interaction with the emulated services is logged, and the trap
is sprung. Another example is HoneyDB, providing real-time data of honeypot activity for the
honeypots on their network. HoneyDB serves threat information through their API into which
organisations can tap in. This way, distributed threat intelligence is available for a fee
(Deception Logic Inc, n.d.). Low-interaction honeypots are deployed by organisations and
hobbyists alike. Because low-interaction honeypots block outbound network traffic to stop
them from being used to attack other hosts on the network, attackers can detect them. Their
effectiveness in threat intelligence and their time-wasting potential are limited.

8

High-interaction honeypots

High-interaction honeypots are full-fledged systems with which attackers can interact. These
systems are often virtualised and provide vulnerabilities in-depth with the operating system
and additional software and services available for interaction as they would be on a real
system. HoneySMB is a high-interaction honeypot for the Server Message Block protocol
(R0hi7, n.d.). Lyrebird is a high-interaction, containerised honeypot framework exposing
vulnerable applications (lyrebird, n.d.). High-interaction honeypots require high-level
expertise, more computing resources and are more difficult to maintain when compared with
low-interaction honeypots. While high-interaction honeypots are more difficult to detect,
attackers may be able to take control over high-interaction honeypots and use them to attack
other hosts.

Honeynets

Honeynets are decoy networks with one or more honeypots deployed. Honeynets are
designed to gather intelligence and identify attackers and redirect them from attacking the
enterprise network by providing vulnerable services on a decoy network. Honeynets allow
outbound network traffic and traffic redirection between honeypots making it more difficult
for an attacker to recognise that they are interacting with a fake network. Any host in the
honeynet may be a point of ingress for attackers. The network with multiple, different
honeypots has a better chance of catching more attackers due to exposing more vulnerable
services when compared to a single honeypot.

Honeypot as a service

Recently, research has been conducted into delivering high-interaction honeypots as a service
to reduce implementation and maintenance costs and increase attack mitigation
effectiveness, recognising the difficulty in honeypot maintenance and obfuscation (Jafarian &
Niakanlahiji, 2020). With HaaS, organisations outsource the generation, configuration and
maintenance of honeypots. The generation of honeypots depends on the type and purpose
of the enterprise network.

The HaaS provider will need access to the organisation's network to map the enterprise
network to generate believable honeypots. This access may violate regulation and compliance
depending on data protection legislation such as GDPR and other organisational policies. The
outsourcing of hosting honeypots strips an organisation of the benefits of threat intelligence
analytics. Data may be shared between the HaaS service provider and the client organisation.
However, the ingesting, processing and analysis of that data would require additional
resources, removing the benefits of outsourcing in the first place. For an organisation
preferring to outsource its honeypot infrastructure, this information may be of little use
without the know-how and the means to act. While the paper concludes that honeypots
generated by the HaaS are less likely to be discovered to be fake hosts, it does not address
HaaS power consumption.

Because in a HaaS, honeypots are hosted externally to the enterprise network, the IP
addresses of network hosts have to be randomised at regular intervals to protect discovery

9

by network mapping. The problem with this approach is that attackers are likely to discover
that this is a HaaS just by detecting IP address randomisation. The HaaS solution does not
mitigate attacks if the enterprise network is compromised.

 Honeypot detection

The effectiveness of honeypots in attack mitigation lies in their ability to act as real systems
and not be discovered as decoys. If the decoy environment does not match the attacker's
mental model of how real enterprise networks should look like, the game is up (Tsikerdekis
et al., 2019). Once discovered, honeypots become useless as defence tools. Understanding
the methods and effort required to detect honeypots is vital for organisations, security
professionals and honeypot developers.

Attackers often research their target, gathering information about the organisation's
business, which paints a picture of the possible infrastructure that target mapping may reveal.
Irrelevant, out-of-context services running on outdated, highly vulnerable hosts may be an
easy giveaway for attackers. For example, if a security services provider operates an internet-
facing Telnet service or an organisation without an e-commerce business hosts a webshop on
a vulnerable web server, it is easy for attackers to recognise a honeypot.

System-level detection

System-level detection of honeypots requires access to the operating system and the privilege
to execute arbitrary code. Attackers can identify honeypots by listing the software installed
on a server and detecting virtual environments (S. Mukkamala, 2007). The uptime of a specific
host may be significant for an attacker in determining the importance of a system. A server
with a long uptime is likely critical to the organisation, while servers that are often restarted
may be less important. This detail is overlooked in research concerning real-time self-
configuring honeypot systems (Baykara & Das, 2018). Detecting sudden, arbitrary changes to
the network may signal to an attacker that they have been discovered.

Network-level detection

An attacker observing the network can determine whether a host is legitimate based on its
network activity. Low-interaction honeypots have no outbound network activity and may be
identifiable on a network of hosts with regular network activity between them. Server uptime
can be another giveaway. Important servers are rarely restarted, and attackers may ignore
servers with a short uptime and move on to other targets.

Honeypots may be discovered by remote fingerprinting. Fingerprinting involves analysing
network traffic or scanning the ports of a target system to collect as much information as
possible. Honeyd is a commonly deployed, low-interaction honeypot capable of simulating a
network of any size that can be fingerprinted by measuring the emulated network link latency
(Fu et al., 2006). Emulating real-world systems is difficult. Honeypots should be deployed in a
way to blend in with the rest of the network.

10

The detection of fingerprinting attacks in common honeypot deployments is vital in extending
the lifespan of the system. Identified honeypots lose their purpose and can also be converted
into zombies that attackers use to participate in other attacks against other systems. A
fingerprinting attack against low-interaction honeypots may be detected using fuzzing while
the attack is occurring. This technique may help in obfuscating the honeypot against
fingerprinting. However, the detection method only works on known fingerprinting
techniques and is ineffective against unknown methods (Naik et al., 2018).

Honeypots in the cloud

Deploying honeypots in the cloud is no different than deploying them on-premises or in
regular data centres. Engineers may deploy the various honeypot offerings in the cloud just
as they would on other platforms. However, cloud services offer various integrated services
that can be leveraged to enhance honeypot lifespan and functionality while reducing hosting
and maintenance-related costs.

Honeypots are vital in building a resilient defence against attacks on hosting infrastructure.
While organisations are going through cloud transformation by moving parts of or all of their
servers into the cloud, there is little research on cloud honeypot deployment or the
efficiencies possibly gained by deploying honeypots in the cloud. Most of the literature is
concerned with designing complex solutions for obfuscating honeypots from attackers to
extend their usefulness. Cloud-based honeypot offerings simulate a specific service in
isolation. No research is concerned with fixing the root cause of the problem with honeypots,
which is that they are not real systems and can be discovered.

Gap analysis summary

In the previous section, shortcomings of common honeypots were identified concerning their
believability, difficulties in obfuscating them, and maintenance and administration. As their
believability is increasing, honeypots draw higher resources and incur higher computing and
maintenance costs. Cloud technologies must be leveraged in honeypot deployment to
achieve a high level of believability without the high costs in computing and maintenance.

11

2. Problem Statement

To overcome the limitations of honeypots identified in the previous sections, this project sets
out to design, build and test a novel honeypot provisioning system in the cloud. The objective
is to enhance the believability of honeypots and reduce the time and effort required to build
and maintain high-interaction honeypots by leveraging cloud services. These objectives will
be achieved by analysing and meeting the system requirements outlined in the subsections
below.

The cloud comes with the advantages of quick computing provisioning speeds and
reconfigurable network architecture not possible to achieve on-premise. Quick instantiation
speeds make it possible to deploy honeypots dynamically, only when required. The
reconfigurable network architecture enables network segmentation and enhances security.

Resources taken up by honeypot design, building and maintenance are greatly reduced by
leveraging the cloud. Honeypot management and orchestration are simplified in the cloud
when compared to managing on-premise systems. While any honeypot deployed on-premise
can be deployed into the cloud, dynamic provisioning of resources makes it possible to mirror
existing production environments and use them as sandbox honeypots. The sandbox
honeypot concept allows the capture of the effects of novel malware on real systems. It also
provides analytics on how attackers interact with real hosts without putting the rest of the
infrastructure to risk.

Believability

Provisioned honeypots shall be carbon copies of their real counterparts, virtually
indistinguishable from real systems in design, resources, capabilities and behaviour. Attackers
should not be able to tell if they are interacting with a honeypot. There should be no technical
or functional difference between the genuine server and its honeypot copy. Provisioned
honeypots shall be high-interaction production honeypots, positioned next to production
systems, offering deep interaction for attackers. Services or operating systems shall not be
simulated.

Security

Honeypots shall never become a liability or pose a risk to the rest of the network and other
servers. Provisioned honeypots shall be isolated from real servers using network
segmentation. If attackers gain access and control of the honeypot, it shall not be possible to
use it to attack other servers on the network.

Availability

Honeypots shall be provisioned only when needed. Provisioning honeypots shall be
reasonably fast for the system to react to an attack promptly. The startup speed of honeypot
hosts is critical in their usefulness. If the honeypot is too slow to start, it will not be included
in an attacker's target enumeration attempts or may be discovered as a fake host.

12

Automation

The provisioning and de-provisioning of honeypots shall be automatic to avoid the additional
workload of maintaining more servers than necessary. The architecture shall allow
programmatic reconfiguration of the honeypot servers and network components on demand.
Creating honeypot servers as copies, including all hardware specifications and software
components of real servers, shall be automated.

Energy and cost-saving

Running unused servers negates the possible resource efficiency gains of cloud hosting.
Honeypots servers should only be up and running when needed. The system shall terminate
honeypot servers when they are no longer needed, thus reducing CO2 emissions and costs.

Summary

By leveraging the speed, automation possibilities, availability and security advantages of the
cloud, honeypot deployment and management is made dynamic, simpler, more secure and
automatic. Common honeypot functionality is augmented by creating sandbox honeypots
yielding more precise analytics of real-system interactions.

13

3. Design specification

Introduction

Cloud computing enables the on-demand deployment of information technology resources
over the internet. The Amazon Web Services (AWS) global infrastructure is introduced in the
following subsections, followed by the description and specification of each AWS cloud
service included in the design.

AWS global infrastructure

The AWS architecture spans multiple physical locations called regions. Logical clusters of data
centres make up regions with redundant power, networking, and connectivity called
Availability Zones. There are multiple physically isolated Availability Zones in each AWS
region. Availability Zones are interconnected with low latency, encrypted, redundant, highly
available networking over dedicated fibre (Amazon Web Services, n.d.-e).

Figure 1 AWS Regions and Availability Zones (Scott, n.d.)

14

AWS Test environment

The test environment is comprised of virtual network components and virtual machines,
including an internet-facing web server, a load balancer, an application server and a database
server. The webserver is in a public subnet and is accessible from the internet through an
internet gateway. The database and application servers are in a private subnet and are only
accessible on specific ports within the Enterprise Network. While the test environment is a
standard architecture, hosting a web application on AWS may be also be achieved by
leveraging other AWS services.

Network components

Virtual Private Cloud (VPC)

AWS's VPC is a logically isolated virtual network sandbox where AWS resources can be placed
(Amazon Web Services, n.d.-b). The systems architect can define IP ranges, subnets, network
gateways and routing tables to design and build a custom virtual network. A VPC spans all
availability zones in an AWS region and can have multiple subnets.

VPC specification

The Enterprise Network VPC is set up with an IPV4 CIDR block of 10.0.0.0/16 and includes two
public subnets, PS1, PS2 and a private subnet PRS.

Subnets

Subnets in AWS reside in a single availability zone. Subnets are set up to provide security by
network segmentation. Internet-facing web servers and honeypots are placed in public
subnets, while database and application servers are placed into private subnets not reachable
from outside the Enterprise Network. Each subnet is associated with a routing table with
inbound and outbound traffic rules (Amazon Web Services, n.d.-i).

Subnet specification

Public subnet PS1 is associated with Web server WS1 and has an IPV4 CIDR block of
10.0.1.0/24. Public subnet PS2 is associated with Web server WS2 and has an IPV4 CIDR block
of 10.0.3.0/24. Private subnet PRS is associated with the Database server DB1 and Application
server AS1 and has an IPV4 CIDR block of 10.0.2.0/24.

Internet gateway

Internet gateways are redundant VPC components that are redundant and can scale
horizontally. They allow network traffic between the internet and the VPC (Amazon Web
Services, n.d.-f).

15

Internet gateway specification

The Internet gateway IG performs network address translation (NAT) for webservers WS1 and
WS2 and provides a destination for the Enterprise Network VPC routing table for internet
traffic.

Route tables

Route tables control how the VPC router directs network traffic. Each subnet must be
associated with a routing table, but a routing table can be associated with multiple subnets.

Route table specification

Table 1 Routing table RT1 directs network traffic between PS1, PS2 and IG

Destination Target

10.0.0.0/16 local

0.0.0.0/0 IG

Table 2 Routing table RT2 directs network traffic between PRS and the local network

Destination Target

10.0.0.0/16 local

Elastic Load Balancer

Because the project is focused primarily on defence against external scanning, the main
concern in the test environment is the internet-facing web servers. Placing a load balancer in
front of multiple web servers makes it possible to distribute traffic between them and add
high availability, automatic scaling and fault tolerance to the web application (Amazon Web
Services, n.d.-d). Furthermore, the listener of the Application Load Balancer type Elastic Load
Balancer (ELB) on AWS enables the set up of forwarding rules based on IP addresses.

Elastic Load Balancer specification

The WLB ELB uses AWS Global Accelerator to expose the public IP addresses 52.223.23.164
and 35.71.153.62 to access the internet web application.

Listener rules enable the forwarding of requests coming to the ELB WLB to target groups.
Listener rules can be created, updated and deleted programmatically using the Boto3 API.
The Elastic Load Balancer can have up to 100 listener rules with five values each, limiting the
list of IP address ranges to 500. Attacks conducted with over 500 IP address ranges at the
same time would result in failed listener rule configuration updates. Unless multiple ELBs are
used, such an attack could not be mitigated.

16

Target groups

Target groups add an extra level of modularity in network routing configuration, forwarding
requests from the Elastic Load Balancer to their registered targets, such as EC2 instances.
Targets in target groups are monitored via health checks by the ELB.

Target group specification

Target WTG and HTG enable the routing of requests to the EC2 web servers WS1 and WS2.
Targets must be registered in a target group for the ELB to route requests to them. Target
groups can be programmatically created and updated using the Boto3 API.

EC2 instances

Elastic Compute Cloud offers scalable, on-demand virtual machines in various capacities. EC2
is the main computing backbone of AWS, where all virtual servers reside (Amazon Web
Services, n.d.-a). EC2 instances come in different hardware resources and sizes depending on
their load and purpose.

EC2 instances specification

Web servers WS1 and WS2, database server DB1 and application server AS1 are t2.micro
instances or virtual servers in the cloud to comply with the AWS free tier requirements. They
are running the Amazon Linux 2 operating system with 1vCPU, 8GB of storage and 2GB of
RAM. EC2 instances can be created from scratch, started, stopped or terminated at any time.

Webserver WS1 ID: i-0c9623abffe6688aa is running httpd server version: Apache/2.4.48
patched to the latest version. Webserver WS2 ID: i-0246b23f775ebc81b is running httpd
server version: Apache/2.4.33 introducing some vulnerabilities (MITRE, n.d.). Database server
DB1 is running MySQL, Application server AS1 is running PHP, and while they are part of the
infrastructure, they are not in scope for this project.

Security Groups

Security groups control network traffic similarly to a stateful virtual firewall at the EC2
instance level. Inbound and outbound traffic rules can be set to allow network traffic on
specific ports. Because security groups are stateful, responses to allowed outbound requests
and requests to allowed inbound responses are allowed without specific inbound and
outbound rules (Amazon Web Services, n.d.-h).

Security groups specification

Webserver Security group WSG sets inbounds and outbound rules for WS1 and WS2 EC
instances. HTTP and HTTPS are allowed inbound to serve a website, and SSH is allowed for
administration via a terminal client. All types of outbound traffic are allowed.

17

Table 3 Security group WSG inbound rules

Security group rule ID IP version Type Protocol Port range Source
sgr-0f8c7f20cceb6cefa IPv6 HTTPS TCP 443 ::/0

sgr-08d0cc3ca532250f0 IPv6 HTTP TCP 80 ::/0

sgr-0121fb3be11ab09ae IPv4 HTTP TCP 80 0.0.0.0/0

sgr-050d636ce6a5b6e1f IPv4 HTTPS TCP 443 0.0.0.0/0

sgr-0ab458a2e3821aacd IPv4 SSH TCP 22 0.0.0.0/0

Table 4 Security group WSG outbound rules

Security group rule ID IP version Type Protocol Port range Source
sgr-01fc06a54be36dd24 IPv4 All traffic All All 0.0.0.0/0

Patching cycle

Patching security vulnerabilities during recurring monthly downtime is common practice in
systems administration. Downtime scheduled to the same day and time window of each
month is easily communicated to users. Unplanned downtime can occur when a serious
vulnerability is discovered, and patching it is time-critical.

Creating and maintaining believable honeypots is time-consuming. Capturing the image and
the vulnerabilities of servers before patches are applied is a quick and easy way of building a
roster of real, in-context honeypot servers with real vulnerabilities that can be used at any
time. Taking advantage of AWS's Amazon Machine Image (AMI) mechanism makes this
possible. An AMI is a template containing the operating system, software applications and
configuration of an EC2 instance. For example, an AMI can contain everything needed to run
a webserver, including Apache, static content, and other configurations. Once started as an
instance of the AMI, the new server will be ready to accept requests.

Before patching, new images are created for each server for future honeypot provisioning.
While this process can also be done via automation, patching and creating new AMIs can be
done manually as this does not occur often. Provisioning honeypot servers from AMIs greatly
reduces the effort and time required in building and maintaining honeypot servers.

Figure 2 Patching cycle

18

Utilising AMIs to mirror the network partially or completely could enable pseudo-red-team
security testing to allow dynamic patching resulting from frequent security assessments. The
red team could dive deep into specific vulnerabilities identified through analytics captured
from attacker interactions with sandbox honeypots and fully understand risk levels.

Lambda

Lambda is a serverless AWS compute service making it possible to run code without server
provisioning, maintenance and administration. Lambda functions support, among many
others, Python makes it easy to automate the repeated provisioning, configuration and
maintenance of AWS services.

The Boto3 AWS SDK for Python provides an API and low-level access to provision and manage
AWS services in Lambda. Lambda functions can be executed manually or can be set to execute
when certain events occur. CloudWatch logs events can trigger Lambda functions.

Boto3

Boto3 is the AWS SDK for Python, consisting of the Botocore library for low-level access to
AWS services and the Boto3 package to implement the Python SDK. Boto3 makes it possible
to programmatically create, configure, and manage various AWS services (Amazon Web
Services, n.d.-g).

Lambda functions

The Lambda functions below are based on the samples provided by AWS and are available in
the Boto3 documentation (Amazon Web Services, n.d.-g).

Start_EC2 and stop_EC2: Defence mode step 2

The start_EC2 Lambda function starts a stopped EC2 instance when triggered. Existing
honeypot EC2 instances can be started this way. The stop_EC2 Lambda function stops
currently running EC2 instances.

Table 5 Start_EC2 Lambda function source code and description

import boto3
region = 'us-east-2'
instances = ['i-0f6521ce5f6dedea3']
ec2 = boto3.client('ec2', region_name=region)
def lambda_handler(event, context):

//Starting EC2 instance

 ec2.start_instances(InstanceIds=instances)
 print('started your instances: ' + str(instances))

//Stopping EC2 instance

ec2.stop_instances(InstanceIds=instances)
print('stopped your instances: ' + str(instances))

Importing boto3 SDK
Setting AWS region
Variable to store array of instances to start
Create low-level service client
Handler method to process start_instances event

Event for starting instances
Print function for logging

Event for stopping instances

19

Start_AMI: Defence mode step 2

The start_AMI Lambda function creates a new honeypot EC2 instance from an existing AMI
and starts it. Specific commands are executed upon startup to update the honeypot's installed
packages captured in the AMI to match patch levels of real systems. Apache is installed and
started so that the honeypot can fulfil its duties as a webserver, and uptime is obfuscated to
avoid detection by attackers. The script specifies the subnet the honeypot instance will be
part of and the virtual machine type.

Table 6 Start_AMI Lambda function source code and description

import os
import boto3
region = 'us-east-2'
ec2 = boto3.client('ec2', region_name=region)

def lambda_handler(event, context):
 init_script = """#!/bin/bash
 yum update -y
 yum install -y httpd24
 sudo systemctl start httpd
 sudo systemctl enable httpd
 sudo echo 0>/proc/sys/net/ipv4/tcp_timestamps

 instance = ec2.run_instances(
 ImageId= 'ami-0486cb8f557d6bdd5',
 InstanceType='t2.micro',
 KeyName= 'ec2_2021_06_27',
 SubnetId= 'subnet-0037a16b193e6b2a6',
 InstanceInitiatedShutdownBehavior='terminate',
 UserData=init_script
)

Import os Python module
Importing boto3 SDK
Setting AWS region
Create low-level service client

Handler method to process start_instances event
Variable to store commands executed after boot
update installed packages to match patch versions
install Apache httpd
start httpd service
make sure httpd will start automatically
uptime obfuscation

Event to initialise and start EC2 instance
AMI image ID
Type of instance
Key for SSH access
Subnet to associate the instance with
Upon shutdown, the instance is terminated
Commands to be executed after boot

HTG_update: Defence mode step 3

The HTG_update lambda script registers the newly provisioned honeypot instance into the
HTG target group. HTG is the target for WLB's listener rule, forwarding requests from the IP
addresses specified in the rule.

Table 7 HTG_update Lambda function source code and description

import boto3
client = boto3.client('elbv2')
def lambda_handler(event, context):
 body = {
 "message": "Registering a new instance to target group HTG",
 "input": event
 }

 response = client.register_targets(
 TargetGroupArn= 'arn:aws:elasticloadbalancing:us-east-2:5424572264
29:targetgroup/HoneypotTG/4814532c401c539f',
 Targets=[
 {
 'Id': 'i-07d1075ae944609a8',
 },
],
)

Importing boto3 SDK
Create low-level service client
Handler method to process register_targets event

Event to register target to HTG target group by s
pecifying target HTG arn

EC2 instance ID to register into target group

20

ELB_update: Defence mode step 4

The ELB_update Lambda function creates a new listener rule for the ELB WLB. The new
listener rule specifies the IP address as the source and the target group HTG as a destination
to forward requests. This way, IP addresses deemed malicious by the IDS are forwarded to
the honeypot EC2 instance WS2, part of the HTG target group. After the script is executed,
the attacker interacts with a honeypot instead of a real system without realising it.

Table 8 ELB_update Lambda function source code and description

import boto3
client = boto3.client('elbv2')
def lambda_handler(event, context):
 body = {
 "message": "Adding suspicious IP address to quarantine list",
 "input": event
 }

 response = client.create_rule(
 ListenerArn='arn:aws:elasticloadbalancing:us-east-2:542457226429:l
istener/app/WebserverLB/5a2b7a5bf786ca1e/a82ef0acaacf173b',
 Conditions=[
 {
 'Field': 'source-ip',

 'SourceIpConfig':{
 'Values': ['87.80.156.133/32',]
 }
 }
],
 Priority=10,
 Actions=[
 {
 'TargetGroupArn': 'arn:aws:elasticloadbalancing:us-east-2:
542457226429:targetgroup/HoneypotTG/4814532c401c539f',
 'Type': 'forward',
 },
],
)

Importing boto3 SDK
Create low-level service client
Handler method to process create_rule event

Create listener rule event by specifying listener
arn

Setting field type for the listener rule to sourc
e-ip

Specifying the array of IPs to be included

Rule priority

Target group to forward requests to

Type of rule: forwarding in this case

CloudWatch

The CloudWatch service provides insights and logging and is used for monitoring most aspects
of the AWS environment. In this project, CloudWatch is used to monitor and log events in the
Firewall. These events are set to trigger Lambda functions to provision honeypots and update
the listener rule configuration of the existing Elastic Load Balancer WLB.

Dynamic honeypot provisioning

The project assumes that network anomalies such as external port scanning attempts are
detected successfully at the firewall level by a hypothetical IDS. Feedback and incident reports
from such systems are used as part of the dynamic honeypot provisioning subsystem. While
intrusion detection is an interesting and relevant topic, and existing systems may detect not
all potential forms of intrusion, it is beyond the project's scope to explore these topics. This
project focuses on events happening just after a network anomaly was detected.

21

Honeypots are provisioned when a network anomaly is detected. A Lambda function is
triggered by a CloudWatch alert raised by CloudWatch ingesting logs coming from the
Firewall. New virtual web, application and database servers have been provisioned that copy
the existing servers based on Amazon Machine Images (AMI).

Figure 3 Honeypot provisioning

When honeypot provisioning is complete, each real server has a honeypot copy, potentially
exposing a slightly more vulnerable software component or operating system version based
on previous versions of the servers.

Elastic Load Balancer reconfiguration

When external network scanning is detected at the firewall level, CloudWatch raises a
CloudWatch Alarm, triggering a Lambda function. The Lambda function takes the offending
IP addresses from which the network scan was initiated and creates the Elastic Load Balancer
WLB's listener rule to redirect all requests from the offending IP to Web server WS2, a newly
provisioned honeypot. The listener rule is also updated to ensure that requests from non-
offending IP addresses are redirected to the real server to keep the website operations for
normal traffic. Thus, offending IP addresses are quarantined while normal requests are being
served.

22

Figure 4 Elastic Load Balancer reconfiguration

Normal Mode and Defence Mode

In Normal Mode, only real hosts exist in the network, and no honeypot instances are
provisioned. All incoming requests are forwarded to the webserver WS1. The oversensitivity
of the hypothetical IDS generating false positives can be mitigated by using possible threats
reported by the IDS as a trigger to enter Defence mode.

Dynamically provisioning honeypots in the cloud comes with some challenges. Network scan
results of recently provisioned honeypots will reveal the server's uptime to the attacker unless
uptime is obfuscated. Fast network scans also pose a threat: it is possible to scan a specific IP
address and get results back before the honeypot instance is ready to respond to requests.
Dynamic honeypot provisioning may not be fast enough to mitigate all types of network
scanning. However, the attacker cannot differentiate between WS1 and WS2 because WS2 is
a mirror copy of WS1. Even though an initial network scan might hit WS1, consecutive scans
will only hit WS2 without the attacker being aware of the change in the background.

23

Figure 5 Enterprise Network architecture schematic in Normal Mode

The system goes into defence mode when a network anomaly is detected, such as a port
scanning attempt. This event triggers the provisioning of honeypots from AMIs, adding them
to the honeypot target group HTG and, subsequently, reconfiguring the WLB Elastic Load
Balancer listener rule to redirect requests from the offending IP address to the HTG. WLB's
listener rule reconfiguration must wait until the honeypots are available to serve requests
and are part of the honeypot target group. Each new offending IP address is quarantined with

24

a new listener rule. The system switches from Defence Mode to Normal Mode when no
network anomaly is detected for a certain amount of time. The list of offending IPs may or
may not be discarded depending on preference. Because IPV4 addresses are often reassigned
to other clients, it is reasonable to discard quarantined IP addresses to allow legitimate clients
to connect to WS1 in the future. In Normal Mode, the honeypot servers are shut down and
terminated. By switching between Normal and Defence modes, honeypots servers only
consume resources when required, reducing costs and resource consumption.

Defence Mode steps:

1. Network anomaly detected

2. Provision honeypot servers

3. Register honeypot instances to HTG

4. Create a new load balancer listener rule to quarantine the suspicious IP address

5. Requests coming from the quarantined IP address are being served by the honeypot

web server target group HTG

6. Subsequent offending IP addresses also are quarantined

7. The real webserver is serving requests coming from non-offending IP addresses

Normal Mode steps:

1. No network anomaly is detected for the specified time threshold

2. Stop and terminate honeypot instances to save resources

3. Delete listener rule from WLB

25

Figure 6 Enterprise Network architecture schematic in Defence mode

26

4. Tests

Tests are conducted using the AWS command-line interface (CLI) to prove the functionality of
the system components, the believability of the provisioned honeypots, and the system's
feasibility as a defence mechanism. AWS CLI is a command-line tool with JSON output for
managing AWS resources. Command examples can be found in the AWS CLI Command
Reference (Amazon Web Services, n.d.-c).

Test and component matrix

The purpose of the test matrix is to set up test scenarios for validating the functionality of
each component, mapping measurable outcomes of the tests to the project objectives.

27

Table 9 Enterprise Network components matrix and test matrix

Resource Name Resource Purpose Network range Target Protocol

Enterprise network VPC Virtual network 10.0.0.0/16

Public subnet PS1 Subnet allowing internet access 10.0.1.0/24

Public subnet PS2 Subnet allowing internet access 10.0.3.0/24

Private subnet PRS Subnet with no internet access 10.0.2.0/24 0.0.0.0/16

Internet Gateway IG Allows internet access to the Enterprise Network VPC 0.0.0.0/16 Enterprise network VPC

Elastic Load Balancer WLB Distributes incoming application traffic across EC2 instances 52.223.23.164,
35.71.153.62

Webserver EC2s

Webserver Target Group
WTG

The target group of webservers serving normal requests

Honeypot Target Group
HTG

The target group of honeypot webservers serving malicious traffic

Routing table RT1 Defines network routes between the Internet Gateway and the public
subnet

10.0.0.0/16
0.0.0.0/16

Local traffic
Internet Gateway

Routing table RT2 Defines network routes within the VPC for the private subnet 10.0.0.0/16 Local traffic

Webserver Security Group
WSG

Virtual Firewall to control inbound and outbound traffic to EC2s 0.0.0.0/16

Webserver EC2 HTTP 80, HTTPS 443
SSH 22

Database and Application
server Security Group

Virtual Firewall to control inbound and outbound traffic to EC2s 10.0.2.0/24
0.0.0.0/16

Webserver Security
Group
Internet

MySQL 3306
RDP 3389

Webserver EC2 WS1 T2.micro Amazon Linux with Apache HTTP server Internet-facing HTTP
HTTPS

Webserver EC2 WS2 T2.micro Amazon Linux with Apache HTTP server Internet-facing HTTP, HTTPS

Database server EC2 DB1 Windows Server with MySQL 5.7

Application server EC2 AS1 Amazon Linux with PHP

Lambda function start_ec2 Start existing EC instances

Lambda function
launch_ami

Create and start a new EC2 instance from AMI

Lambda function
HTG_update

To register an EC2 instance in target group HTG

Lambda function
ELB_update

To create a new load balancer listener rule for the ELB WLB for quarantining
offending IP addresses

28

Functional testing of honeypot provisioning

ID Test description Test procedure Expected output Result: Pass

1.1 The test is designed to
check if the Lambda
function correctly starts
the existing honeypot
EC2 instance Web
server WS2

Check initial instance status using AWS CLI
Trigger Lambda function to start existing honeypot EC2 instance
Web server WS2 and record timestamp
Check if the EC2 instance has been started and record the
timestamp
Take a screenshot of the EC2 instance in the AWS console

Initial instance status is empty (stopped)
Lambda function triggered successfully
All instance status checks all pass
Console screenshot showing running instance

Lambda function start_ec2
executes without error. WS2 EC2
instance starts successfully. WS2
is serving web requests.
The average time until instance
connectible is 40 seconds.

1.2 The test is designed to
check if the Lambda
function correctly
creates and starts
honeypot EC2 instance
Web server WS2 from
AMI

List existing instances
Trigger Lambda function to create and start honeypot EC2
instance Web server WS2 from AMI and record timestamp
Check if the EC2 instance has been created and is started in the
EC2 console
Check new instance status
Check if httpd was started and try to open http://52.223.23.164/
repeatedly and record timestamp when hitting WS2

Timestamp of triggering Lambda function
Timestamp of the server accepting SSH
connections
Timestamp of the server serving web requests
Console screenshot of new instance running

Lambda function launch_ami
executes without error.
Webserver WS2 is created and
started up successfully. The
average time until instance
connectible is 40 seconds.

Functional testing of Target Group reconfiguration

ID Test description Test procedure Expected output Result: Pass

2.1 The test is designed to
check if the Lambda
function correctly
updates the target
group HTG and registers
Web server WS2

Check if there are any targets registered in HTG
Trigger lambda function HTG_update to register WS2 as a target
in target group HTG
Check if WS2 is registered in target group HTG using AWS CLI

Timestamp and console output of triggering
Lambda function
Timestamp and console output describing HTG
including WS2 as target
Screenshots from AWS console showing HTG
including WS2 as target

The newly created web server is
successfully registered as a target
in the HTG target group.

Functional testing of Elastic Load Balancer reconfiguration

ID Test description Test procedure Expected output Result: Pass

3.1 The test is designed to
test if the Lambda
function successfully
and correctly updates
the listener and creates
a new rule for ELB WLB

Check current listener rule configuration
Trigger Lambda function to update WLB listener rule to direct all
requests from the test computer's public IP address to WS2 and
record timestamp
Check in the EC2 console if the listener rule has been updated
and record timestamp
Connect to VPN and open http://52.223.23.164/. Check if non-
offending IP addresses are served by WS1 and not by WS2

Description of default listener rule configuration
with timestamp
Lambda function execution with timestamp
Description of the listener with added listener
rule forwarding the offending IP address to HTG
Screenshot of opening http://52.223.23.164/
Screenshot of listener rule in AWS console

Lambda function ELB_update
executes without error. A new
listener rule was created with the
offending IP address. When
opening http://52.223.23.164/ on
the test machine, responses are
coming from WS2. Using a VPN,
requests from non-offending IPs

29

are served by WS1. The time to
quarantine an IP address by
creating a new listener rule is
trivial.

Believability testing

ID Test description Test procedure Expected output Result: Fail

4.1 The attacker conducts
external network
scanning using NMAP

Launch NMAP scan of http://52.223.23.164/
Test machine source IP address is quarantined
Launch NMAP scan of http://52.223.23.164/

NMAP scan results for the two scans are the
same

The two scans show different
results due to the difference
between Apache versions
running on WS1 (2.4.48) and WS2
(2.4.33) webservers.

ID Test description Test procedure Expected output Result: Pass

4.2 The attacker conducts
external network
scanning using NMAP

Launch NMAP scan of http://52.223.23.164/
Test machine source IP address is quarantined
Launch NMAP scan of http://52.223.23.164/

NMAP scan results for the two scans are the
same

The two scans show the same
result because the Apache
versions on both WS1 and WS2
are the same (2.4.48)

4.3 The attacker conducts
external network
scanning using NMAP

Launch NMAP scan of http://52.223.23.164/
At the same time, quarantine test machine IP address
Capture NMAP scan results

NMAP scan result shows scan hitting WS2 NMAP scan results show the scan
hitting WS2 (visible from Apache
version 2.4.33)

Timing tests

ID Test description Test procedure Expected output Result: Pass

5.1 Capturing the time
needed for honeypot
EC2 instance WS2 to be
reachable

Start an existing EC2 instance with start_ec2 Lambda function
Record time when WS2 is accepting requests
Create and start EC2 instance from AMI with launch_ami Lambda
function
Record time when WS2 is accepting requests

Timestamps showing the execution of Lambda
scripts and WS2 website availability

The time required for an existing
or new EC2 instance to start
serving requests is under 40
seconds.

30

Test results

The test outcomes below are an abbreviated version of the full test output found in the
appendix.

Test ID 1.1 is designed to check if the Lambda function start_ec2 correctly starts the existing
honeypot EC2 instance Web server WS2

Test step Test outcome Test analysis
1. Checking initial
instance status

aws ec2 describe-instance-status --instance-id i-024
6b23f775ebc81b

 "InstanceStatuses": []

The empty array returned, for
instance, id i-0246b23f775ebc81b of
InstanceStatuses confirms that the
instance is not running.

2. Executing Lambda
function start_ec2

aws lambda invoke --function-name start_ec2

Status code 200 is the successful
execution of the Lambda function.

3. Checking instance
status

aws ec2 describe-instance-status --instance-id i-024
6b23f775ebc81b

 "Name": "reachability",
 "Status": "passed"

After the Lambda function is executed,
InstanceStatuses is populated with an
availability zone, instance ID, state,
and system statuses. These are built-
in health checks of AWS.

The instance does not need to pass
these checks to be connectible or
otherwise available.

The check shows that all health checks
pass.

Figure 7 AWS Console screenshot shows that the EC2 instance is now up and running.

31

Test ID 1.2 is designed to check if the Lambda function launch_ami correctly creates and starts
honeypot EC2 instance Web server WS2 from AMI

Test step Test output Test analysis
1. Listing existing
instances

aws ec2 describe-instances

 "Instance": "i-0c9623abffe6688aa",
 "Subnet": "subnet-0cadc5e13838fae4e"
 "Instance": "i-0246b23f775ebc81b",
 "Subnet": "subnet-0037a16b193e6b2a6"

The describe-instances command
would return too much information
about the EC instances, so a filter
returns only the instance IDs and the
associated subnets.

2. Executing Lambda
function launch_ami

lambda invoke --function-name launch_ami response.js
on

Status code 200 is the successful
execution of the Lambda function.

3. Checking if the
new instance was
created from the AMI

aws ec2 describe-instances

 "Instance": "i-0d4610e65f057b8be",
 "Subnet": "subnet-0037a16b193e6b2a6"

The newly created instance ID i-
0d4610e65f057b8be is listed.

4. Checking new
instance status

aws ec2 describe-instance-status --instance-id i-0d4
610e65f057b8be

 "InstanceId": "i-0d4610e65f057b8be",
 "Status": "passed"

The new instance has been started,
and AWS health checks passed.

Figure 8 AWS console screenshot shows that the newly created EC2 instance is now up and running.

32

Test ID 2.1 is designed to check if the Lambda function HTG_update registers Web server WS2
correctly.

Test step Test output Test analysis
1. No targets
registered in target
group HTG

aws elbv2 describe-target-health

 "TargetHealthDescriptions": []

The empty array
TargetHealthDescriptions returned
shows that there are no targets
registered in target group HTG

2. Executing
Lambda function

aws lambda invoke --function-name register-instance-t
o-HTG response.json

Status code 200 is the successful
execution of the Lambda function.

3. Checking if WS2 is
registered in HTG

aws elbv2 describe-target-health

 "Description": "Target registration i
s in progress"

aws elbv2 describe-target-health

 "State": "healthy"

When the registration process has
started and is underway, the target
health check reports
Elb.RegistrationInProgress.

For the second check, the health check
reports that the target is registered
and is healthy.

Figure 9 AWS console screenshot of the updated HTG target group

33

Test ID 3.1 is designed to test if the Lambda function ELB_update successfully and correctly
updates the listener for ELB WLB and creates a new listener rule forwarding requests from a
specific IP address.

Figure 10 Screenshot of opening http://52.223.23.164/from quarantined IP address

The screenshot confirms that when visiting the website from a quarantined IP address, the
request is forwarded by the load balancer to the WS2 honeypot web server based on the new
listener rule.

Figure 11 Screenshot of non-quarantined IP address opening http://52.223.23.164/

The screenshot confirms that the load balancer forwards requests from non-offending IP
addresses to the WTG target group where WS1 is the registered target.

Test step Test output Test analysis
1. Checking current
listener rule
configuration

aws elbv2 describe-rules

 "Actions": "Type": "forward",
 "ForwardConfig":
 "TargetGroupArn": "Webserver-tar
get-group"

The describe-rules command lists the
listener rules configured for the load
balancer WLB. The single rule listed all
requests forwards to the WTG target
group, which has WS1 as the
registered target.

2. Executing Lambda
function ELB_update

aws lambda invoke --function-name ELB_update

Status code 200 is the successful
execution of the Lambda function.

3. Checking if the
listener rule has been
updated with the
correct configuration

aws elbv2 describe-rules

 "SourceIpConfig":
 "Values": "87.80.156.133/32"
 "Actions": "Type": "forward",
 "TargetGroupArn": HoneypotTG

The new listener rule has been added
to the load balancer listener
configuration. The new rule is
forwarding requests from the IP
address range of 87.80.156.133/32 to
the HTG target group where WS2 is
registered as a target.

34

Figure 12 Screenshot of the modified listener in the AWS console

The screenshot confirms that the Lambda function ELB_update successfully created the new
rule.

Test ID 4.1 is designed to test the believability of dynamic honeypot provisioning. The results
of the two scans should be the same. This is not the case due to different software versions
of Apache installed on WS1 and WS2.

Test step Test output Test analysis
1. NMAP scan in
normal mode

nmap -sV 52.223.23.164
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.48

NMAP scan started from regular IP
address hitting WS1

2. NMAP scan in
defence mode

nmap -sV 52.223.23.164
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.33

NMAP scan started from quarantined
IP address hitting WS2

Test ID 4.2 is the same test as ID 4.1 with matching Apache versions. If there is no difference
in the test output, believability is achieved, the attacker cannot see any difference between
WS1 and WS2.

Test step Test output Test analysis
1. NMAP scan in
normal mode

nmap -sV 52.223.23.164
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.48

NMAP scan started from regular IP
address hitting WS1

2. NMAP scan in
defence mode

nmap -sV 52.223.23.164
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.48

NMAP scan started from quarantined
IP address hitting WS2

Test ID 4.3 is designed to test the responsiveness of dynamic IP quarantining by the ways of
a TCP port scan during which the IP address the scan was initiated from is quarantined. The
test is successful because the results show WS2 responding to the scan, meaning it never hit
WS1.

35

Test step Test output Test analysis
1. Start NMAP scan
from non-
quarantined IP
address

nmap -sV 52.223.23.164 NMAP scan starts from regular IP
address

2. At the same time
as step 1, quarantine
IP address by
executing Lambda
function ELB_update

aws lambda invoke --function-name ELB_update respons
e.json

Status code 200 is successful
execution of the Lambda function.

3.Capture NMAP
scan results

PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.33

NMAP scan results show scan result
hitting WS2

Test ID 5.1 is designed to test the responsiveness of dynamic honeypot provisioning, capturing
the timestamps of script executions and the website's availability. The first test is about
starting the existing EC2 honeypot instance WS2 by executing the start_EC2 Lambda function.
In contrast, the second test creates and starts a new honeypot EC2 instance using the
launch_AMI Lambda function.

Test step Test output Test analysis
1.Stop WS2 EC2
instance

1.Execute start_ec2
Lambda function

aws lambda invoke --function-name start_ec2
[ec2-user@ip-10-0-1-218 20210818-13:36:35]$

The Lambda function start_ec2 was
executed at 13:36:35

2. Record timestamp
when WS2 is
accepting requests

curl -Is http://35.71.153.62 | head -1
HTTP/1.1 200 OK
date
Wed 18 Aug 2021 13:37:13

The website became available at
13:37:13. The time elapsed between
executing the Lambda function
start_ec2 until the website is
available is 38 seconds.

3. Execute
launch_ami Lambda
function

aws lambda invoke --function-name launch_ami
[ec2-user@ip-10-0-1-218 20210818-14:31:35]$

Lambda function launch_ami was
executed at 14:31:35

Execute HTG_update
Lambda function

aws lambda invoke --function-name HTG_update
[ec2-user@ip-10-0-1-218 20210818-14:32:05]$

Lambda function HTG_update was
executed at 14:32:05

Record timestamp
when new EC2
webserver is
accepting requests

curl -Is http://35.71.153.62 | head -1
HTTP/1.1 200 OK
date
Wed 18 Aug 2021 14:32:21

The website was available at
14:32:21. The time elapsed between
executing the Lambda function
launch_ami until the website is
available in 46 seconds.

36

5. Analysis of test results

Functional test results

Functional testing proves that the system is operational and the objectives set out are
achieved. Test ID 1.1 proves that EC2 instances can be started up successfully using Lambda
function start_ec2. Test ID 1.2 proves that EC2 instances can be created from an AMI and
started using Lambda function launch_ami. Honeypot instances are created and launched
with pre-configured software.

Test ID 2.1 proves that target groups can be reconfigured by registering new targets using the
Lambda function HTG_update. Test ID 3.1 proves that the Elastic Load Balancer ELB can be
reconfigured by adding a new listener rule to forward requests from specific IP addresses
using the Lambda function ELB_update.

Using serverless Lambda functions is a flexible and reliable way to programmatically
reconfigure the infrastructure components based on dependencies of other AWS resources
to switch between normal and defence modes. While the Lambda functions are separated for
testing and logging purposes in this project, the functions can also be combined into a single
Lambda function.

While this project focuses on novel, dynamic honeypot provisioning, it may be a good defence
strategy to place static, low-interaction, always-on honeypots into the network for malware
research purposes. Mixing static and dynamically provisioned honeypots may be a best-of-
both-world combination.

Timing test results

Attackers must limit the speed of their port scans to avoid detection: network mapping and
port scanning for larger networks with numerous hosts may take hours. Depending on the
number of targets to scan and the type of scan performed, it can take up to 21 minutes for
each host scanned (NMAP, n.d.). Scanning the single IP with NMAP -sV (version detection)
took around 60 seconds. It takes around 40 seconds for a honeypot web server instance
running Linux to be available and accept requests if the instance already exists but stopped
or when the instance is created and started from an AMI. The systemd suite greatly reduces
the boot speed of Linux servers, a system and service manager providing parallelisation for
boot processes (Freedesktop.org, n.d.).

Test ID 5.1 proves that the objective of rapid honeypot provisioning is satisfied. There is no
time difference between starting up an existing honeypot EC2 instance and creating and
starting up a new EC2 instance from an AMI. In defence mode, the system can spin up new
EC2 instances in under 40 seconds when malicious activity is detected. Rapid honeypot
provisioning enables honeypots to spin up on-demand, only when needed. There is no need
for honeypots to be up and running all the time, reducing emissions and hosting costs.

37

Startup times vary depending on the instance type, the type and number of software
packages that need to be started automatically baked into the AMI, infrastructure load on
AWS and the type of boot volume used. A database instance running on a Windows Server
may take considerably longer to accept connections. For servers not facing the internet, boot
time is of less importance.

Reconfiguring the Elastic Load Balancer's listener by adding a rule to forward requests from a
specific IP address is instant. When defence mode is active, and honeypot instances are
provisioned, new offending IP addresses are quarantined instantly.

The time it takes the honeypot resources to become available allows more checks to be run
to evaluate and quarantine IP addresses if necessary.

Believability test analysis

Switching between Normal Mode and Defence Mode is quick and transparent to an attacker
because there is no change in address resolution. Until honeypot resources are available,
requests are forwarded to the real server. By provisioning the honeypot web server WS2 and
reconfiguring the load balancer in under one minute, the objective of a quick response to
malicious activity is achieved. The attacker will be diverted to interact with the fake web
server, the honeypot, virtually indistinguishable from the real system, thus wasting their time
and resources. The attacker is kept away from gathering information and enumerating targets
on the real network.

Test results for test ID 4.1 reveal a possible issue with a software version mismatch. While the
first scan shows Apache version 2.4.48 running on WS1, after defence mode is activated,
subsequent scans will show Apache version 2.4.33 running on WS2. The difference in Apache
versions could be a possible giveaway for the attacker. They may notice that they are now
interacting with a different server, which may signal that their activities have been discovered.
However, because the AWS global accelerator shows that the servers are behind a load
balancer, the attacker may accept that the different servers are running different versions of
Apache. The discovery of Apache version mismatch between load-balanced servers may
reinforce the attacker in their pursuit of finding vulnerable services. It could also mean that
the version mismatch would become a way for an attacker to test the effectiveness of the
intrusion detection mechanism. Based on the different software versions, attackers can tell
what activities are detected and, consequently, what activities are not detected. This may
become a method to game the system and find activities that are not detected.

Thus, test ID 4.1 proves that the objective of providing honeypots indistinguishable from real
systems is not achieved in this case. Revealing any information to attackers about defence
mechanisms carries the possibility of using that information against the system. The issue can
be mitigated by installing the same operating system and software versions on real and
honeypot servers.

Initially, the project set out to provide a choice for the attacker and present slightly more
vulnerable versions of real servers for honeypot servers as a lure. In the case of webservers,
the load balancer takes the choice out of the equation. Thus there is no reason to capture and

38

maintain vulnerable webserver AMIs. In the case of database and application servers, there
is still a valid reason to present vulnerable versions of real servers to the attacker if they have
breached the internal network. While relevant and interesting, internal network and port
scanning are not in the scope of this project.

Test ID 4.2 repeats test ID 4.1 with matching Apache versions 2.4.48 running on both WS1
and WS2. Test ID 4.2 proves that the objective of provisioning honeypots as indistinguishable
copies of real servers is achieved.

Test ID 4.3 proves that the objective of quarantining suspicious IP addresses during external
network scanning is achieved. The NMAP scan is started before the offending IP is
quarantined. The ELB_update Lambda function is executed simultaneously as the NMAP scan
to update the Elastic Load Balancer ELB's listener configuration and add a forwarding rule for
the test machine's IP address to be forwarded to WS2. By the time the scan is complete, the
results show that WS2 is responding to the scan. Depending on the type of network scan, the
system may be able to enter defence mode before the scan results are returned to the
attacker. This way, the attacker does not gain information or interact with the real webserver
WS1.

A possible issue with this system may be that, after some time, denial-of-service attacks may
reveal to the attacker that they are interacting with a fake system. If a DoS attack is successful
and puts a heavy load on the system, requests from quarantined IPs may not be served or
maybe served considerably slower. Requests from regular IPs will still be served with normal
response times by the real servers. This discrepancy may be mitigated by utilising auto-
scaling. Provisioning more server resources into HTG would mimic the behaviour of a real
system under a DoS attack.

Costs

AWS offers EC2 instances on-demand, spot instances and reserved instances. With on-
demand, instances are paid for by the hour or by the second, depending on the instance type.
On-demand is great for applications with unpredictable workloads that cannot be
interrupted, such as honeypots. Spot instances are not suitable for honeypot deployment
because while prices can be 90% lower when compared to on-demand pricing due to using
unused AWS resources, capacity availability is unpredictable. Reserved instances offer 37%-
57% savings when compared to on-demand instances with 1-3 years of commitment.
Depending on the number of incidents from the IDS prompting Defence mode activations,
reserved instances may be cheaper than on-demand instances.

Based on the prices in Table 9 below, the yearly on-demand price of a t3.xlarge honeypot
instance running every day of the year for one hour would be 60.736 USD. Paying by the
minute, the one-hour availability of the honeypot can be a single one-hour instantiation each
day or sixty one-minute instantiations.

39

Table 10 AWS EC2 On-Demand pricing (EC2 On-Demand Instance Pricing – Amazon Web Services, n.d.)

Instance name On-Demand hourly rate vCPU Memory Storage Network performance

a1.medium $0.0255 1 2 GiB EBS Only Up to 10 Gigabit

a1.large $0.051 2 4 GiB EBS Only Up to 10 Gigabit

a1.xlarge $0.102 4 8 GiB EBS Only Up to 10 Gigabit

a1.2xlarge $0.204 8 16 GiB EBS Only Up to 10 Gigabit

a1.4xlarge $0.408 16 32 GiB EBS Only Up to 10 Gigabit

a1.metal $0.408 16 32 GiB EBS Only Up to 10 Gigabit

t4g.nano $0.0042 2 0.5 GiB EBS Only Up to 5 Gigabit

t4g.micro $0.0084 2 1 GiB EBS Only Up to 5 Gigabit

t4g.small $0.0168 2 2 GiB EBS Only Up to 5 Gigabit

t4g.medium $0.0336 2 4 GiB EBS Only Up to 5 Gigabit

t4g.large $0.0672 2 8 GiB EBS Only Up to 5 Gigabit

t4g.xlarge $0.1344 4 16 GiB EBS Only Up to 5 Gigabit

t4g.2xlarge $0.2688 8 32 GiB EBS Only Up to 5 Gigabit

t3.nano $0.0052 2 0.5 GiB EBS Only Up to 5 Gigabit

t3.micro $0.0104 2 1 GiB EBS Only Up to 5 Gigabit

t3.small $0.0208 2 2 GiB EBS Only Up to 5 Gigabit

t3.medium $0.0416 2 4 GiB EBS Only Up to 5 Gigabit

t3.large $0.0832 2 8 GiB EBS Only Up to 5 Gigabit

t3.xlarge $0.1664 4 16 GiB EBS Only Up to 5 Gigabit

t3.2xlarge $0.3328 8 32 GiB EBS Only Up to 5 Gigabit

Environmental impact

Research commissioned by AWS shows that AWS's cloud infrastructure is 3.6 times more
energy-efficient than regular data centres (451 Research, 2019). The biggest factor is the
comparably higher server utilisation in the AWS infrastructure. AWS has an 88% reduced
carbon footprint by using renewable energy sources compared to traditional data centres
performing the same task.

Deploying hosts in cloud infrastructure can incur large savings both in costs and CO2
emissions. Cloud service providers offer shared tenancy and on-demand server provisioning
to reduce costs and emissions compared to traditional data centre hosting. In the cloud, hosts
are configured to start only when there is a need to do so, eliminating the over-provisioning
of capacities. When demand is reduced, these hosts shut down automatically as defined by a
set of rules. A well-architected infrastructure achieves the transition between levels of low
and high demand seamlessly. Applying the same concept to honeypots, these hosts should
also be only running when needed.

40

6. Conclusion

This project set out to design, build, and evaluate a novel method in dynamically deploying
honeypots leveraging the opportunities offered by cloud hosting to overcome the
shortcomings identified with current honeypot offerings. The project's objective was to
increase honeypot believability and functionality and reduce maintenance time, costs, and
emissions associated with running honeypot services. Cloud computing offers a range of
previously untapped possibilities in how to deploy and use honeypots. Cloud computing
allows networks and servers to be reconfigured on-demand with programmatically
configurable virtual network and computing components.

Through successfully designing, building and testing the system, a novel concept is proposed
how honeypots can be deployed in the cloud. Relying on non-existent resources to become
available in reaction to an attack is a small but substantial original contribution that enhances
honeypot functionality, reduces resource and maintenance costs and opens up new
directions in which honeypots could be used in the future. The results are reproducible, and
the design concept is transferrable to other cloud service providers.

Honeypot believability was achieved by building honeypot servers that are exact copies of
real servers in the network. Network scans conducted from the attackers' perspective prove
that honeypot versions of real servers created from AMIs are indistinguishable from real
servers. Honeypot security was achieved by network segmentation. Requests from malicious
IP addresses are forwarded to a separate subnet, isolating attackers from interacting with
other critical subnets. The automation of dynamic honeypot deployment was achieved by
using Lambda functions to provision and start honeypot instances on-demand. Honeypot
availability was achieved by provisioning honeypots during a simulated attack promptly, using
AMIs. The system only deploys honeypots when required. Energy and cost-saving objectives
were achieved by relying on the on-demand aspects of provisioning computing resources in
the cloud.

41

7. Further research opportunities

Cloud computing offers many ways to deploy honeypots and can change how we deploy
honeypots and enhance honeypot functionality. In this section, some additional topics are
touched upon that is out of this project's scope.

Full-stack honeypot provisioning

The test configuration in this project is limited to an Apache web server serving a static
website. A full-stack configuration can be simulated by provisioning additional honeypot
databases and application servers for maximum believability. In this case, data in the
database will have to be anonymised to avoid leaking sensitive information in a successful
data breach. The entire stack is duplicated in defence mode, serving requests running under
the same configuration of slightly vulnerable software components. The honeypot web
server, application and database servers are associated with their separate subnet to take
advantage of network segmentation, virtually isolating the attacker from the rest of the
Enterprise Network. This way, the entire application architecture is duplicated with
anonymised data. Attackers are redirected and interact with the fake system,
indistinguishable from the real system, in an isolated subnet. Such a system effectively wastes
the attacker's resources and time, captures attack vector information for further threat
analysis and an active defence system shielding the real application, and defends company
assets at low maintenance and running costs.

Capturing threat analytics

Additional software may be installed on honeypots to discover and better understand novel
attack strategies. Capturing attacker behaviour may aid in designing and building better
defence systems.

Strategic honeypot positioning

Building on the current system, it may be possible to position honeypots in the network
depending on the type and severity of an attack. By strategically positioning honeypots,
attackers may be engaged longer and at a deeper level of interaction as the attack progresses.

Using Lambda function as a honeypot web server

It is possible to build serverless websites using Lambda in AWS. Lambda functions are the glue
between AWS S3 for static content storage and DynamoDB, and the AWS managed NoSQL
database system. This solution may further reduce costs and the need to provision, start and
terminate honeypot servers using EC2. Furthermore, Lambda functions can be used as a
target group member for the Elastic Load Balancer. However, it may require more
maintenance, and believability is questionable as attackers will not be interacting with a copy
of a real server.

42

References

Amazon Web Services, I. (n.d.-a). Amazon EC2. Retrieved August 9, 2021, from

https://aws.amazon.com/ec2/?ec2-whats-new.sort-
by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc

Amazon Web Services, I. (n.d.-b). Amazon Virtual Private Cloud (VPC). Retrieved August 4,
2021, from https://aws.amazon.com/vpc/?vpc-blogs.sort-
by=item.additionalFields.createdDate&vpc-blogs.sort-order=desc

Amazon Web Services, I. (n.d.-c). AWS CLI Command Reference — AWS CLI 1.20.26
Command Reference. Retrieved August 23, 2021, from
https://docs.aws.amazon.com/cli/latest/index.html

Amazon Web Services, I. (n.d.-d). Elastic Load Balancing - Amazon Web Services. Retrieved
August 4, 2021, from https://aws.amazon.com/elasticloadbalancing/?whats-new-
cards-elb.sort-by=item.additionalFields.postDateTime&whats-new-cards-elb.sort-
order=desc

Amazon Web Services, I. (n.d.-e). Global Infrastructure Regions & AZs. Retrieved August 12,
2021, from https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Amazon Web Services, I. (n.d.-f). Internet gateways - Amazon Virtual Private Cloud.
Retrieved August 21, 2021, from
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

Amazon Web Services, I. (n.d.-g). Quickstart — Boto3 Docs 1.18.19 documentation.
Retrieved August 12, 2021, from
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Web Services, I. (n.d.-h). Security groups for your VPC - Amazon Virtual Private
Cloud. Retrieved August 9, 2021, from
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Web Services, I. (n.d.-i). VPCs and subnets - Amazon Virtual Private Cloud. Retrieved
August 18, 2021, from
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-subnet-
basics

Baykara, M., & Das, R. (2018). A novel honeypot based security approach for real-time
intrusion detection and prevention systems. Journal of Information Security and
Applications, 41, 103–116. https://doi.org/10.1016/j.jisa.2018.06.004

Deception Logic Inc. (n.d.). HoneyDB. Retrieved March 24, 2021, from
https://honeydb.io/about

EC2 On-Demand Instance Pricing – Amazon Web Services. (n.d.). Retrieved August 21, 2021,
from https://aws.amazon.com/ec2/pricing/on-demand/

Freedesktop.org. (n.d.). systemd. Retrieved August 18, 2021, from
https://www.freedesktop.org/wiki/Software/systemd/

Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., & Graham, S. (2006). On recognizing virtual
honeypots and countermeasures. Proceedings - 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, DASC 2006.
https://doi.org/10.1109/DASC.2006.36

Jafarian, J. H., & Niakanlahiji, A. (2020). Delivering Honeypots as a Service. Proceedings of
the 53rd Hawaii International Conference on System Sciences.
https://doi.org/10.24251/hicss.2020.227

Kambow, N., & Passi, L. K. (2014). Honeypots : The Need of Network Security. International

43

Journal of Computer Science and Information Technologies, 5(5).
lyrebird. (n.d.). lyrebird/honeypot-base - Docker Image | Docker Hub. Retrieved August 21,

2021, from https://hub.docker.com/r/lyrebird/honeypot-base/
MITRE. (n.d.). Apache Http Server version 2.4.33 : Security vulnerabilities. Retrieved August

17, 2021, from https://www.cvedetails.com/vulnerability-list/vendor_id-
45/product_id-66/version_id-595392/Apache-Http-Server-2.4.33.html

Naik, N., Jenkins, P., Cooke, R., & Yang, L. (2018). Honeypots that bite back: A fuzzy
technique for identifying and inhibiting fingerprinting attacks on low interaction
honeypots. IEEE International Conference on Fuzzy Systems, 2018-July.
https://doi.org/10.1109/FUZZ-IEEE.2018.8491456

NMAP. (n.d.). Coping Strategies for Long Scans | Nmap Network Scanning. Retrieved August
17, 2021, from https://nmap.org/book/scantime-coping.html

Peter, E., & Schiller, T. (2008). A Practical Guide to Honeypots.
https://www.cse.wustl.edu/~jain/cse571-09/ftp/honey/#sec1.4

R0hi7. (n.d.). GitHub - r0hi7/HoneySMB: Simple High Interaction Honeypot Solution for SMB
protocol. Retrieved August 21, 2021, from https://github.com/r0hi7/HoneySMB

Research 451. (2019). The Carbon Reduction Opportunity of Moving to Amazon Web
Services. https://sustainability.aboutamazon.com/carbon_reduction_aws.pdf

Scott, S. (n.d.). AWS global infrastructure, region table, data center location, availability.
Retrieved August 21, 2021, from https://cloudacademy.com/blog/aws-global-
infrastructure/

Tsikerdekis, M., Zeadally, S., Schlesener, A., & Sklavos, N. (2019, February 5). Approaches for
Preventing Honeypot Detection and Compromise. 2018 Global Information
Infrastructure and Networking Symposium, GIIS 2018.
https://doi.org/10.1109/GIIS.2018.8635603

44

Appendix

Complete test results

Test ID 1.1

Test step Test output Test analysis
1. Checking
initial instance
status

aws ec2 describe-instance-status --instance-id i-0246b23f775ebc81b

{
 "InstanceStatuses": []
}

The empty array returned,
for instance, id i-
0246b23f775ebc81b of
InstanceStatuses confirms
that the instance is not
running.

2. Executing
Lambda
function
start_ec2

[ec2-user@ip-10-0-1-218 20210817-09:15:30]$ aws lambda invoke --function-name s
tart_ec2 response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

Status code 200 is the
successful execution of the
Lambda function.

3. Checking
instance status

[ec2-user@ip-10-0-1-218 20210817-09:16:40]$ aws ec2 describe-instance-status --
instance-id i-0246b23f775ebc81b
{
 "InstanceStatuses": [
 {
 "AvailabilityZone": "us-east-2b",
 "InstanceId": "i-0246b23f775ebc81b",
 "InstanceState": {
 "Code": 16,
 "Name": "running"
 },
 "InstanceStatus": {
 "Details": [
 {
 "Name": "reachability",
 "Status": "initializing"
 }
],
 "Status": "initializing"
 },
 "SystemStatus": {
 "Details": [
 {
 "Name": "reachability",
 "Status": "initializing"
 }
],
 "Status": "initializing"
 }
 }
]
}

Check repeated

[ec2-user@ip-10-0-1-218 20210817-09:17:20]$ aws ec2 describe-instance-status --
instance-id i-0246b23f775ebc81b
{
 "InstanceStatuses": [
 {
 "AvailabilityZone": "us-east-2b",
 "InstanceId": "i-0246b23f775ebc81b",
 "InstanceState": {
 "Code": 16,
 "Name": "running"
 },
 "InstanceStatus": {

After the Lambda function is
executed, InstanceStatuses
is populated with an
availability zone, instance
ID, state, and system
statuses. These are built-in
health checks of AWS.

The instance does not need
to pass these checks to be
connectible or otherwise
available.

The second check shows
that all health checks pass at
09:17:20.

45

 "Details": [
 {
 "Name": "reachability",
 "Status": "passed"
 }
],
 "Status": "ok"
 },
 "SystemStatus": {
 "Details": [
 {
 "Name": "reachability",
 "Status": "passed"
 }
],
 "Status": "ok"
 }
 }
]
}
[ec2-user@ip-10-0-1-218 20210817-09:18:33]$

4. AWS console
screenshot

The screenshot shows that
the EC2 instance is now up
and running.

Test ID 1.2

Test step Test output Test analysis
1. Listing
existing
instances

[ec2-user@ip-10-0-1-218 20210817-09:34:16]$ aws ec2 describe-instances --query
'Reservations[*].Instances[*].{Instance:InstanceId,Subnet:SubnetId}' --output j
son
[
 [
 {
 "Instance": "i-0c9623abffe6688aa",
 "Subnet": "subnet-0cadc5e13838fae4e"
 }
],
 [
 {
 "Instance": "i-0246b23f775ebc81b",
 "Subnet": "subnet-0037a16b193e6b2a6"
 }
]
]

The describe-instances
command would return too
much information about the
EC instances, so a filter is
used to return only the
instance IDs and the
associated subnets.

2. Executing
Lambda
function
launch_ami

[ec2-user@ip-10-0-1-218 20210817-09:35:28]$ aws lambda invoke --function-name l
aunch_ami response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
[ec2-user@ip-10-0-1-218 20210817-09:35:33]$

Status code 200 is the
successful execution of the
Lambda function.

46

3. Checking if
the new
instance was
created from
the AMI

[ec2-user@ip-10-0-1-218 20210817-09:35:35]$ aws ec2 describe-instances --query
'Reservations[*].Instances[*].{Instance:InstanceId,Subnet:SubnetId}' --output j
son

[
 [
 {
 "Instance": "i-0c9623abffe6688aa",
 "Subnet": "subnet-0cadc5e13838fae4e"
 }
],
 [
 {
 "Instance": "i-0246b23f775ebc81b",
 "Subnet": "subnet-0037a16b193e6b2a6"
 }
],
 [
 {
 "Instance": "i-0d4610e65f057b8be",
 "Subnet": "subnet-0037a16b193e6b2a6"
 }
]
]

The newly created instance
ID i-0d4610e65f057b8be is
listed.

4. Checking new
instance status

[ec2-user@ip-10-0-1-218 20210817-09:37:34]$ aws ec2 describe-instance-status --
instance-id i-0d4610e65f057b8be
{
 "InstanceStatuses": [
 {
 "AvailabilityZone": "us-east-2b",
 "InstanceId": "i-0d4610e65f057b8be",
 "InstanceState": {
 "Code": 16,
 "Name": "running"
 },
 "InstanceStatus": {
 "Details": [
 {
 "Name": "reachability",
 "Status": "passed"
 }
],
 "Status": "ok"
 },
 "SystemStatus": {
 "Details": [
 {
 "Name": "reachability",
 "Status": "passed"
 }
],
 "Status": "ok"
 }
 }
]
}

The new instance has been
started, and AWS health
checks are passed.

47

4. AWS console
screenshot

The screenshot shows that
the newly created EC2
instance is now up and
running. This confirms that
the Lambda function has
successfully created and
started an instance from the
AMI.

Test ID 2.1

Test step Test output Test analysis
1. No targets
registered in
target group
HTG

aws elbv2 describe-target-health --target-group-arn arn:aws:elasticloadbalancing:
us-east-2:542457226429:targetgroup/HoneypotTG/4814
532c401c539f
{
 "TargetHealthDescriptions": []
}
[ec2-user@ip-10-0-1-218 20210817-08:26:42]$

The empty array
TargetHealthDescriptions
returned shows that there
are no targets registered
in target group HTG

2. Executing
Lambda
function

[ec2-user@ip-10-0-1-218 20210817-08:27:36]$ aws lambda invoke --function-name reg
ister-instance-to-HTG response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

Status code 200 is the
successful execution of the
Lambda function.

3. Checking if
WS2 is
registered in
HTG

ec2-user@ip-10-0-1-218 20210817-08:27:39]$ aws elbv2 describe-target-health --tar
get-group-arn arn:aws:elasticloadbalancing:us-east-2:542457226429:targetgroup/Hon
eypotTG/4814
532c401c539f
{
 "TargetHealthDescriptions": [
 {
 "Target": {
 "Id": "i-0246b23f775ebc81b",
 "Port": 80
 },
 "HealthCheckPort": "80",
 "TargetHealth": {
 "State": "initial",
 "Reason": "Elb.RegistrationInProgress",
 "Description": "Target registration is in progress"
 }
 }
]
}

Checking again

[ec2-user@ip-10-0-1-218 20210817-08:27:49]$ aws elbv2 describe-target-health --ta
rget-group-arn arn:aws:elasticloadbalancing:us-east-2:542457226429:targetgroup/Ho
neypotTG/4814
532c401c539f
{
 "TargetHealthDescriptions": [
 {

When the registration
process has started and is
underway, the target
health check reports
Elb.RegistrationInProgress.

For the second check, the
health check reports that
the target is registered
and is healthy.

48

 "Target": {
 "Id": "i-0246b23f775ebc81b",
 "Port": 80
 },
 "HealthCheckPort": "80",
 "TargetHealth": {
 "State": "healthy"
 }
 }
]
}
[ec2-user@ip-10-0-1-218 20210817-08:27:54]$

4. AWS console
screenshot

The screenshot confirms
that the Lambda function
has successfully registered
the target into the target
group HTG and is ready as
the target for the load
balancer.

49

Test ID 3.1

Test step Test output Test analysis
1. Checking
current listener
rule
configuration

[ec2-user@ip-10-0-1-218 20210817-13:08:48]$ aws elbv2 describe-rules --listen
er-arn arn:aws:elasticloadbalancing:us-east-2:542457226429:listener/app/Webserver
LB/5a2b7a5bf786ca1e/a82ef0acaacf173b
{
 "Rules": [
 {
 "RuleArn": "arn:aws:elasticloadbalancing:us-east-2:542457226429:liste
ner-rule/app/WebserverLB/5a2b7a5bf786ca1e/a82ef0acaacf173b/2e5e8e7cf1738582",
 "Priority": "default",
 "Conditions": [],
 "Actions": [
 {
 "Type": "forward",
 "TargetGroupArn": "arn:aws:elasticloadbalancing:us-east-2:542
457226429:targetgroup/Webserver-target-group/9d25ac05032a4a25",
 "ForwardConfig": {
 "TargetGroups": [
 {
 "TargetGroupArn": "arn:aws:elasticloadbalancing:u
s-east-2:542457226429:targetgroup/Webserver-target-group/9d25ac05032a4a25",
 "Weight": 1
 }
],
 "TargetGroupStickinessConfig": {
 "Enabled": false
 }
 }
 }
],
 "IsDefault": true
 }
]
}

The describe-rules
command lists the listener
rules configured for the
load balancer WLB. The
single rule listed all
requests forwards to the
WTG target group, which
has WS1 as the registered
target.

2. Executing
Lambda
function
ELB_update

[ec2-user@ip-10-0-1-218 20210817-13:08:50]$ aws lambda invoke --function-name ELB
_update response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

Status code 200 is the
successful execution of the
Lambda function.

3. Checking if
the listener rule
has been
updated with
the correct
configuration

[ec2-user@ip-10-0-1-218 20210817-13:14:05]$ aws elbv2 describe-rules --listen
er-arn arn:aws:elasticloadbalancing:us-east-2:542457226429:listener/app/Webserver
LB/5a2b7a5bf786ca1e/a82ef0acaacf173b
{
 "Rules": [
 {
 "RuleArn": "arn:aws:elasticloadbalancing:us-east-2:542457226429:liste
ner-rule/app/WebserverLB/5a2b7a5bf786ca1e/a82ef0acaacf173b/ae58f12ebb7cadef",
 "Priority": "10",
 "Conditions": [
 {
 "Field": "source-ip",
 "SourceIpConfig": {
 "Values": [
 "87.80.156.133/32"
]
 }
 }
],
 "Actions": [
 {
 "Type": "forward",
 "TargetGroupArn": "arn:aws:elasticloadbalancing:us-east-2:542
457226429:targetgroup/HoneypotTG/4814532c401c539f",
 "ForwardConfig": {
 "TargetGroups": [
 {
 "TargetGroupArn": "arn:aws:elasticloadbalancing:u
s-east-2:542457226429:targetgroup/HoneypotTG/4814532c401c539f",
 "Weight": 1

The new listener rule has
been added to the load
balancer listener
configuration. The new
rule is forwarding requests
from the IP address range
of 87.80.156.133/32 to the
HTG target group where
WS2 is registered as target.

50

 }
],
 "TargetGroupStickinessConfig": {
 "Enabled": false
 }
 }
 }
],
 "IsDefault": false
 },
 {
 "RuleArn": "arn:aws:elasticloadbalancing:us-east-2:542457226429:liste
ner-rule/app/WebserverLB/5a2b7a5bf786ca1e/a82ef0acaacf173b/2e5e8e7cf1738582",
 "Priority": "default",
 "Conditions": [],
 "Actions": [
 {
 "Type": "forward",
 "TargetGroupArn": "arn:aws:elasticloadbalancing:us-east-2:542
457226429:targetgroup/Webserver-target-group/9d25ac05032a4a25",
 "ForwardConfig": {
 "TargetGroups": [
 {
 "TargetGroupArn": "arn:aws:elasticloadbalancing:u
s-east-2:542457226429:targetgroup/Webserver-target-group/9d25ac05032a4a25",
 "Weight": 1
 }
],
 "TargetGroupStickinessConfig": {
 "Enabled": false
 }
 }
 }
],
 "IsDefault": true
 }
]
}
[ec2-user@ip-10-0-1-218 20210817-13:15:43]$

Screenshot of
opening
http://52.223.2
3.164/from
quarantined IP
address

The screenshot confirms
that when visiting the
website from a
quarantined IP address,
the request is forwarded
by the load balancer to
WS2 honeypot webserver
based on the new listener
rule.

Screenshot of
non-
quarantined IP
address opening
http://52.223.2
3.164/

The screenshot confirms
that the load balancer
forwards requests from
non-offending IP addresses
to WTG target group
where WS1 is the
registered target.

51

Test ID 4.1

Test step Test output Test analysis
1. NMAP scan in
normal mode

nmap -sV 52.223.23.164
Starting Nmap 7.91 (https://nmap.org) at 2021-08-17 20:26 BST
Nmap scan report for a24ce6b897106d380.awsglobalaccelerator.com (52.223.23.164)
Host is up (0.010s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.48 (())

NMAP scan started from
regular IP address hitting
WS1

2. NMAP scan in
defence mode

nmap -sV 52.223.23.164
Nmap scan report for a24ce6b897106d380.awsglobalaccelerator.com (52.223.23.164)
Host is up (0.014s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.33 (())

NMAP scan started from
quarantined IP address
hitting WS2

Test ID 4.2

Test step Test output Test analysis
1. NMAP scan in
normal mode

nmap -sV 52.223.23.164
Nmap scan report for a24ce6b897106d380.awsglobalaccelerator.com (52.223.23.164)
Host is up (0.012s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.48 (())

NMAP scan started from
regular IP address hitting
WS1

2. NMAP scan in
defence mode

nmap -sV 52.223.23.164
Nmap scan report for a24ce6b897106d380.awsglobalaccelerator.com (52.223.23.164)
Host is up (0.013s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.48 (())

NMAP scan started from
quarantined IP address
hitting WS2

Test ID 4.3

Test step Test output Test analysis
1. Start NMAP
scan from non-
quarantined IP
address

nmap -sV 52.223.23.164 NMAP scan starts from
regular IP address

2. At the same
time as step 1
quarantine IP
address by

[ec2-user@ip-10-0-1-218 ~]$ aws lambda invoke --function-name ELB_update response.
json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"

Status code 200 is
successful execution of
the Lambda function.

Screenshot of
modified
listener in the
AWS console

The screenshot confirms
that the Lambda function
ELB_update successfully
created the new rule.

52

executing
Lambda
function
ELB_update

}

3.Capture
NMAP scan
results

Nmap scan report for a24ce6b897106d380.awsglobalaccelerator.com (52.223.23.164)
Host is up (0.010s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.33 (())

NMAP scan results show
scan result hitting WS2

Test ID 5.1

Test step Test output Test analysis
1.Stop WS2 EC2
instance

1.Execute
start_ec2
Lambda
function

aws lambda invoke --function-name start_ec2 response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
[ec2-user@ip-10-0-1-218 20210818-13:36:35]$

The Lambda function
start_ec2 was executed
at 13:36:35

2. Record
timestamp
when WS2 is
accepting
requests

curl -Is http://35.71.153.62 | head -1
HTTP/1.1 200 OK
date
Wed 18 Aug 2021 13:37:13

The website became
available at 13:37:13.
The time elapsed
between executing the
Lambda function
start_ec2 until the
website is available is 38
seconds.

3. Execute
launch_ami
Lambda
function

aws lambda invoke --function-name launch_ami response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
[ec2-user@ip-10-0-1-218 20210818-14:31:35]$

Lambda function
launch_ami was
executed at 14:31:35

Execute
HTG_update
Lambda
function

aws lambda invoke --function-name HTG_update response.json
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
[ec2-user@ip-10-0-1-218 20210818-14:32:05]$

Lambda function
HTG_update was
executed at 14:32:05

Record
timestamp
when new EC2
webserver is
accepting
requests

curl -Is http://35.71.153.62 | head -1
HTTP/1.1 200 OK
date
Wed 18 Aug 2021 14:32:21

The website was
available at 14:32:21.
The time elapsed
between executing the
Lambda function
launch_ami until the
website is available in 46
seconds.

