
Deep learning for combating energy theft:
Modeling and analysis of Hybrid LSTM

Hongxin Gao

Technical Report

RHUL–ISG–2022–6

11 April 2022

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX
United Kingdom

Candidate Number: 2110945

Deep Learning for Combating Energy Theft: Modeling
and Analysis of Hybrid LSTM

Submitted as part of the requirements for the award of the

MSc in Information Security

at Royal Holloway University of London.

Information Security Group

Royal Holloway, University of London

August 2021

 2

Table of Contents

List of figures & tables .. 4

List of Abbreviations & Acronyms .. 6

Executive Summary .. 7

1. Introduction ... 8

1.1 Background of Smart Grid Development .. 8

1.2 The Current State of Electricity Theft .. 9

1.3 Motivation .. 10

2. Summary of Literature Review in Machine Learning ETD 12

2.1 Introduction to Neural Network ... 12

2.2 The Current Situation of Machine Learning in ETD 16

3. Project Outline ... 18

3.1 Project Process Description ... 18

3.2 Related Configuration of Project Platform 20

4. Problem Analysis and Data Preparation ... 21

4.1 Preview of Raw Data Set ... 21

4.2 Electricity Data Cleaning ... 23

4.2.1 Missing Data Filtering ... 23

4.2.2 Missing Data Imputation ... 23

 3

4.3 Electricity Data Visualization .. 28

4.4 Imbalanced Classification Sorting ... 42

4.5 Data Transformation .. 45

5. Model Building .. 46

5.1 MLP ... 47

5.2 CNN-LSTM ... 48

5.3 ConvLSTM .. 49

6. Performance Metrics Analysis ... 52

6.1 Performance Metrics Description .. 52

6.2 Metric Comparison .. 54

6.3 Convergence Analysis .. 58

7. Conclusion & Future Work .. 61

7.1 Conclusion ... 61

7.2 Future Work ... 61

Bibliography ... 62

Appendix A - Data set Description .. 68

Appendix B - Related Project Code ... 72

Appendix C - Model Training History Log ... 83

 4

List of figures & tables

Tables Page

Table 1: Project platform configuration 21

Table 2: Raw data status 24

Table 3: Metrics comparison 56

Figures page

Figure 1: AMI instance layout diagram -adapted from [26] 8

Figure 2: Different attack modes of electricity theft - adapted from [26] 9

Figure 3: Emerging markets AMI forecast by region (cumulative) [28] 10

Figure 4: The architecture of neuron [46] 12

Figure 5: The architecture of MLP [46] 13

Figure 6: The architecture of CNN [53] 14

Figure 7: The architecture of LSTM [52] 15

Figure 8: The architecture of CNN-LSTM [46] 16

Figure 9: Project process 20

Figure 10: Descriptive statistics of missing values are processed (overview) 26

Figure 11: Description of boxplot [38] 27

Figure 12: Minor outliers over 1034 days (1.5*IQR) 28

Figure 13: Extreme outliers over 1034 days (3*IQR) 29

Figure 14: Average annual electricity consumption 31

Figure 15: Quarterly average electricity consumption 31

Figure 16: The average daily electricity consumption in 1034 days for the two types of users 33

Figure 17: Average monthly electricity consumption of Theft users in 2015 34

Figure 18: Average monthly electricity consumption of Normal users in 2015 35

Figure 19: average daily electricity consumption every four weeks (Theft users) 36

Figure 20: average daily electricity consumption every four weeks (Normal users) 36

Figure 21: Pearson’s correlation coefficient (PCC) (Theft User) 37

 5

Figure 22: Pearson’s correlation coefficient (PCC) (Normal User) 38

Figure 23: Description of Pearson’s correlation coefficient (PCC) [33] 39

Figure 24: Pearson’s correlation coefficient (PCC) (Theft User 1034 days) 39

Figure 25: Pearson’s correlation coefficient (PCC) (Normal User 1034 days) 40

Figure 26: Autocorrelation function (ACF) of Theft User in 4 weeks 41

Figure 27: Autocorrelation function (ACF) of Normal User in 4 weeks 41

Figure 28: STL decomposition of average daily electricity consumption for 1034 days

(Electricity-theft user)
42

Figure 29: STL decomposition of average daily electricity consumption (Normal electricity user) 43

Figure 30: Example of basic sampling pattern [42] 44

Figure 31: The state of the data set after classification balance 45

Figure 32: Comparison of electricity theft users produced by Borderline-SMOTE 46

Figure 33: The modeling process 48

Figure 34: MLP model architecture and hyperparameter tuning 49

Figure 35: Sigmoid and ReLU Function [49] 50

Figure 36: MLP model architecture and hyperparameter tuning 51

Figure 37: ConvLSTM cell structure [57] 52

Figure 38: ConvLSTM model architecture and hyperparameter tuning 53

Figure 39: Binary cross-entropy/Log loss formula [60] 54

Figure 40: Typical binary classification confusion matrix [59] 54

Figure 41: Comparison of ROC curves of MLP, CNN-LSTM and CovnLSTM 57

Figure 42: Comparison of PR curves of MLP, CNN-LSTM and CovnLSTM 58

Figure 43: Comparison of Confusion Matrix of MLP, CNN-LSTM and CovnLSTM 59

Figure 44: History of MLP Model 60

Figure 45: History of CNN-LSTM Model 61

Figure 46: History of ConvLSTM Model 62

 6

List of Abbreviations & Acronyms

ACF Autocorrelation function

AMI Advanced Metering Infrastructure

AMR Automatic Meter Reading

AUC Area Under the Curve

CNN-LSTM Convolutional Neural Network & Long Short-Term Memory

ConvLSTM Convolutional Long Short-Term Memory

ETD Electricity Theft Detection

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

RNN Recurrent Neural Networks

GAN Generative Adversarial Network

kWh Kilowatt Hour

KNN k-Nearest Neighbors

LASSO Least Absolute Shrinkage and Selection Operator

MLP Multilayer Perceptron

NTL Non-technical Losses

PCC Pearson’s Correlation Coefficient

PR Precision-Recall

SGCC State Grid Corporation of China

SMOTE Synthetic Minority Oversampling Technique

STL Decomposition Seasonal and Trend Decomposition Using Loess

 7

Executive Summary

In the energy industry, power theft has been a constant concern for many countries. With the

development of technology, the means of electricity theft also reflects the characteristics of advanced

and concealed. However, the emergence of artificial intelligence technology has also elevated the

combat against electricity theft to a new level. The classical machine learning has been proven to be

effective in electricity theft detection (ETD). Instead of further corroborating the feasibility of them,

this project further explores the usability of advanced models in the emerging field of deep learning.

Recent academic journals and research results show that advanced models and algorithms based on

convolutional neural network (CNN), long short-term memory (LSTM), and generative adversarial

network (GAN), among others, are also effective and even more flexible and efficient in ETD.

This project uses a data set of electricity consumption of real users, which contains data and labels of

normal users as well as electricity theft users, i.e., a supervised learning approach is used to deal with

the binary classification issue. The performance of the target model on the unseen data set is

evaluated by training the model and algorithm, i.e., the performance of the model in identifying

normal electricity users and electricity theft users. During the project, some advanced and effective

deep learning techniques are also well applied and show good results. In terms of data pre-processing,

techniques such as k-nearest neighbors (KNN) imputation processing for missing values, interquartile

range (IQR) processing for outliers and borderline-synthetic minority oversampling technique

(Borderline-SMOTE) processing for imbalance classification were successfully applied to the project.

Also, the clear visualization analysis provides a good basis for modeling. Three models were

successfully built, with multilayer perceptron (MLP) as the baseline model, CNN & LSTM

(CNN-LSTM) as a comparable model and convolutional LSTM (ConvLSTM) as a novel model. The

model convergence is accelerated by optimizing hyperparameters such as dropout and learning rate.

And more comprehensive metrics are used on the unseen data to evaluate the feasibility, accuracy,

and robustness of the model in identifying electricity theft users.

In this project, ConvLSTM outperformed the other models with accuracy, loss, precision, recall,

F1-score, Cohen’s kappa, receiver operating characteristic-area under the curve (ROC-AUC) and

precision-recall-AUC (PR-AUC) of 0.984, 0.089, 0.984, 0.985, 0.984, 0.969, 0.993, 0.991

respectively. In addition, ConvLSTM supports multi-dimensional electricity data input for better

extraction of time series features, and batch normalization technology supports direct transformation

of raw electricity data in model compilation without tedious and time-consuming data

pre-transformation. This also demonstrates that ConvLSTM also shows a lot of room for

improvement in terms of flexibility of model architecture adjustment and efficiency of data

processing. This can also better improve the timeliness of power companies in combating electricity

theft, and enable them to adjust their detection deployment in a timely manner in an environment

where theft methods are constantly changing.

A journal version of this project report is pending submission to International Transactions on

Electrical Energy Systems for review.

 8

1. Introduction

1.1 Background of Smart Grid Development
The smart grid has made great progress as a mainstream trend in the development of electricity

networks. It can effectively integrate the electricity consumption behavior of its service users with

intelligent communication and monitoring [1]. With the development of the smart grid, an evolution

from automatic meter reading (AMR) to advanced metering infrastructure (AMI) has been achieved.

AMI is an important component of the smart grid, which makes possible two-way communication

between the electric utility and the customer. It also enables remote meter reading and access to data

in an efficient and accurate manner [2]. As one of the essential devices in AMI, the smart meter plays

a key role in the construction of smart grid. It can obtain information from the end-user side and

measure the energy consumption of users in real time, which also greatly improves the efficiency of

power supply enterprise's electricity consumption information collection [3].

A typical AMI is a mix of powerline communications, radio frequency networks, and point-to-point

devices that contain direct cellular modem devices for communications. All devices are connected

via an IP-based backhaul communication network. As shown in figure 1:

Figure 1: AMI instance layout diagram -adapted from [26]

 9

1.2 The Current State of Electricity Theft
However, energy theft has always been an intricate problem. Currently, electricity theft has become

one of the major causes of non-technical losses (NTL) in the grid [4]. One of the reasons for the rapid

growth of AMI over the past few years is to reduce the NTL caused by electricity theft [26]. It has also

diversified with the development of smart grids, evolving from traditional malicious tampering with

physical metering devices to sophisticated remote computer penetration. The following figure 2 shows

the different modes of electricity theft:

Figure 2: Different attack modes of electricity theft - adapted from [26]

According to Northeast Group, LLC. (2017) [27] report, the power supply sector worldwide loses

about $96 billion a year due to non-technical losses, which include electricity theft, fraud, etc. For

example, in India, the annual loss due to electricity theft is about $4.5 billion [29]. The 2020s will be a

critical period for the development of the global smart grid. Because North America, Western Europe

and other countries have been on the road of building smart grid. For emerging markets, however, this

 10

is one area of massive investment. The report also points out that the 50 emerging markets are well

placed to invest more than $88 billion over the next few years [28]. This is undoubtedly a signal to

promote the development of global AMI layout, but also implies the determination of the national level

in the governance of NTL in the power grid. As shown in figure 3:

Figure 3: Emerging markets AMI forecast by region (cumulative) [28]

From the perspective of information security, electricity theft seriously compromises the integrity and

availability of the power transmission process [5]. It not only causes enormous property damage, but it

is also a criminal offence. Electricity consumption data is given value in the society and belongs to the

assets of the residents and the power supply sector.

1.3 Motivation
The development of AMI in the smart grid has also contributed to the diversity of detecting electricity

theft. It provides a large amount of data support while improving energy monitoring. In the big data

environment, machine learning has also been introduced to the problem of electricity theft. For

example, Jamacia Public Service Company Ltd. (2019) has applied machine learning to combat

electricity theft [30]. Electricity theft is a form of damage to electric assets, which is reflected in the

data as an abnormal state of electricity use. The process of detecting abnormal electricity usage is

essentially a process of risk assessment as well. The process of risk assessment can be summarized

into three stages: risk identification, risk analysis and risk evaluation [5]. However, classical machine

learning and deep learning can significantly reduce the time of risk assessment and accurately combat

electricity theft by, for example, feature engineering and modeling of electricity consumption data sets

 11

containing electricity theft features, which also means an optimization of manual detection methods

[6].

At the same time, as previously mentioned, the purpose and methods of electricity theft today are tied to

technological developments, such as the extraordinary popularity of bitcoin mining. A report by Criddle

(2021) reveals the frightening reality that Bitcoin uses more electricity each year than the entire country

of Argentina [44]. News about bitcoin power theft is commonplace on the Internet, and fighting this

emerging field of theft is not enough with manual methods alone.

After the successful application of classical machine learning in ETD, some ETD modeling research has

gradually emerged in the field of deep learning. However, this is one of the motivations for this project,

hoping that some progress can be made in ETD modeling by studying more advanced algorithms in deep

learning. Since everyone can participate in bitcoin mining and it can pose a threat of electricity theft.

Then this project also hopes to make more people aware of advanced ways to combat electricity theft by

demonstrating deep learning ETD modeling and analysis.

 12

2. Summary of Literature Review in Machine Learning ETD

2.1 Introduction to Neural Network

Multilayer Perceptron
MLPs are the basis of artificial neural networks. Perceptrons are single neuron models that are likewise

the building blocks of complex neural networks. They have weighted input signals and use activation

functions to generate output signals [46]. A simple neuron is shown in the following figure 4:

Figure 4: The architecture of neuron [46]

Neurons are arranged to form a network of neurons with a topological structure. A row of neurons is

called a layer, and a network can have more than one layer. These include:

1. Input layer: the underlying layer from which the data set gets its input.

2. Hidden layer: a simple network structure in which one neuron in the hidden layer directly outputs a

value.

3. Output layer: it is responsible for outputting a value or vector corresponding to the desired format of

the modeling problem. For example, a regression problem may have only one output neuron and may

have no activation function. While a binary classification problem may have only one output neuron

and use a Sigmoid activation function to output a value between 0 and 1. This is transformed into a

classification value by the setting of a threshold value. The simple structure is as following figure 5:

 13

Figure 5: The architecture of MLP [46]

In addition, to prevent overfitting, dropout [48] can be added to the neural network model, which is

also a regularization technique. It is a technique that ignores randomly selected neurons during the

training process. They are dropped out randomly. This means that their contribution to the activation

of downstream neurons is temporarily removed on the forward channel, and any weight updates are

not applied to neurons on the backward channel [24].

Convolutional Neural Network (CNN)

CNN is another powerful artificial neural network. It retains the spatial structure of the problem and

has been developed for target recognition problems, such as computer vision.

There are three types of layers in a CNN [46]:

a. The convolutional layer. It mainly has filters and feature maps. The filter is essentially the neuron of

the layer with weighted input. The size of the output is a square receptive field. In the network

structure, the convolution layer takes the input from the feature map of the previous layer. And the

feature map is the output of the filter of the previous layer is applied.

b. Pooling layer. The pooling layer downsamples the feature map of the previous layer. It is relatively

simple in structure and takes the average or maximum of the input values to create its own feature

map.

c. Fully connected layer. This layer is used at the end of the network structure after feature extraction

and integration by the convolution and pooling layers. These layers can include nonlinear activation

functions and Softmax activation and perform prediction of the model. Its structure is as following

figure 6:

 14

Figure 6: The architecture of CNN [53]

Zheng, Yang, Niu, Dai, & Zhou (2017) [12] used a Wide and Deep convolutional neural network in the

detection model of electricity theft. The framework mainly consists of a wide component and a deep

CNN component. A fully connected layer is used in the wide component. The cases of normal

electricity usage in the data set show periodicity, while the data of electricity theft is less periodic. The

cases learn features by memorizing 1-D time series. the CNN is robust to the location and orientation

of the target in the scene, and the principle also uses 1-D sequences. That means invariance to the

specific position of the feature. The case uses rectified linear unit (ReLU) as the activation function,

which activates only positive values. In the back propagation process, each cell calculates its weight

based on the loss values sent from the upper layers. A deep CNN component that processes electricity

consumption data in two dimensions depending on the number of days. The component consists of

multiple convolutional layers, a pooling layer and a fully connected layer. The convolutional layer

contains unique filters, and the activation function is selected as ‘tanh’. The pooling layer is selected as

maximum. The fully connected layer uses a logistic loss function, which should be

'binary_crossentropy'. The activation function is chosen as Sigmoid.

Recurrent Neural Network (RNN) and Long Short-term Memory (LSTM) Network

RNN is designed for sequential problems and their connections have loops that add feedback and

memory to the network over time. Long short-Term memory (LSTM) network is a recurrent neural

network trained by time back propagation (LSTM models include stacked LSTM, CNN-LSTM,

bidirectional LSTM, etc). It has a unique formulation that avoids the problem that other RNNs cannot

be trained and scaled. Moreover, it overcomes the problems of gradient disappearance and gradient

explosion, truncated backpropagation through time (TBPTT) is a key concept in the training LSTM

model. Unlike neurons, the memory blocks of LSTM networks contain states and outputs and are

connected in layers. Each of these blocks has three gates: a forget gate, an input gate, and an output

gate [21]. Also, a sigmoid activation function is used to control whether they are triggered or not.

Sliding window is a method for transforming time series into supervised learning. Its structure is as

following figure 7:

 15

Figure 7: The architecture of LSTM [52]

CNN-LSTM
The CNN-LSTM framework consists of feature extraction of input data using CNN layers combined

with LSTM to support sequence prediction. It was essentially developed for visual time series

prediction problems and for applications that generate textual descriptions from image sequences [23].

The simple structure is as following figure 8:

Figure 8: The architecture of CNN-LSTM [46]

 16

Hasan, Toma, Nahid, Islam & Kim (2019) [6] and Madhure, Raman & Singh (2020) [22] use a

CNN-LSTM model in the anomaly detection model. Case [6] also solves a binary classification

problem with normal electricity consumption and theft data as labels. It includes seven hidden layers

(the first four hidden layers perform active operations), each of which consists of twenty feature sets.

The rest of the hidden layers are LSTM. the ReLU activation function is used in the product

convolution layer. The maximum value is selected for the pooling layer. The SoftMax function is

selected after the operation. In the LSTM model, Case [22] adds a Dropout layer after each LSTM

layer. This can simply and effectively prevent the model from overfitting. The optimizer chooses

Adam to update the network weights. Two fully connected layers were placed at the end of the

network to make predictions through the network. One of the layers has 24 neurons and a linear

activation function is chosen, and finally an output layer contains 1 neuron.

2.2 The Current Situation of Machine Learning in ETD
Predictive modeling is a significant concept in machine learning, where different data are understood

by models. The benefit of predictive modeling is that it allows the development of models that make

the most accurate predictions, rather than focusing on explaining why a model makes a prediction.

In classical machine learning, some algorithmic modeling can also yield good metrics on electricity

theft problems. For example, linear algorithms: Logistic Regression (LG) and Linear Discriminant

Analysis (LDA), nonlinear algorithms: KNN, Naive Bayes (NB), Classification and Regression Trees

(CART) and Support Vector Machines (SVM). They can model and handle classification problems.

Also, in dealing with regression problems, linear algorithms: Linear Regression, Bridge Regression,

Least Absolute Shrinkage and Selection Operator (LASSO) Linear Regression and Elastic Net

Regression, nonlinear algorithms: KNN, CART and SVM. They can also be used for related modeling

problems. As summarized by Hasan et al. (2019) [6], algorithms of classical machine learning show

good performance on different electricity consumption data set. In addition, ensemble algorithms can

also improve the accuracy of the dataset. For example, Bagging (Bagged Decision, Random Forest and

Extra Trees), Boosting (AdaBoost and Stochastic Gradient Boosting) and Voting.

Along with the development of machine learning and smart grid, deep learning as a branch of machine

learning is also widely used in industry. Neural networks as a concept of deep learning are also widely

used in computer vision, speech recognition and anomaly detection and other aspects [6]. MLP, CNN,

RNN, and hybrid models for modeling can also cover power-use data set and deal with regression and

classification problems [7]. The development of deep learning is not a complete replacement for

classical machine learning, but there is a difference in the details that both focus on in terms of ideas

for dealing with different data sets. Some limitations of traditional machine learning are highlighted in

the processing of different data. Dorffner, G. (1996) shows that neural networks are robust to noise in

the input data and mapping functions and can even support learning and prediction in the presence of

missing values. At the same time, neural networks do not make strong assumptions about the mapping

function and can easily learn linear and nonlinear relationships [8].

From another perspective, it can also be understood the electricity consumption data set as a time

series forecasting problem [20]. Unlike simple classification and regression problems, time series

 17

problems add sequential complexity or time dependence between observations. Deep learning neural

networks are able to automatically learn arbitrarily complex mappings from inputs to outputs and

support multiple inputs and outputs. CNN support effective feature learning. It provides efficiency and

better performance in identifying, extracting, and refining useful features from raw data [9]. CNN

achieves this by directly manipulating raw data (e.g., raw pixel values) rather than deriving

domain-specific or handcrafted features from raw data. RNN, such as LSTM, are used for complex

natural language processing problems. This capability can be used for time series prediction. LSTM

networks support efficient learning of temporal dependencies [10]. These models can also be used to

advantage by mixing them, such as hybrid models like CNN-LSTM and ConvLSTM.

 18

3. Project Outline

3.1 Project Process Description
The project is divided into five main phases:

1. Data pre-processing. Data cleaning, including missing value removal and filling (KNN Imputation),

and outlier screening (IQR).

2. Data visualization. Visualization of the raw data set through histograms, curves, Pearson’s

correlation coefficient (PCC), autocorrelation function (AFC) and seasonal and trend decomposition

using loess (STL decomposition), and preliminary examination of the relationships between the data.

3. Imbalance classification. Generate more realistic data of electricity thieves by Borderline-SMOTE.

4. Data transformation. Normalization is performed before the data is fed into the model, which also

includes the use of batch-normalization directly in the model.

5. Model building. Three models are built for comparison, which include MLP (baseline), CNN-LSTM

and ConvLSTM. For each model split training, validation and testing data set. The optimal model is

maintained by optimizing feature extraction, hyperparameters and functions, etc.

6. Comparative analysis of performance metrics. The optimal model is determined by a comprehensive

evaluation of the models on the test data set, which includes accuracy, loss, confusion matrix, F1-score,

recall, precision, Cohen’s kappa, receiver operating characteristic-area under the curve (ROC-AUC),

precision-recall-AUC (PR-AUC), and related visualization results.

To express the project process more clearly and intuitively, please see the following figure 9:

 19

Figure 9: Project process

 20

3.2 Related Configuration of Project Platform

Hardware Configuration

Computer model: MacBook Pro (16-inch, 2019)

Operating system: macOS Big Sur (Version 11.2.1)

Processor: 2.6 GHz 6-Core Intel Core i7

Memory: 16 GB 2667 MHz DDR4

Graphics: AMD Radeon Pro 5300M 4 GB

Cloud GPU (Paperspace): Free-GPU, 30GB RAM, 8 CPUs

Software Configuration

Python (Version 3.7.6)

Anaconda Navigator (Version 1.10.0)

Jupyter Notebook (Version 6.1.4)

Microsoft Excel (Version 16.46)

Major Python Library

Scipy (Version 1.5.2)

Numpy: (Version 1.19.4)

Matplotlib: (Version 3.3.2)

Pandas: (Version 1.1.1)

Sklearn: (Version 0.23.2)

TensorFlow (Version 2.4.0)

Keras (Version 2.4.3)

Table 1: Project platform configuration

 21

4. Problem Analysis and Data Preparation

The input target for machine learning is data. Before applying a data set to machine learning

modelling, data preparation is the first and significant aspect. Different experimenters understand and

process data set differently, which can make a difference to the state of the data set. The state of the

data set has a direct impact on the performance measures, such as accuracy, of the machine learning

model predictions. In real life, the data set obtained by experimenters is often incomplete and

accurate. For example, the electricity consumption data required for this project is often erroneous

and noisy [12]. The process of data preparation can also be referred to as pre-processing of the data,

which is a data mining technique [31]. Before predictive modelling, it still needs to perform

important aspects such as data cleaning, dealing with imbalanced classification, data transformation

and feature extraction. This will make the data fit the model and algorithm more effectively and

reduce the negative issues of model failure or low accuracy during modelling due to data leakage or

over-fitting and similar issues. At the same time, this project is still guided by the data for the

modelling prediction problem. Therefore, improving data accuracy and the accuracy of model

predictions remains a vital issue to always think about.

Data preparation includes but is not limited to:

1. Preliminary and visual analysis of data. Statistical as well as graphical and charting methods are

used to analyse data for differences, anomalies, potential patterns, etc.

2. Data cleaning. Imputation of missing values, outlier and anomalous data processing, etc.

3. Imbalanced classification. When dealing with classification problems, the data set often has an

unbalanced number of variables in each category, which can affect the experimenter's understanding

of the evaluation metric of the machine learning model. Therefore, this requires a balancing of the

predicted categories.

5. Data transformation. Machine learning requires that the input variables be numerical and that

different algorithms have different levels of accuracy with respect to the data. Operations such as

standardization or normalisation of the data need to be performed.

In summary, when acquiring a data set, the experimenter should use as much experience, expertise

and machine learning techniques as possible to analyse and transform the raw data into a better fit for

the model. This is not only a process of transforming the raw data into machine learning

understandable data, but also a process of transforming the raw data into something that is as

understandable as possible for the experimenter.

4.1 Preview of Raw Data Set
The data set selected for this project was obtained from real electricity consumption data published

by the State Grid Corporation of China (SGCC) [12]. The data set contains the daily electricity

consumption in kilowatt hour (kWh) of 42,372 customers between 1 January 2014 and 31 October

2016 (1034 days). 38,757 of these customers are normal electricity users (labeled 0) and 3,615 are

customers who have been identified as electricity thieves (labeled 1).

 22

See Appendix A for a detailed description of the data set.

Anomalies in the data can be found by looking at the statistical information in the raw data:

1. The Count of daily electricity consumption for all users varies greatly, and some of the 25th

Percentile is almost zero, indicating that the data set contains a large number of missing or zero

values.

2. The maximum values of daily electricity consumption are unusual, with some of the maximum

daily consumption exceeding 10,000 kWh, however, the data and averages of daily electricity

consumption are very much in line with the habits of residential electricity consumption. It can be

analysed that this data set should contain a small amount of information on industrial or commercial

electricity consumption, or that the data collection is anomalous due to a malfunctioning energy

metering device. The billing and data collection methods for industrial electricity consumption also

differ from those for general electricity consumption, as do the patterns of behaviour and patterns of

electricity consumption between the two [32]. However, these users will be retained in order to

maintain the authenticity of the data set and to validate the compatibility of the model. This issue can

be dealt with at a later date when the data is transformed.

3. The standard deviation fluctuates over time. This indicates that there are seasonal fluctuations in

this electricity consumption, or that it is affected by outlier.

The main anomalous states of the data set can be summarised as following table 2:

SGCC data set
Description Quantity Class Tag Time of Duration Number of Days

Normal users 38757 0
1 January 2014 to 31 October 2016 1034 Electricity theft user 3615 1

Total user 42372 /

Total Number of Data Amount of Missing Values Amount of Zero Values
43812648 11233528 5788603

Table 2: Raw data status

A summary of the anomalies in the raw data reveals that missing values account for 25.6% of the

total data, and zero values account for 13.2% of the total, for a total of 38.8% of the anomalous data.

As electricity consumption contains time continuity, it is time series data. Therefore, in order to

maintain the integrity and inherent regularity of the data structure, zero values should also be

classified as missing values and filled in.

 23

4.2 Electricity Data Cleaning
Data cleansing is an important branching aspect of machine learning, where messy data content and

structure can directly lead to biased analysis and failed predictions. As Kazil & Jarmul (2016) [34]

point out, data cleaning is not the most appealing aspect of machine learning, but it does form an

essential part of data collation wrangling. The analysis of the data can reveal anomalies such as

missing values and outliers, or even redundant data with poor data correlation. The screening, analysis

and processing of these anomalies are what needs to be done in this session.

4.2.1 Missing Data Filtering
Missing data and anomalies in the SGCC data set can arise for a number of reasons, such as a failure

of the metering facility during collection, transmission or storage. Firstly, there are a large number of

missing and zero values in the data set (hereafter referred to as missing data). It can be counted the

proportion of missing data per user on a user-by-user basis and set a rejection baseline of 3%, i.e. users

with more than 1 month of missing data will be removed. This is to retain the maximum authenticity

and objectivity of the raw data and model results, taking into account the experimental time required

for the project and the performance of the experimental equipment. The minimum threshold of missing

data is also used for monthly data in order to retain certain characteristics of the raw data.

After filtering the users according to the proportion of missing data, 8,883 users were obtained. Of

these, 8,275 were normal users (labeled 0) and 558 were electricity theft users (labeled 1). The final

data dimension was: daily electricity consumption data (kWh) for 8,883 electricity users between 1

January 2014 and 31 October 2016 (1,034 days).

4.2.2 Missing Data Imputation
In machine learning, missing data imputation is a method for dealing with missing data [35]. It can

replace missing data in a data set after identifying the missing values. The study cases [12] [13] [14]

[15] [16] use the method of linear interpolation to deal with missing values in the data pre-processing

stage, and combine it with the "three-sigma rule of thumb" to deal with outliers.

Firstly, in terms of missing values, it should be considered the authenticity of the replacement data as

well as preserving the integrity of the data results. The data set used for this project involves

continuous missing data, so KNN (k-nearest neighbour) imputation is a more efficient method. Its

algorithm is based on similarity and relies on a distance metric, the default of which is the Euclidean

distance metric [11]. As stated by Beretta & Santaniello (2016) [36], KNN imputation is effective for

handling missing values in continuous and ordered data, and its imputation accuracy and reduction of

statistical errors are typically better than 1NN (e.g., two neighbouring data). The main point is that the

imputed values are the actual values that occur, rather than the constructed values, which also allows

for better preservation of the authentic data structure. This can be achieved using the KNNImputer

class in the Scikit-learn library, with a default of n_neighbors of 5. After processing the missing values,

it can be transposed the data and view a statistical description of the data set on a user-by-user basis, as

shown in figure 10:

 24

Figure 10: Descriptive statistics of missing values are processed (overview)

Now that there are no more missing data in the data set, outliers need to be identified next. Outliers are observations that are different from the
mainstream data in that they are unique, rare or do not match in some way [37]. However, outliers may exist as 'false' outliers. For example, in a
particular experiment, age needs to be used as the observed variable. Suppose that the age variable in some samples appear to have a value of
1000, which is clearly a true outlier that can be judged by common sense. Outliers in different fields require a combination of experience,
common sense and statistical methods to identify the true outliers. In the case of electricity consumption data, however, trends in electricity
consumption are characterised by sharp, peak, flat and valley, as well as seasonal and holiday influences that can result in 'false' outliers.
Because fluctuations in electricity consumption data may be rare or unique, but are real and normal values, different households also have
different characteristics. As this data set is used for binary classification, it requires trends, underlying patterns or seasonal characteristics to
distinguish between electricity-theft user and normal electricity user. For each customer over a period of 1034 days, empirical and statistical
analysis can be combined to treat the true extreme outliers and retain the 'false' outliers.

 25

In this step, boxplot allows for better screening of outliers. Boxplot can also be called
Box-whisker Plot. It actually uses the quantile of the data to identify the outliers in it. The
boxplot shows the distribution of data based on a summary of five numbers (minimum, first
quartile (Q1), median, third quartile (Q3), and maximum) and the maximum value is Q3 +
1.5*IQR and the minimum value Q1 - 1.5*IQR [38]. This is shown in figure 11:

Figure 11: Description of boxplot [38]

However, due to the characteristic nature of electricity consumption data, the statistics can be
conducted in such a way as to create 'false' outliers. According to Dawson (2011) [39], Q3 +
1.5*IQR/Q1 -1.5*IQR can be defined as a minor or moderate outlier and Q3 + 3*IQR/Q1
-3*IQR as an extreme outlier. By screening the minor and extreme outliers for all users over
a period of 1034 days, a partial sample is shown in figure 12 and 13:

 26

Figure 12: Minor outliers over 1034 days (1.5*IQR)

 27

Figure 13: Extreme outliers over 1034 days (3*IQR)

 28

By comparing and observing the four sample users, it can be seen that the number of extreme
outliers is reduced compared to the number of minor outliers, but still has a certain number of
extreme outliers. A preliminary analysis can first be made by electricity consumption. For
example, in 'Normal user 4', the boxplot shows anomalies, with one data greatly deviating from
the data group with a value of 10,860.69 kWh per day. Combined with the overall customer
electricity consumption trend and practical experience analysis, such a large discrepancy is
unusual or objectively non-existent in real life and would be due to a fault in the collection or
statistical equipment. It can treat outliers such as these as real outliers to be dealt with. The
observation of other sample customers shows that the theoretical maximum value of extreme
outliers is no more than 43 kWh per day. This can be explained in terms of behavioural
characteristics of electricity consumption, where there is self-subjectivity in consumption and
where the data set also contains suspected commercial or industrial electricity users or
electricity thieves. So, such outliers can be ignored, as some minor or moderate outliers it is
objectively present.

Removing them will certainly make the machine learning results more accurate, but this
seemingly good result may be false and does not reflect the most realistic and objective results.
So, a more sensible approach is to combine the results of the statistics with the analysis of
objectively existing electricity consumption behaviour and daily electricity consumption
characteristics (for example, actually comparing the data on the basis of the statistics to see if
the average or peak interval of electricity consumption per household over 1034 days shows
extremes with outlier multiples). Along these lines, all objectively existing outliers need to be
retained and the true extreme outliers removed wherever possible.

After identifying the extreme outliers, the actual number of outliers to be removed is 235,
which are characterised by deviations of several hundred or even a thousand times from the
main data set. After the initial data cleaning, the data visualisation can be analysed and outlined
using a more realistic data set.

4.3 Electricity Data Visualization
More detailed analysis of the data will allow machine learning predictions to be presented with
better results. The visualisation of the data allows the underlying cyclical patterns and trends
within the data set to be more clearly presented, and allows the difference between normal and
theft users to be better differentiated. The visualisation process also provides more ideas for
later data feature extraction and provides a better basis for predictive modelling. Here, the
combination of Matplotlib and Seaborn libraries in Python can enhance the plotting effect.

Firstly, the data set contains two categories of normal users and theft users. Due to the sheer
size of the data dimensions, representative data can be selected, the respective total average of
the two categories of user data for analysis. The following figure 14 and 15 are available for
both categories of users on a yearly and quarterly basis:

 29

Figure 14: Average annual electricity consumption

Figure 15: Quarterly average electricity consumption

 30

By looking at the two graphs, it can first be seen that the average electricity consumption in the
fourth quarter of 2016 was very small. This is because there is only one month of data for the
fourth quarter of 2016, so this anomaly can be ignored. However, in the yearly graph it can be
seen that the average electricity consumption of electricity thieves is more than twice that of
normal users, while the fluctuations between normal and total users are small and have a stable
ratio. The quarterly graphs also show that the fluctuations and ratios between normal and total
customers are very regular. It is worth noting that in the third quarter of each year there is a
peak in electricity consumption for both categories, which is very much in line with real life.
This is because June to September is the summer months in China, the peak period for air
conditioning [32]. However, electricity theft users still maintain a high average electricity
consumption in the quarterly graph and the trend is upwards every year. This is in stark contrast
to the smooth cyclical nature of normal users. This also reflects the fact that the behavioural
characteristics of electricity theft users can make some difference.

Due to the complexity and concealment of electricity theft in reality, the ever-evolving ways in
which electricity is stolen dictate that the final data collected on electricity consumption is
diverse. The total amount of electricity consumed is sometimes not directly used to judge the
existence of theft, but should be explored in more detail. The following graph compares the
average daily electricity consumption of two types of customers over a period of 1034 days, as
shown in figure 16:

 31

Figure 16: The average daily electricity consumption in 1034 days for the two types of users

 32

The graph above clearly reflects that the average daily electricity consumption of electricity thieves is
still greater than that of normal users. On the one hand, normal users have a smooth fluctuating and
cyclical pattern, and seasonal specificity is also more regular. For example, the peak period of electricity
consumption for air conditioning in summer. As well as a small peak during the Chinese New Year
around March each year. On the other hand, in the curve of electricity theft users, the average electricity
consumption fluctuates greatly and is not smoothly cyclical. A point worth noting is that electricity theft
users also seem to have a certain seasonal pattern, with a peak in the summer months of each year as
well. This point suggests that the behaviour of electricity theft users is deceptive and somewhat
misleading. However, there is another curious phenomenon in the graph. Around February to March
each year (Chinese New Year), there is a clear downward trend in electricity consumption by electricity
theft customers and it is close to the average value of electricity consumption by normal customers.
There are a number of reasons for this phenomenon, for example, during the Chinese New Year period
the electricity thieves may not be stealing or for some reason the thieves need to reduce their electricity
consumption during this period, etc.

After the annual and quarterly analysis has been completed, further data can be outlined for both types
of users on a monthly and weekly basis. The sample data for the year 2015 can be selected, as shown in
figure 17 and 18:

Figure 17: Average monthly electricity consumption of Theft users in 2015

 33

Figure 18: Average monthly electricity consumption of Normal users in 2015

By comparing the two types of customers it is clear that normal customers' electricity consumption
data tends to be stable and less volatile in months other than summer, with July, August and September
being significantly stronger than other months in terms of consumption and fluctuations. The data for
electricity thieves, however, appears unusually chaotic and there is a very sharp decline in December,
with the overall trend not conforming to natural patterns. The extraction of monthly features is also an
aspect that needs to be considered.

In addition to this, according to Zheng et al. (2017) [12], data from four weeks can be extracted for
further analysis, for example, plotting again the comparison of data between the two types of users, as
well as plotting Pearson's correlation coefficient (PCC) and Autocorrelation function (ACF). These
methods show correlations and potential regularities between the data in each of the two categories of
users. The two categories of users can first be plotted again on a weekly basis, as shown in figure 19
and 20:

 34

Figure 19: average daily electricity consumption every four weeks (Theft users)

Figure 20: average daily electricity consumption every four weeks (Normal users)

 35

From the graph above it can be clearly seen the regularity of weekly electricity consumption for
normal customers. Mondays and Tuesdays are the peaks of electricity use, with Wednesdays falling
into the weekly lows of electricity use and then continuing to fluctuate steadily. The electricity thieves,
on the other hand, continue to show chaotic electricity consumption behaviour. In fact, while
comparing the averages, it also can be carried out similar analyses for the other users in the sample. In
general, normal users show good cyclical and seasonal patterns, but electricity theft users continue to
have chaotic electricity usage characteristics mixed in. Thus, annual, quarterly, monthly as well as
weekly and daily electricity usage characteristics can be used as a benchmark for extracting features.

Next, to explore the correlation between the data, the Pearson's correlation coefficient (PCC) for the
two types of customers over the four weeks of data can be plotted, as shown in figure 21 and 22:

Figure 21: Pearson’s correlation coefficient (PCC) (Theft User)

 36

Figure 22: Pearson’s correlation coefficient (PCC) (Normal User)

The two figures clearly show that the data correlation of normal users is much stronger than
electricity theft user. The correlation coefficient for electricity theft customers does not exceed a
maximum of 0.3 and has a certain negative correlation. However, the correlation coefficient for
normal customers is generally higher than 0.8 and shows a strong positive correlation. In the PCC,
values above 0.5 or below -0.5 represent a relatively significant correlation. Positive values closer to
1 indicate a stronger direct correlation. A negative value and closer to -1 represents a strong indirect
correlation [33]. The following figure 23 shows that:

 37

Figure 23: Description of Pearson’s correlation coefficient (PCC) [33]

Similarly, the daily electricity consumption of all normal customers and electricity theft customers for
1034 days can be compared separately, as shown in the following figure 24 and 25:

Figure 24: Pearson’s correlation coefficient (PCC) (Theft User 1034 days)

 38

Figure 25: Pearson’s correlation coefficient (PCC) (Normal User 1034 days)

By comparing on the raw data, it is also clear that the positive correlation between the daily
electricity consumption of normal users is stronger than that of electricity thieves. Moreover, in the
PCC diagram for normal customers, it can be seen cross-pointing with directionality. This indicates
the potential cyclicality and regularity of the electricity consumption characteristics of normal
customers.

In addition, in the Autocorrelation function (ACF) diagram [12] it can be also seen the cyclicality of
the average daily electricity consumption of normal users over 4 consecutive weeks, which reinforces
the previous analysis. In contrast, electricity theft users do not show strong cyclical characteristics.
This is shown in figure 26 and 27:

 39

Figure 26: Autocorrelation function (ACF) of Theft User in 4 weeks

Figure 27: Autocorrelation function (ACF) of Normal User in 4 weeks

The data set has already been observed to have typical cyclical patterns, such as trend and seasonality.
In simple terms, the SGCC data set is a seasonally trending time series. Here can use seasonal and
trend decomposition using loess (STL decomposition), a time series decomposition method that uses
robust locally weighted regression as a smoothing method and is based on LOESS (locally weighted
regression) to decompose the time series into decomposition into trend components, seasonal
components and residual terms [40]. In a way, the data and features determine the upper limit of
machine learning, and the models and algorithms only approximate this upper limit [41]. In theory, an
STL decomposition should be performed for each user. For presentation purposes, It can be continued
to select the 1034 days of average daily electricity consumption for both types of users for STL
decomposition. This is illustrated in figure 28 and 29:

 40

Figure 28: STL decomposition of average daily electricity consumption for 1034 days (Electricity-theft user)

 41

Figure 29: STL decomposition of average daily electricity consumption (Normal electricity user)

 42

The STL decomposition diagram further shows that the trend for normal customers is cyclical, while the
trend for electricity theft customers is upward. The two types of customers have very different
seasonality. As for the residual data, the seasonality and trend have been removed and are more stable
data. For the selection of features, the trend, seasonality and residual data can still be extracted
according to different temporal characteristics.

Overall, the data set has been observed and analysed from a number of perspectives, and the distinctive
characteristics and behaviour of the two types of customers have been broadly captured. In terms of
temporal characteristics, annual, quarterly, monthly and weekly can all produce different potential rates
of change. In terms of statistical data, means, minima, maxima and even variances, medians and so on
can be used to outline the framework of characteristics for the model that follows. In addition to the raw
data base, features can be extracted from the trend, seasonal and residual stable data through STL
decomposition. These features, once extracted and transformed, can be better utilised by the model and
algorithm. Before proceeding further with feature engineering, another key issue needs to be considered.
As this project deals with a supervised learning binary classification problem and the raw data set
inherently has an imbalance between the two types of users. In order to predict better results from the
model, this needs to be dealt with first.

4.4 Imbalanced Classification Sorting
Imbalanced classification datasets tend to mislead the performance in machine learning. In contrast,
different data sampling techniques can better balance the class distribution and train directly on the data
set instead of directly modifying the original data [19]. Sampling techniques can be roughly divided into
three types: over-sampling, under-sampling and combined sampling technique. The basic pattern is
shown in figure 30:

 Figure 30: Example of basic sampling pattern [42]

 43

The current imbalance status of the data set is known, with 558 electricity theft customers and 8,275
normal customers. The electricity theft customers represent approximately 6.3% of the total customers
and are classified as severely unbalanced. In order to continue to maintain the authenticity of the data
set, the oversampling technique is the first thing that needs to be considered. Hasan et al. (2019) [6]
point out in their case that ordinary oversampling techniques can allow the model to develop an
overfitting state due to the replication of data points. They adopted the SMOTE (Synthetic Minority
Oversampling Technique) to generate electricity theft user of synthetic data using minority instances.
However, a method called Borderline-SMOTE [43] has shown better performance than SMOTE in
research. In simple terms, for example, there is a possibility of overlap between the minority and
majority classes in the raw data set or statistical observations of electricity data. SMOTE may confuse
the two classes of data, resulting in inaccurate classification data being produced. However,
Borderline-SMOTE will classify observations in this minority class as noise points when the data
adjacent to the minority class are all in the majority class, and ignore them when generating the data
[43]. It is equivalent to creating boundaries in the vicinity of some outliers, which is more conducive to
the accuracy of the generated data. The following figure 31 shows the state of the data set after using
Borderline-SMOTE balance:

Figure 31: The state of the data set after classification balance

Having obtained the 7,717 electricity theft customers produced by Borderline-SMOTE, the results can
be compared with real electricity theft customers and normal customers. The average daily electricity
consumption of the three categories of users for 1034 days is shown in figure 32:

 44

Figure 32: Comparison of electricity theft users produced by Borderline-SMOTE

From the graph it can be observed that the trend of electricity theft users produced by Borderline-SMOTE matches the trend of real electricity
theft users and is closer to the electricity consumption data of real electricity theft users. And it does not show any significant overlap with
normal electricity users.

 45

4.5 Data Transformation

Normalization rescales the data from the original range so that all values are within the new range
of 0 and 1 [17]. The study cases [12] [14] [15] [16] [18] used the 'MAX-MIN scaling method' to
normalize the data set. This can be done to make the data fit the neural network better, since there
is some numerical variation in the electricity consumption data. This also helps to optimize the
core algorithm of the neural network and prevent overfitting. The formula is as follows:

!(#!) = "!#$%&	(")
$*+(")#$%&(") 		[12]

In addition, this project adds a novel data transformation method, batch-normalization, to the
ConvLSTM model, which can make training deep neural networks more efficient. As stated by
Ioffe & Szegedy (2015) ‘it can accelerate deep network training by reducing internal covariate
shift’ [45]. In simple terms, batch-normalization can be added after each layer before the model
output layer to optimize the efficiency of model operations.

 46

5. Model Building
The processed data is now ready to be applied to the algorithms and models. Three models are built
in this project, MLP (baseline), CNN-LSTM and ConvLSTM. Data modeling is a long and iterative
process that first requires a uniform partitioning of the processed data into training, validation and
test data sets. The training and validation data can be considered as exercises, while the test data is a
way to truly validate the model.

The proportions of the three data sets in this project are, respectively, 64%, 16% and 20%. The data
is then matched to the model for prediction through model definition and compilation. The three
models belong to supervised models dealing with dichotomous problems, both by training the models
and evaluating the performance of the models in identifying normal electricity users and electricity
theft users. Since the data set was too large, in order to shorten the project time, ‘earlystopping’ [47]
was applied to three models so that the modeling efficiency could be improved, and the network
could be better generalized. It is also convenient to select the best model for prediction. The patience
of all models is uniformly 50 and the monitor is val_loss. The modeling process can be divided into
the following steps of figure 33:

Figure 33: The modeling process

 47

5.1 MLP

Although the MLP is the baseline model, dropout [48] is still used in order to ensure the optimal
state of each model. It is used to perform adaptive regularization to prevent overfitting of the
model. Since no time series are implicated in this model, the unit used for feature fitting is days.
The model architecture and parameters are as following figure 34:

Figure 34: MLP model architecture and hyperparameter tuning

In terms of hyperparameters, the output layer activation function is sigmoid [49] and softmax is
not chosen. Since the results of both are not very different in this model and sigmoid is more
stable for scaled data in this project. Sigmoid is suitable for the binary classification prediction
output of this project (0 for normal user label and 1 for electricity theft user label) because it exists
between 0 and 1. While other activation functions are ReLU [49], which is currently used for

 48

almost all kinds of neural networks in deep learning. It is more conducive to back propagation and
avoid problems such as gradient explosion or vanishing. As shown in figure 35:

Figure 35: Sigmoid and ReLU Function [49]

In addition, logarithmic loss is also the first to deal with binary classification issue, namely the
binary_crossentropy in Keras. Binary cross-entropy [50] compares each predicted probability with
the actual category output, which can be either 0 or 1. It then calculates a score that penalizes the
probability based on the distance from the expected value.

The optimizer is Adam [51], which is an optimization algorithm and can replace the classical
stochastic gradient descent method to iteratively update the network weights in the training data. In
short, Adam can adjust the learning rate of each network weight adaptively.

5.2 CNN-LSTM

The concept of the model is to use a CNN layer to extract features from the input time series
electricity consumption data, i.e., the model extracts features within each sub-series (time period) in
a windowed block pattern. Since the data set contains 1034 days of electricity consumption data, the
time step can be divided into 11*94, i.e., each subsequence contains 3 months of electricity
consumption data sequences. the CNN layer can be encapsulated in TimeDistributed [54] and the
extracted features are flattened for use in the LSTM model. As shown in the figure below: As
shown in following figure 36:

 49

Figure 36: CNN-LSTM model architecture and hyperparameter tuning

The parameter settings of this model do not change much from the baseline model, and the maximum
pooling layer following two consecutive CNN layers is also a more conventional model.

5.3 ConvLSTM

ConvLSTM can currently be applied in the basic computer vision domain [55] with good results. In
addition, the classical ‘human activity recognition’ also uses this model architecture [56]. The
central idea of this model in this project is to deal with the issue of binary classification of time

 50

series data. In essence, ConvLSTM is different from the first two models. CNN-LSTM passes the
features extracted from CNN to LSTM, while ConvLSTM performs the convolutional operation in
LSTM. This also involves another key difference, the input data of ConvLSTM is in
three-dimensional (3-D) instead of the previous 1-D or 2-D data dimensions. The following figure
37 shows an example of the ConvLSTM structure:

Figure 37: ConvLSTM cell structure [57]

Therefore, the first step of the model is the need to reshape the electricity consumption data into 3D
dimensions, i.e., samples, time steps and features. In this model, the special ConvLSTM2D [58] is
applied with the expected input dimensions: samples, time, rows, columns, channels, which can also
be interpreted as the time step being decomposed into rows * columns of picture data points.

Here, 'time' is 11 and 'columns' is 94, in the same way as 1034 days were divided into 11*94 days in
the last CNN-LSTM. ‘Row' is 1, because the original dimension of the electricity consumption data
is 1D. In addition, 'channels' is also 1, because the data set does not contain other additional
features.

Furthermore, in terms of data normalization, ConvLSTM in this project uses batch-normalization
[45], which allows data set transformations to be compiled in the modeling, eliminating the time of
separate transformations and providing model efficiency. The complete ConvLSTM structure
becomes clearer and more concise, as shown in the following figure 38:

 51

Figure 38: ConvLSTM model architecture and hyperparameter tuning

A point worth noting is that the output still needs to be flattened into a long vector before the
dense layer can be interpreted. After the model is complete, the next step is to evaluate the model
with comprehensive performance metrics.

See Appendix B for relevant codes

 52

6. Performance Metrics Analysis

6.1 Performance Metrics Description

For the model evaluation part, the project used a more comprehensive performance metric on the
test data set (20%).

Classification accuracy

Accuracy is the prediction made by the model for each electricity user category in the test data
set and compared to the user labels (0 and 1). Simply put accuracy is the percentage of correct
examples predicted in the test set. Since the data set has been processed by balanced
classification, the accuracy has a strong ability to prove. It is calculated as:

Accuracy	 =
)*++,-.	/+,01-.1*23
4*.56	/+,01-.1*23 		[59]

Loss (Binary cross-entropy/Log loss)

Both loss and accuracy should be a probability value between 0 and 1. In general, loss is the
opposite of accuracy, with smaller values representing better model performance. It calculates
the fraction of penalty probability based on the distance from the expected value, which means
how close or far it is from the actual value [60]. This project is binary classification, so the loss is
binary cross-entropy. As shown in the following figure 39:

Figure 39: Binary cross-entropy/Log loss formula [60]

Confusion Matrix

Confusion matrix is a technique applied to summarize the performance of classification
algorithms, and it can show more intuitively the correctness and error types of the model [59]. In
a way, it overcomes the limitation of relying solely on classification accuracy. Typical binary
classification confusion matrix is shown in figure 40:

Figure 40: Typical binary classification confusion matrix [59]

 53

Assume that the value in each box is 10.

TP is True Positive, which means that the model correctly classifies 10 of the positive class data.
In this project, it can be interpreted that the model correctly classifies 10 electricity theft user.

TN is True Negative, which means the model correctly classifies 10 negative classes of data. The
same can be interpreted as the model correctly classifies 10 normal users.

FP is True Negative, which means that the model incorrectly classifies 10 negative classes as
positive. This means that the 10 normal users are incorrectly predicted as electricity theft user.

FN is False Negative, which means that 10 positive data are incorrectly classified as negative by
the model. This means that 10 electricity theft users are incorrectly predicted as normal users.

In addition, the accuracy can be calculated in a clearer way through the confusion matrix with
the following formula:

Accuracy	 =
4; + 4/

4; + =; + 4/ + =/		[59]

Precision

Precision refers to the proportion of actual positive results in classified positive data, and
represents the classification accuracy of classified positive data [13]. In this project, it is the
classification accuracy of electricity theft users. Its value is between 0 and 1, the larger the better.
The formula is as follows:

Precision =
4/

4/ + =/		[13]

Recall

Recall is the proportion of classified positive results in the actual positive data, i.e., the
classification accuracy in the actual positive data [13]. In this project, it represents the
classification accuracy of actual electricity theft users, and its value is also between 0 and 1. The
formula is as follows:

Recall =
4/

4/ + =;		[13]

F1-Score

F1-score captures the trend of precision and recall, thus making the model evaluation more
comprehensive. The formula is as follows:

F1 − score	 = 2	 ×	
/+,-131*2	 × 	L,-566
/+,-131*2	 + 	L,-566 		[6]

 54

Cohen’s kappa

Cohen's kappa can be used as a means of judging the strength of the model's classification
predictions. The kappa value is more of a measure comparing the observed accuracy with the
expected accuracy [61]. It is also a value between 0 and 1, the same as the previous metric, and the
larger the value the better the performance of the model. The following is Cohen's kappa formula
for the binary classification confusion matrix:

+,ℎ./’1	23443	 = 	 2 × 	 (4/ × 4; − =; × =/)
(4/ + =/) × (=/ + 4;) × (4/ + =;) × (=; + 4;)

			 [62]

ROC-AUC

AUC is area under the curve and ROC-AUC can be derived by calculating area under the ROC
curve [25]. On the AUC curve, the higher the ROC-AUC score the larger area under the curve,
which has a value between 0 and 1. In fact, the ROC curve visualizes TP and FP in a trade-off
manner.

PR-AUC

Similar to ROC-AUC, PR-AUC also defines the PR curve, which is a visualization of precision
and recall. The PR-AUC also has a score between 0 and 1, with the higher the value the larger the
curve area. The above two approaches are more often applied to the perfect evaluation of the
model in the form of threshold intrinsic trade-offs [25].

6.2 Metric Comparison

The application of Python in machine learning makes the model evaluation precise and clear, and
the performance metrics of all three target models have good performance, with ConvLSTM
performing the best. This is also due to the proper pre-processing of the dataset.

 Accuracy Loss Precision Recall F1-Score Cohen’s kappa ROC-AUC PR-AUC

MLP 0.964 0.162 0.969 0.960 0.964 0.927 0.985 0.983

CNN-LSTM 0.977 0.131 0.979 0.976 0.978 0.955 0.991 0.992

ConvLSTM 0.984 0.089 0.984 0.985 0.984 0.969 0.993 0.991

Table 3: Metrics comparison

In the AUC curves and PR curves, all three models performed very well. The curves all cover
almost the entire AUC region, and the values are all very close to 1, which indicates the presence
of at least one threshold that allows for excellent prediction. This is shown in figures 41 and 42:

 55

Figure 41: Comparison of ROC curves of MLP, CNN-LSTM and CovnLSTM

 56

Figure 42: Comparison of PR curves of MLP, CNN-LSTM and CovnLSTM

 57

For a more detailed comparison, the confusion matrix and the associated scores can also be reconfirmed with each other by means of pictures, as
shown in following figure 43:

Figure 43: Comparison of Confusion Matrix of MLP, CNN-LSTM and CovnLSTM

In the previous PR curves, the PR-AUC of CNN-LSTM is slightly higher than that of ConvLSTM by 0.001. This can be observed in the
confusion matrix image because CNN-LSTM is slightly more accurate than ConvLSTM in predicting the ture positive class, i.e., it is slightly
more accurate in identifying the actual normal users. However, looking at all the predictions, the false positive and negative rate of ConvLSTM,
and the accuracy of prediction of actual electricity theft users are stronger than CNN-LSTM. Combined with the previous comprehensive metrics
comparison, the model robustness and prediction accuracy of ConvLSTM is stronger than CNN-LSMT and MLP.

 58

6.3 Convergence Analysis

To better demonstrate the above conclusions, it is necessary to further analyze the convergence process [59] of the model, which is a visual
analysis of the model's performance in the training and validation datasets. As shown in figure 44, 45 and 46:

Figure 44: History of MLP Model

 59

Figure 45: History of CNN-LSTM Model

 60

Figure 46: History of ConvLSTM Model

The above comparison reveals that the generalization gap [63] of all three models is relatively stable around 0.1. Both CNN-LSTM and
ConvLSTM can reach the optimal model state before 90 epochs, while MLP needs around 150 epochs to reach it. In addition, MLP and
CNN-LSTM reach smooth convergence around 60 epochs and 40 epochs, respectively, while ConvLSTM reaches the model convergence state
well around 20 epochs. It is worth noting that ConLSTM performs better than the other two models in terms of noise control throughout the
curve fluctuation state, which is also due to the application of batch-normalization in the model. Combined with the above analysis,
ConvLSTM outperforms MLP and CNN-LSTM in terms of model convergence efficiency and model generalization ability, showing robustness
of the model and prediction.

 61

7. Conclusion & Future Work

7.1 Conclusion
In this project, three electricity theft detection models were successfully built and showed good
results in electricity theft customer identification, where the novel ConvLSTM model outperformed
MLP (baseline) and CNN-LSTM in aggregate. Data pre-processing techniques such as IQR, KNN
imputation and Borderline-SMOTE are well utilized in the three models built in this project.
ConvLSTM adopts more efficient batch-normalization in data transformation and outperforms MLP
and CNN-LSTM on the test data set in terms of accuracy, loss, precision, recall, F1-score, Cohen’s
kappa, ROC-AUC, PR-AUC: 0.984, 0.089, 0.984, 0.985, 0.984, 0.969, 0.993, 0.991. In addition, it
performs best in confusion matrix, ROC curve and PR curve. ConvLSTM also demonstrates
robustness and outperforms the first two models in terms of model architecture, convergence
efficiency and generalization ability. This can also show that ConvLSTM can improve the efficiency
and flexibility of deploying machine learning ETDs for power utilities. It can adapt to the current
complex and changing electricity theft environment by optimizing the complex core model structure
and shortening the processing time of electricity consumption data on the basis of guaranteeing the
accuracy of identifying electricity theft users. It enables power companies to make optimized
deployments for different electricity theft behaviors in a shorter period of time.

7.2 Future Work
The hybrid LSTM model achieved good results in this project, however, the free cloud GPU still
consumed a lot of training time during the implementation of the project due to the huge dataset and
computation volume. Facing the huge electricity market, how to effectively solve the massive data
and terminal matching problem is the key point that needs further expansion. For example, a regional
power company can adopt more advanced computing equipment or deploy larger-scale cloud servers
to the machine learning platform. Then it would be possible to collect, calculate and analyze the
electricity consumption data and patterns of all customers in the region in real-time and
simultaneously. Moreover, if the ETD model can be encapsulated to make it compatible with more
convenient terminal platforms and transmission methods for operation, for example, the model can be
ported to 5G communication mobile platforms. This will reduce the lag in detection of nascent
electricity theft and also improves the foresight of changes in behavior of electricity theft.

Furthermore, GAN generation of electricity theft data, as well as merging STL decomposition data
features, and even multi-feature modeling, such as adding weather and geographic location, are also
issues that need further consideration. This can enable machine learning techniques to analyze and
detect electricity theft in more dimensions, which is a way to combine objective factors to uncover
potential electricity thieves.

 62

Bibliography

[1] Fang, X., Misra, S., Xue, G., & Yang, D. (2011). Smart grid—The new and improved power grid: A
survey. IEEE communications surveys & tutorials, 14(4), 944-980.

[2] Sreedevi, S. V., Prasannan, P., Jiju, K., & Lekshmi, I. I. (2020, January). Development of indigenous
smart energy meter adhering indian standards for smart grid. In 2020 IEEE International Conference
on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020) (pp. 1-5). IEEE.

[3] Zheng, J., Gao, D. W., & Lin, L. (2013, April). Smart meters in smart grid: An overview. In 2013
IEEE Green Technologies Conference (GreenTech) (pp. 57-64). IEEE.

[4] Leite, J. B., & Mantovani, J. R. S. (2016). Detecting and locating non-technical losses in modern
distribution networks. IEEE Transactions on Smart Grid, 9(2), 1023-1032.

[5] Taylor, Andy, Alexander, David, Finch, Amanda, & Sutton, David. (2013). Information security
management principles, second edition (2nd ed.). Swindon, U.K: BCS Learning and Development.

[6] Hasan, M., Toma, R. N., Nahid, A. A., Islam, M. M., & Kim, J. M. (2019). Electricity theft detection
in smart grid systems: A CNN-LSTM based approach. Energies, 12(17), 3310.

[7] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in
signal processing, 7(3–4), 197-387.

[8] Dorffner, G. (1996). Neural networks for time series processing. In Neural network world.

[9] Yang, J., Nguyen, M. N., San, P. P., Li, X. L., & Krishnaswamy, S. (2015, June). Deep convolutional
neural networks on multichannel time series for human activity recognition. In Twenty-fourth
international joint conference on artificial intelligence.

[10] Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015, April). Long short term memory networks for
anomaly detection in time series. In Proceedings (Vol. 89, pp. 89-94)..

[11] Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.

[12] Zheng, Z., Yang, Y., Niu, X., Dai, H. N., & Zhou, Y. (2017). Wide and deep convolutional neural
networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial
Informatics, 14(4), 1606-1615.

 63

[13] Feng, X., Hui, H., Liang, Z., Guo, W., Que, H., Feng, H., ... & Ding, Y. (2020). A Novel Electricity

Theft Detection Scheme Based on Text Convolutional Neural Networks. Energies, 13(21), 5758.

[14] Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., & Zhao, Q. (2019). Electricity theft detection in
power grids with deep learning and random forests. Journal of Electrical and Computer Engineering,
2019.

[15] Chen, Z., Meng, D., Zhang, Y., Xin, T., & Xiao, D. (2020, February). Electricity theft detection using
deep bidirectional recurrent neural network. In 2020 22nd International Conference on Advanced
Communication Technology (ICACT) (pp. 401-406). IEEE.

[16] Aslam, Z., Javaid, N., Ahmad, A., Ahmed, A., & Gulfam, S. M. (2020). A combined deep learning
and ensemble learning methodology to avoid electricity theft in smart grids. Energies, 13(21), 5599.

[17] Bisong, E. (2019). Introduction to Scikit-learn. In Building Machine Learning and Deep Learning
Models on Google Cloud Platform (pp. 215-229). Apress, Berkeley, CA.

[18] Buzau, M. M., Tejedor-Aguilera, J., Cruz-Romero, P., & Gómez-Expósito, A. (2019). Hybrid deep
neural networks for detection of non-technical losses in electricity smart meters. IEEE Transactions
on Power Systems, 35(2), 1254-1263.

[19] Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from
imbalanced data sets (Vol. 10, pp. 978-3). Berlin: Springer.

[20] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[21] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM
and other neural network architectures. Neural networks, 18(5-6), 602-610.

[22] Madhure, R. U., Raman, R., & Singh, S. K. (2020, July). Cnn-lstm based electricity theft detector in
advanced metering infrastructure. In 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.

[23] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption
generator. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
3156-3164).

 64

[24] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1), 1929-1958..

[25] He, H., & Ma, Y. (Eds.). (2013). Imbalanced learning: foundations, algorithms, and applications.
Somerset: Wiley.

[26] Networked Energy Services. (2020, June 17). Energy Theft and Fraud Reduction. N&S. Retrieved
from
https://www.networkedenergy.com/en/news-events/energy-theft-and-fraud-reduction?utm_medium
=sei&utm_source=external&utm_campaign=article%20f&t

[27] Northeast Group, LLC. (2017, May). Electricity Theft and Non-Technical Losses: Global Markets,
Solutions, and Vendors. Retrieved from
http://www.northeast-group.com/reports/Brochure-Electricity%20Theft%20&%20Non-Technical%
20Losses%20-%20Northeast%20Group.pdf

[28] Northeast Group, LLC. (2020, Jan). Emerging Markets Smart Grid: Outlook 2020. Retrieved from
http://www.northeast-group.com/reports/Brochure-Emerging%20Markets%20Smart%20Grid%20O
utlook%202020%20-%20Northeast%20Group.pdf

[29] Bhatia, G., & Gulati, M. (2004). Reforming the Power Sector: Controlling Electricity Theft and
Improving Revenue. The World Bank, Washington, DC.

[30] Jamacia Public Service Company Ltd. (2019). 2014-2019 Tariff Application. Retrieved from
https://www.our.org.jm/ourweb/sites/default/files/documents/sector_documents/jps_rate_case_appli
cation_for_2019-2024_public_version.pdf

[31] Witten, Ian H, Frank, Eibe, Hall, Mark A, & Pal, Christopher J. (2016). Data Mining (The Morgan
Kaufmann Series in Data Management Systems). San Francisco: Elsevier Science & Technology.

[32] Li, Y., Pizer, W. A., & Wu, L. (2019). Climate change and residential electricity consumption in the
Yangtze River Delta, China. Proceedings of the National Academy of Sciences, 116(2), 472-477.

[33] Richardson, A. (2010). Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach.
International Statistical Review / Revue Internationale De Statistique, 78(3), 451-452.

 65

[34] Kazil, J., & Jarmul, K. (2016). Data wrangling with Python: tips and tools to make your life easier. "
O'Reilly Media, Inc.".

[35] Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical
Association, 89(426), 463-475.

[36] Beretta, L., & Santaniello, A. (2016). Nearest neighbor imputation algorithms: a critical evaluation.
BMC medical informatics and decision making, 16(3), 197-208..

[37] Aggarwal, C., SpringerLink, & Elsevier. (2013). Outlier Analysis.

[38] Galarnyk, M. (2020, July 6). Understanding Boxplots - Towards Data Science. Medium. Retrieved
from https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51

[39] Dawson, R. (2011). How significant is a boxplot outlier?. Journal of Statistics Education, 19(2).

[40] Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods
using STL decomposition and Box–Cox transformation. International journal of forecasting, 32(2),
303-312.

[41] Patel, A. (2018, July 20). Chapter-6 How to learn feature engineering? - ML Research Lab. Medium.
Retrieved from
https://medium.com/ml-research-lab/chapter-6-how-to-learn-feature-engineering-49f4246f0d41

[42] Stout, B. (n.d.). Undersampling and Oversampling Statistics Visual Example. Pinterest. Retrieved
from https://www.pinterest.co.uk/pin/514958538641697615/

[43] Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In International conference on intelligent computing (pp.
878-887). Springer, Berlin, Heidelberg.

[44] Criddle, B. C. (2021, February 10). Bitcoin consumes “more electricity than Argentina.” BBC News.
Retrieved from https://www.bbc.co.uk/news/technology-56012952

[45] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning (pp. 448-456).
PMLR.

 66

[46] Brownlee, J. (2016). Deep learning with Python: develop deep learning models on Theano and
TensorFlow using Keras. Machine Learning Mastery.

[47] Prechelt, L. (1998). Early stopping-but when?. In Neural Networks: Tricks of the trade (pp. 55-69).
Springer, Berlin, Heidelberg.

[48] Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adaptive regularization. Advances in
neural information processing systems, 26, 351-359.

[49] Sharma, S. (2021, July 4). Activation Functions in Neural Networks - Towards Data Science.
Medium. Retrieved from
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

[50] Ramos, D., Franco-Pedroso, J., Lozano-Diez, A., & Gonzalez-Rodriguez, J. (2018). Deconstructing
cross-entropy for probabilistic binary classifiers. Entropy, 20(3), 208.

[51] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[52] Phi, M. (2020, June 28). Illustrated Guide to LSTM’s and GRU’s: A step by step explanation.
Medium. Retrieved from
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e
9eb85bf21

[53] Gurucharan, M. K. (2021, April 3). Basic CNN Architecture: Explaining 5 Layers of Convolutional
Neural Network. UpGrad Blog. Retrieved from
https://www.upgrad.com/blog/basic-cnn-architecture/

[54] Mutegeki, R., & Han, D. S. (2020, February). A CNN-LSTM approach to human activity recognition.
In 2020 International Conference on Artificial Intelligence in Information and Communication
(ICAIIC) (pp. 362-366). IEEE.

[55] Song, H., Wang, W., Zhao, S., Shen, J., & Lam, K. M. (2018). Pyramid dilated deeper convlstm for
video salient object detection. In Proceedings of the European conference on computer vision (ECCV)
(pp. 715-731).

[56] Singh, S. P., Sharma, M. K., Lay-Ekuakille, A., Gangwar, D., & Gupta, S. (2020). Deep ConvLSTM
with self-attention for human activity decoding using wearable sensors. IEEE Sensors Journal, 21(6),
8575-8582.

 67

[57] Xavier, A. (2019, April 22). An introduction to ConvLSTM - Neuronio. Medium. Retrieved from

https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

[58] Xingjian, S. H. I., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015).
Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In
Advances in neural information processing systems (pp. 802-810).

[59] Branco, P., Torgo, L., & Ribeiro, R. (2015). A survey of predictive modelling under imbalanced
distributions. arXiv preprint arXiv:1505.01658.

[60] Saxena, S. (2021, March 3). Binary Cross Entropy/Log Loss for Binary Classification. Analytics
Vidhya. Retrieved from
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-for-binary-classificati
on/

[61] McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.

[62] Chicco, D., Warrens, M. J., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is
more informative than Cohen’s Kappa and Brier score in binary classification assessment. IEEE
Access.

[63] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch
training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836.

 68

Appendix A - Data set Description

The data set comes from the link: https://github.com/henryRDlab/ElectricityTheftDetection [12]. The following is the content of this project:

Figure A1：Overview of raw data (first 20 rows）

 69

Figure A2：Overview of raw data (last 20 rows）

 70

An observation of the above figure shows that the data set consists of 1034 columns of daily
electricity consumption data and 1 column of categorically labelled data with 42,372 rows of
users. In addition, the data set has a large number of missing values marked as NaN and many
zero values. The large number of missing and zero values can directly lead to the failure of the
subsequent visual data analysis and affect the accuracy of the model predictions.

Figure A3: The type of the data set variable

The data type matches the data set description, with the power type float64 and the category
label int64.

Figure A4: Class distribution

Tag 1 corresponds to 3615 electricity theft customers and tag 0 corresponds to 38757 normal
customers. In total, there are 42,372 tags, which match the description of the dataset.

 71

Figure A5: Raw data descriptive statistics
Anomalies in the data can be found by looking at the statistical information in the raw data:
1. The Count of daily electricity consumption for all users varies greatly and some of the 25th Percentile is almost zero, indicating that the data
set contains a large number of missing or zero values.
2. The maximum values of daily electricity consumption are unusual, with some of the maximum daily consumption exceeding 10,000 kWh,
however, the data and averages of daily electricity consumption are very much in line with the habits of residential electricity consumption. It
can be analysed that this data set should contain a small amount of information on industrial or commercial electricity consumption, or that the
data collection is anomalous due to a malfunctioning energy metering device. The billing and data collection methods for industrial electricity
consumption also differ from those for general electricity consumption, as do the patterns of behaviour and patterns of electricity consumption
between the two [32]. However, these users will be retained in order to maintain the authenticity of the data set and to validate the compatibility
of the model. This issue can be dealt with at a later date when the data is transformed.
3. The standard deviation fluctuates over time. This indicates that there are seasonal fluctuations in this electricity consumption, or that it is
affected by outliers.

 72

Appendix B - Related Project Code
The data set format of this project are CSV and XLSX, and the preliminary preparation is
carried out through Microsoft Excel. Project data pre-processing, image generation, model
establishment, training and result evaluation were all programmed in Python and completed on
the Jupyter Notebook platform. On the hardware side, CNN-LSTM and ConvLSTM modeling
is performed on a free cloud GPU due to the large data set and the enormous computing time
involved. The rest is performed on a personal laptop. For details, please refer to 3.2 Related
Configuration of Project Platform. The following is a code summary of the significant steps:

Figure B1: Outlier filtering

 73

Figure B2: KNN Imputation

Figure B3: PCC normal users/electricity theft users (4 weeks average/1034 days)

 74

Figure B4: ACF normal users/electricity theft users (4 weeks average)

Figure B5: 1034days STL Decomposing (normal users/electricity theft users)

 75

Figure B6: Balanced data set classification and visualization

Figure B7: Data transformation(MinMAX)

 76

Figure B8: Comparison of electricity theft user data generated by Borderline-SMOTE

CNN-LSTM and ConvLSTM model training times on laptops ranged from a few hours to more
than a dozen hours at a time. The training time on the free cloud GPU is also up to about half an
hour. Since there is a time limit on the use of the free cloud GPU, the modeling code and the
model evaluation code are integrated into one process in order to save time during modeling,
which speeds up the efficiency of model tuning. The programming code is detailed in the
following pictures, in the order of MLP, CNN-LSTM and ConvLSTM:

 77

 78

Figure B9: MLP

 79

 80

Figure B10: CNN-LSTM

 81

 82

Figure B11: ConvLSTM

 83

Appendix C - Model Training History Log
The following are the model training history log for MLP, CNN-LSTM and ConvLSTM:

MLP
Epoch 1/400
43/43 [==============================] - 1s 16ms/step - loss: 0.6323 - accuracy: 0.6353 -
val_loss: 0.5136 - val_accuracy: 0.7761
Epoch 2/400
43/43 [==============================] - 1s 12ms/step - loss: 0.5292 - accuracy: 0.7698 -
val_loss: 0.4759 - val_accuracy: 0.7983
Epoch 3/400
43/43 [==============================] - 1s 12ms/step - loss: 0.4752 - accuracy: 0.7962 -
val_loss: 0.4405 - val_accuracy: 0.8176
Epoch 4/400
43/43 [==============================] - 1s 12ms/step - loss: 0.4475 - accuracy: 0.8048 -
val_loss: 0.4144 - val_accuracy: 0.8255
Epoch 5/400
43/43 [==============================] - 1s 12ms/step - loss: 0.4173 - accuracy: 0.8157 -
val_loss: 0.3908 - val_accuracy: 0.8395
Epoch 6/400
43/43 [==============================] - 1s 12ms/step - loss: 0.4028 - accuracy: 0.8336 -
val_loss: 0.3671 - val_accuracy: 0.8557
Epoch 7/400
43/43 [==============================] - 1s 13ms/step - loss: 0.3709 - accuracy: 0.8481 -
val_loss: 0.3651 - val_accuracy: 0.8429
Epoch 8/400
43/43 [==============================] - 1s 12ms/step - loss: 0.3497 - accuracy: 0.8566 -
val_loss: 0.3439 - val_accuracy: 0.8720
Epoch 9/400
43/43 [==============================] - 1s 13ms/step - loss: 0.3525 - accuracy: 0.8584 -
val_loss: 0.3307 - val_accuracy: 0.8727
Epoch 10/400
43/43 [==============================] - 1s 12ms/step - loss: 0.3228 - accuracy: 0.8767 -
val_loss: 0.3107 - val_accuracy: 0.8875
Epoch 11/400
43/43 [==============================] - 1s 12ms/step - loss: 0.3069 - accuracy: 0.8840 -
val_loss: 0.3034 - val_accuracy: 0.8810
Epoch 12/400
43/43 [==============================] - 0s 11ms/step - loss: 0.2991 - accuracy: 0.8841 -
val_loss: 0.2897 - val_accuracy: 0.8905
Epoch 13/400
43/43 [==============================] - 1s 12ms/step - loss: 0.3016 - accuracy: 0.8783 -
val_loss: 0.2757 - val_accuracy: 0.9003
Epoch 14/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2842 - accuracy: 0.8886 -
val_loss: 0.3157 - val_accuracy: 0.8682
Epoch 15/400
43/43 [==============================] - 0s 12ms/step - loss: 0.2789 - accuracy: 0.8829 -
val_loss: 0.2581 - val_accuracy: 0.9094
Epoch 16/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2682 - accuracy: 0.8947 -
val_loss: 0.2509 - val_accuracy: 0.9079

 84

Epoch 17/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2492 - accuracy: 0.9056 -
val_loss: 0.2895 - val_accuracy: 0.8905
Epoch 18/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2487 - accuracy: 0.9034 -
val_loss: 0.2352 - val_accuracy: 0.9162
Epoch 19/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2333 - accuracy: 0.9094 -
val_loss: 0.2287 - val_accuracy: 0.9154
Epoch 20/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2248 - accuracy: 0.9140 -
val_loss: 0.2260 - val_accuracy: 0.9188
Epoch 21/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2144 - accuracy: 0.9223 -
val_loss: 0.2584 - val_accuracy: 0.9079
Epoch 22/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2122 - accuracy: 0.9209 -
val_loss: 0.2311 - val_accuracy: 0.9199
Epoch 23/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2128 - accuracy: 0.9191 -
val_loss: 0.2096 - val_accuracy: 0.9316
Epoch 24/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2069 - accuracy: 0.9228 -
val_loss: 0.2050 - val_accuracy: 0.9328
Epoch 25/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1806 - accuracy: 0.9371 -
val_loss: 0.2069 - val_accuracy: 0.9290
Epoch 26/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1841 - accuracy: 0.9350 -
val_loss: 0.1918 - val_accuracy: 0.9388
Epoch 27/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1779 - accuracy: 0.9338 -
val_loss: 0.2458 - val_accuracy: 0.8965
Epoch 28/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1939 - accuracy: 0.9249 -
val_loss: 0.2164 - val_accuracy: 0.9301
Epoch 29/400
43/43 [==============================] - 1s 12ms/step - loss: 0.2119 - accuracy: 0.9248 -
val_loss: 0.2039 - val_accuracy: 0.9222
Epoch 30/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1829 - accuracy: 0.9352 -
val_loss: 0.1962 - val_accuracy: 0.9316
Epoch 31/400
43/43 [==============================] - 1s 14ms/step - loss: 0.1758 - accuracy: 0.9337 -
val_loss: 0.1859 - val_accuracy: 0.9407
Epoch 32/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1578 - accuracy: 0.9464 -
val_loss: 0.1809 - val_accuracy: 0.9377
Epoch 33/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1668 - accuracy: 0.9387 -
val_loss: 0.1807 - val_accuracy: 0.9377
Epoch 34/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1559 - accuracy: 0.9456 -
val_loss: 0.2112 - val_accuracy: 0.9181
Epoch 35/400

 85

43/43 [==============================] - 1s 12ms/step - loss: 0.1704 - accuracy: 0.9360 -
val_loss: 0.1764 - val_accuracy: 0.9441
Epoch 36/400
43/43 [==============================] - 1s 13ms/step - loss: 0.1528 - accuracy: 0.9477 -
val_loss: 0.1716 - val_accuracy: 0.9449
Epoch 37/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1480 - accuracy: 0.9518 -
val_loss: 0.1720 - val_accuracy: 0.9403
Epoch 38/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1503 - accuracy: 0.9471 -
val_loss: 0.1968 - val_accuracy: 0.9332
Epoch 39/400
43/43 [==============================] - 1s 12ms/step - loss: 0.1430 - accuracy: 0.9486 -
val_loss: 0.1975 - val_accuracy: 0.9335
Epoch 40/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1323 - accuracy: 0.9533 -
val_loss: 0.1776 - val_accuracy: 0.9377
Epoch 41/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1310 - accuracy: 0.9577 -
val_loss: 0.1766 - val_accuracy: 0.9452
Epoch 42/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1403 - accuracy: 0.9521 -
val_loss: 0.1654 - val_accuracy: 0.9460
Epoch 43/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1334 - accuracy: 0.9514 -
val_loss: 0.1935 - val_accuracy: 0.9403
Epoch 44/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1243 - accuracy: 0.9584 -
val_loss: 0.1561 - val_accuracy: 0.9524
Epoch 45/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1280 - accuracy: 0.9563 -
val_loss: 0.1605 - val_accuracy: 0.9483
Epoch 46/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1254 - accuracy: 0.9614 -
val_loss: 0.1607 - val_accuracy: 0.9494
Epoch 47/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1175 - accuracy: 0.9561 -
val_loss: 0.1543 - val_accuracy: 0.9509
Epoch 48/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1096 - accuracy: 0.9644 -
val_loss: 0.1563 - val_accuracy: 0.9513
Epoch 49/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1086 - accuracy: 0.9636 -
val_loss: 0.1448 - val_accuracy: 0.9528
Epoch 50/400
43/43 [==============================] - 0s 12ms/step - loss: 0.0941 - accuracy: 0.9689 -
val_loss: 0.1471 - val_accuracy: 0.9562
Epoch 51/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1177 - accuracy: 0.9581 -
val_loss: 0.1545 - val_accuracy: 0.9490
Epoch 52/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1065 - accuracy: 0.9626 -
val_loss: 0.1575 - val_accuracy: 0.9505
Epoch 53/400

 86

43/43 [==============================] - 0s 11ms/step - loss: 0.1053 - accuracy: 0.9640 -
val_loss: 0.1478 - val_accuracy: 0.9562
Epoch 54/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1067 - accuracy: 0.9601 -
val_loss: 0.1515 - val_accuracy: 0.9551
Epoch 55/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1038 - accuracy: 0.9618 -
val_loss: 0.1474 - val_accuracy: 0.9509
Epoch 56/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1060 - accuracy: 0.9640 -
val_loss: 0.1583 - val_accuracy: 0.9517
Epoch 57/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1167 - accuracy: 0.9573 -
val_loss: 0.1435 - val_accuracy: 0.9566
Epoch 58/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0979 - accuracy: 0.9671 -
val_loss: 0.1351 - val_accuracy: 0.9577
Epoch 59/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0955 - accuracy: 0.9682 -
val_loss: 0.1540 - val_accuracy: 0.9543
Epoch 60/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0942 - accuracy: 0.9682 -
val_loss: 0.1503 - val_accuracy: 0.9558
Epoch 61/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0831 - accuracy: 0.9718 -
val_loss: 0.1371 - val_accuracy: 0.9577
Epoch 62/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1028 - accuracy: 0.9649 -
val_loss: 0.1425 - val_accuracy: 0.9558
Epoch 63/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0962 - accuracy: 0.9658 -
val_loss: 0.1766 - val_accuracy: 0.9381
Epoch 64/400
43/43 [==============================] - 1s 13ms/step - loss: 0.1159 - accuracy: 0.9562 -
val_loss: 0.1716 - val_accuracy: 0.9468
Epoch 65/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1005 - accuracy: 0.9645 -
val_loss: 0.2008 - val_accuracy: 0.9377
Epoch 66/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0934 - accuracy: 0.9654 -
val_loss: 0.1392 - val_accuracy: 0.9607
Epoch 67/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0862 - accuracy: 0.9694 -
val_loss: 0.1556 - val_accuracy: 0.9535
Epoch 68/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0937 - accuracy: 0.9665 -
val_loss: 0.1387 - val_accuracy: 0.9607
Epoch 69/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0908 - accuracy: 0.9693 -
val_loss: 0.1506 - val_accuracy: 0.9585
Epoch 70/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0861 - accuracy: 0.9735 -
val_loss: 0.1389 - val_accuracy: 0.9641
Epoch 71/400

 87

43/43 [==============================] - 0s 11ms/step - loss: 0.0954 - accuracy: 0.9682 -
val_loss: 0.1387 - val_accuracy: 0.9596
Epoch 72/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0992 - accuracy: 0.9664 -
val_loss: 0.1368 - val_accuracy: 0.9626
Epoch 73/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0976 - accuracy: 0.9654 -
val_loss: 0.1451 - val_accuracy: 0.9611
Epoch 74/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0931 - accuracy: 0.9682 -
val_loss: 0.1442 - val_accuracy: 0.9607
Epoch 75/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0868 - accuracy: 0.9697 -
val_loss: 0.1409 - val_accuracy: 0.9600
Epoch 76/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0904 - accuracy: 0.9676 -
val_loss: 0.1415 - val_accuracy: 0.9566
Epoch 77/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0926 - accuracy: 0.9673 -
val_loss: 0.1412 - val_accuracy: 0.9588
Epoch 78/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0822 - accuracy: 0.9728 -
val_loss: 0.1478 - val_accuracy: 0.9562
Epoch 79/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0832 - accuracy: 0.9686 -
val_loss: 0.1355 - val_accuracy: 0.9622
Epoch 80/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0934 - accuracy: 0.9683 -
val_loss: 0.1339 - val_accuracy: 0.9619
Epoch 81/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1028 - accuracy: 0.9651 -
val_loss: 0.1348 - val_accuracy: 0.9637
Epoch 82/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0904 - accuracy: 0.9710 -
val_loss: 0.1570 - val_accuracy: 0.9517
Epoch 83/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0904 - accuracy: 0.9685 -
val_loss: 0.1513 - val_accuracy: 0.9592
Epoch 84/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0863 - accuracy: 0.9711 -
val_loss: 0.1457 - val_accuracy: 0.9607
Epoch 85/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0962 - accuracy: 0.9656 -
val_loss: 0.1723 - val_accuracy: 0.9513
Epoch 86/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0867 - accuracy: 0.9703 -
val_loss: 0.1345 - val_accuracy: 0.9615
Epoch 87/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0808 - accuracy: 0.9724 -
val_loss: 0.1469 - val_accuracy: 0.9603
Epoch 88/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0965 - accuracy: 0.9640 -
val_loss: 0.1332 - val_accuracy: 0.9641
Epoch 89/400

 88

43/43 [==============================] - 0s 11ms/step - loss: 0.0807 - accuracy: 0.9725 -
val_loss: 0.1250 - val_accuracy: 0.9649
Epoch 90/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0741 - accuracy: 0.9751 -
val_loss: 0.1264 - val_accuracy: 0.9626
Epoch 91/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0732 - accuracy: 0.9738 -
val_loss: 0.1379 - val_accuracy: 0.9626
Epoch 92/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0948 - accuracy: 0.9682 -
val_loss: 0.1432 - val_accuracy: 0.9600
Epoch 93/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0903 - accuracy: 0.9680 -
val_loss: 0.1473 - val_accuracy: 0.9603
Epoch 94/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0903 - accuracy: 0.9659 -
val_loss: 0.1584 - val_accuracy: 0.9573
Epoch 95/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0773 - accuracy: 0.9721 -
val_loss: 0.1288 - val_accuracy: 0.9637
Epoch 96/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0838 - accuracy: 0.9686 -
val_loss: 0.1508 - val_accuracy: 0.9588
Epoch 97/400
43/43 [==============================] - 1s 13ms/step - loss: 0.0784 - accuracy: 0.9722 -
val_loss: 0.1392 - val_accuracy: 0.9581
Epoch 98/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0728 - accuracy: 0.9749 -
val_loss: 0.1837 - val_accuracy: 0.9502
Epoch 99/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0805 - accuracy: 0.9721 -
val_loss: 0.1337 - val_accuracy: 0.9607
Epoch 100/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0765 - accuracy: 0.9736 -
val_loss: 0.1434 - val_accuracy: 0.9592
Epoch 101/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0726 - accuracy: 0.9734 -
val_loss: 0.1524 - val_accuracy: 0.9615
Epoch 102/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0675 - accuracy: 0.9794 -
val_loss: 0.1652 - val_accuracy: 0.9543
Epoch 103/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0714 - accuracy: 0.9758 -
val_loss: 0.1428 - val_accuracy: 0.9637
Epoch 104/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0702 - accuracy: 0.9744 -
val_loss: 0.1617 - val_accuracy: 0.9596
Epoch 105/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0701 - accuracy: 0.9741 -
val_loss: 0.1271 - val_accuracy: 0.9634
Epoch 106/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0852 - accuracy: 0.9667 -
val_loss: 0.1374 - val_accuracy: 0.9637
Epoch 107/400

 89

43/43 [==============================] - 0s 11ms/step - loss: 0.0769 - accuracy: 0.9736 -
val_loss: 0.1699 - val_accuracy: 0.9532
Epoch 108/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0905 - accuracy: 0.9671 -
val_loss: 0.1631 - val_accuracy: 0.9528
Epoch 109/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0912 - accuracy: 0.9649 -
val_loss: 0.1931 - val_accuracy: 0.9449
Epoch 110/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1062 - accuracy: 0.9602 -
val_loss: 0.1391 - val_accuracy: 0.9622
Epoch 111/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0891 - accuracy: 0.9658 -
val_loss: 0.1752 - val_accuracy: 0.9566
Epoch 112/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0826 - accuracy: 0.9717 -
val_loss: 0.1388 - val_accuracy: 0.9641
Epoch 113/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0768 - accuracy: 0.9716 -
val_loss: 0.1595 - val_accuracy: 0.9585
Epoch 114/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0767 - accuracy: 0.9745 -
val_loss: 0.1711 - val_accuracy: 0.9486
Epoch 115/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0914 - accuracy: 0.9679 -
val_loss: 0.1337 - val_accuracy: 0.9622
Epoch 116/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0780 - accuracy: 0.9700 -
val_loss: 0.1387 - val_accuracy: 0.9588
Epoch 117/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0764 - accuracy: 0.9721 -
val_loss: 0.1209 - val_accuracy: 0.9653
Epoch 118/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0730 - accuracy: 0.9738 -
val_loss: 0.1439 - val_accuracy: 0.9660
Epoch 119/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0710 - accuracy: 0.9739 -
val_loss: 0.1586 - val_accuracy: 0.9577
Epoch 120/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0915 - accuracy: 0.9659 -
val_loss: 0.1515 - val_accuracy: 0.9588
Epoch 121/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0836 - accuracy: 0.9718 -
val_loss: 0.1575 - val_accuracy: 0.9600
Epoch 122/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0693 - accuracy: 0.9752 -
val_loss: 0.1534 - val_accuracy: 0.9615
Epoch 123/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0739 - accuracy: 0.9734 -
val_loss: 0.1399 - val_accuracy: 0.9630
Epoch 124/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0719 - accuracy: 0.9728 -
val_loss: 0.1605 - val_accuracy: 0.9611
Epoch 125/400

 90

43/43 [==============================] - 0s 11ms/step - loss: 0.0715 - accuracy: 0.9750 -
val_loss: 0.1534 - val_accuracy: 0.9630
Epoch 126/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0703 - accuracy: 0.9777 -
val_loss: 0.1620 - val_accuracy: 0.9569
Epoch 127/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0821 - accuracy: 0.9702 -
val_loss: 0.1843 - val_accuracy: 0.9539
Epoch 128/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1115 - accuracy: 0.9594 -
val_loss: 0.1762 - val_accuracy: 0.9517
Epoch 129/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0851 - accuracy: 0.9723 -
val_loss: 0.1460 - val_accuracy: 0.9607
Epoch 130/400
43/43 [==============================] - 1s 13ms/step - loss: 0.0744 - accuracy: 0.9743 -
val_loss: 0.1773 - val_accuracy: 0.9509
Epoch 131/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0738 - accuracy: 0.9736 -
val_loss: 0.1424 - val_accuracy: 0.9615
Epoch 132/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0847 - accuracy: 0.9697 -
val_loss: 0.1480 - val_accuracy: 0.9653
Epoch 133/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0897 - accuracy: 0.9662 -
val_loss: 0.1290 - val_accuracy: 0.9641
Epoch 134/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0671 - accuracy: 0.9777 -
val_loss: 0.1417 - val_accuracy: 0.9611
Epoch 135/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0655 - accuracy: 0.9785 -
val_loss: 0.1516 - val_accuracy: 0.9573
Epoch 136/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0803 - accuracy: 0.9705 -
val_loss: 0.1600 - val_accuracy: 0.9566
Epoch 137/400
43/43 [==============================] - 0s 11ms/step - loss: 0.1182 - accuracy: 0.9570 -
val_loss: 0.1459 - val_accuracy: 0.9649
Epoch 138/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0744 - accuracy: 0.9739 -
val_loss: 0.1693 - val_accuracy: 0.9577
Epoch 139/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0805 - accuracy: 0.9697 -
val_loss: 0.1798 - val_accuracy: 0.9509
Epoch 140/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0811 - accuracy: 0.9695 -
val_loss: 0.1430 - val_accuracy: 0.9615
Epoch 141/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0864 - accuracy: 0.9705 -
val_loss: 0.1591 - val_accuracy: 0.9619
Epoch 142/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0786 - accuracy: 0.9724 -
val_loss: 0.1665 - val_accuracy: 0.9596
Epoch 143/400

 91

43/43 [==============================] - 0s 11ms/step - loss: 0.0672 - accuracy: 0.9756 -
val_loss: 0.1657 - val_accuracy: 0.9573
Epoch 144/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0744 - accuracy: 0.9728 -
val_loss: 0.1555 - val_accuracy: 0.9615
Epoch 145/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0816 - accuracy: 0.9690 -
val_loss: 0.1403 - val_accuracy: 0.9637
Epoch 146/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0837 - accuracy: 0.9680 -
val_loss: 0.1301 - val_accuracy: 0.9683
Epoch 147/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0654 - accuracy: 0.9777 -
val_loss: 0.1522 - val_accuracy: 0.9634
Epoch 148/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0628 - accuracy: 0.9777 -
val_loss: 0.1415 - val_accuracy: 0.9645
Epoch 149/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0767 - accuracy: 0.9724 -
val_loss: 0.1752 - val_accuracy: 0.9603
Epoch 150/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0792 - accuracy: 0.9724 -
val_loss: 0.1531 - val_accuracy: 0.9611
Epoch 151/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0779 - accuracy: 0.9720 -
val_loss: 0.1255 - val_accuracy: 0.9683
Epoch 152/400
43/43 [==============================] - 0s 12ms/step - loss: 0.0683 - accuracy: 0.9753 -
val_loss: 0.1574 - val_accuracy: 0.9554
Epoch 153/400
43/43 [==============================] - 0s 12ms/step - loss: 0.0747 - accuracy: 0.9740 -
val_loss: 0.1456 - val_accuracy: 0.9619
Epoch 154/400
43/43 [==============================] - 0s 12ms/step - loss: 0.0736 - accuracy: 0.9724 -
val_loss: 0.1358 - val_accuracy: 0.9679
Epoch 155/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0652 - accuracy: 0.9751 -
val_loss: 0.1756 - val_accuracy: 0.9566
Epoch 156/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0662 - accuracy: 0.9758 -
val_loss: 0.1357 - val_accuracy: 0.9660
Epoch 157/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0641 - accuracy: 0.9785 -
val_loss: 0.1455 - val_accuracy: 0.9603
Epoch 158/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0666 - accuracy: 0.9750 -
val_loss: 0.1252 - val_accuracy: 0.9717
Epoch 159/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0702 - accuracy: 0.9779 -
val_loss: 0.1487 - val_accuracy: 0.9645
Epoch 160/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0671 - accuracy: 0.9750 -
val_loss: 0.1491 - val_accuracy: 0.9630
Epoch 161/400

 92

43/43 [==============================] - 0s 11ms/step - loss: 0.0600 - accuracy: 0.9788 -
val_loss: 0.1792 - val_accuracy: 0.9562
Epoch 162/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0723 - accuracy: 0.9737 -
val_loss: 0.1414 - val_accuracy: 0.9653
Epoch 163/400
43/43 [==============================] - 1s 13ms/step - loss: 0.0966 - accuracy: 0.9656 -
val_loss: 0.1573 - val_accuracy: 0.9630
Epoch 164/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0758 - accuracy: 0.9748 -
val_loss: 0.1340 - val_accuracy: 0.9671
Epoch 165/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0756 - accuracy: 0.9729 -
val_loss: 0.1249 - val_accuracy: 0.9687
Epoch 166/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0686 - accuracy: 0.9738 -
val_loss: 0.1469 - val_accuracy: 0.9675
Epoch 167/400
43/43 [==============================] - 0s 11ms/step - loss: 0.0688 - accuracy: 0.9757 -
val_loss: 0.1408 - val_accuracy: 0.9660
Epoch 00167: early stopping

CNN-LSTM
Epoch 1/400
166/166 [==============================] - 7s 30ms/step - loss: 0.6224 - accuracy: 0.6390
- val_loss: 0.5032 - val_accuracy: 0.7761
Epoch 2/400
166/166 [==============================] - 5s 28ms/step - loss: 0.5096 - accuracy: 0.7647
- val_loss: 0.4662 - val_accuracy: 0.7829
Epoch 3/400
166/166 [==============================] - 5s 27ms/step - loss: 0.4738 - accuracy: 0.7909
- val_loss: 0.4502 - val_accuracy: 0.7991
Epoch 4/400
166/166 [==============================] - 5s 28ms/step - loss: 0.4566 - accuracy: 0.8027
- val_loss: 0.4309 - val_accuracy: 0.8180
Epoch 5/400
166/166 [==============================] - 5s 28ms/step - loss: 0.4288 - accuracy: 0.8164
- val_loss: 0.4294 - val_accuracy: 0.8017
Epoch 6/400
166/166 [==============================] - 5s 28ms/step - loss: 0.4138 - accuracy: 0.8212
- val_loss: 0.3896 - val_accuracy: 0.8361
Epoch 7/400
166/166 [==============================] - 5s 28ms/step - loss: 0.3934 - accuracy: 0.8347
- val_loss: 0.3888 - val_accuracy: 0.8406
Epoch 8/400
166/166 [==============================] - 5s 28ms/step - loss: 0.3941 - accuracy: 0.8381
- val_loss: 0.3724 - val_accuracy: 0.8471
Epoch 9/400
166/166 [==============================] - 5s 28ms/step - loss: 0.3637 - accuracy: 0.8498
- val_loss: 0.3435 - val_accuracy: 0.8640
Epoch 10/400
166/166 [==============================] - 5s 28ms/step - loss: 0.3331 - accuracy: 0.8633
- val_loss: 0.3659 - val_accuracy: 0.8459

 93

Epoch 11/400
166/166 [==============================] - 5s 28ms/step - loss: 0.3264 - accuracy: 0.8701
- val_loss: 0.3358 - val_accuracy: 0.8697
Epoch 12/400
166/166 [==============================] - 5s 28ms/step - loss: 0.3212 - accuracy: 0.8760
- val_loss: 0.3459 - val_accuracy: 0.8542
Epoch 13/400
166/166 [==============================] - 5s 28ms/step - loss: 0.2853 - accuracy: 0.8899
- val_loss: 0.3073 - val_accuracy: 0.8860
Epoch 14/400
166/166 [==============================] - 5s 28ms/step - loss: 0.2557 - accuracy: 0.9068
- val_loss: 0.2836 - val_accuracy: 0.8875
Epoch 15/400
166/166 [==============================] - 5s 28ms/step - loss: 0.2525 - accuracy: 0.9060
- val_loss: 0.2612 - val_accuracy: 0.9014
Epoch 16/400
166/166 [==============================] - 5s 28ms/step - loss: 0.2211 - accuracy: 0.9162
- val_loss: 0.2793 - val_accuracy: 0.9052
Epoch 17/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1988 - accuracy: 0.9258
- val_loss: 0.2415 - val_accuracy: 0.9116
Epoch 18/400
166/166 [==============================] - 5s 29ms/step - loss: 0.1870 - accuracy: 0.9306
- val_loss: 0.2399 - val_accuracy: 0.9169
Epoch 19/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1531 - accuracy: 0.9459
- val_loss: 0.1972 - val_accuracy: 0.9354
Epoch 20/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1394 - accuracy: 0.9526
- val_loss: 0.2102 - val_accuracy: 0.9324
Epoch 21/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1181 - accuracy: 0.9576
- val_loss: 0.2025 - val_accuracy: 0.9320
Epoch 22/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1232 - accuracy: 0.9537
- val_loss: 0.1941 - val_accuracy: 0.9449
Epoch 23/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1068 - accuracy: 0.9623
- val_loss: 0.1716 - val_accuracy: 0.9547
Epoch 24/400
166/166 [==============================] - 5s 28ms/step - loss: 0.1034 - accuracy: 0.9665
- val_loss: 0.1907 - val_accuracy: 0.9468
Epoch 25/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0919 - accuracy: 0.9692
- val_loss: 0.1766 - val_accuracy: 0.9539
Epoch 26/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0758 - accuracy: 0.9723
- val_loss: 0.1799 - val_accuracy: 0.9539
Epoch 27/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0634 - accuracy: 0.9789
- val_loss: 0.1861 - val_accuracy: 0.9585
Epoch 28/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0622 - accuracy: 0.9774
- val_loss: 0.1796 - val_accuracy: 0.9513
Epoch 29/400

 94

166/166 [==============================] - 5s 28ms/step - loss: 0.0619 - accuracy: 0.9791
- val_loss: 0.1842 - val_accuracy: 0.9569
Epoch 30/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0514 - accuracy: 0.9826
- val_loss: 0.1892 - val_accuracy: 0.9585
Epoch 31/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0650 - accuracy: 0.9748
- val_loss: 0.1676 - val_accuracy: 0.9626
Epoch 32/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0509 - accuracy: 0.9821
- val_loss: 0.1699 - val_accuracy: 0.9611
Epoch 33/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0418 - accuracy: 0.9865
- val_loss: 0.1943 - val_accuracy: 0.9634
Epoch 34/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0602 - accuracy: 0.9800
- val_loss: 0.1851 - val_accuracy: 0.9607
Epoch 35/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0465 - accuracy: 0.9818
- val_loss: 0.1686 - val_accuracy: 0.9687
Epoch 36/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0396 - accuracy: 0.9870
- val_loss: 0.1627 - val_accuracy: 0.9732
Epoch 37/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0279 - accuracy: 0.9906
- val_loss: 0.1801 - val_accuracy: 0.9637
Epoch 38/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0271 - accuracy: 0.9915
- val_loss: 0.2220 - val_accuracy: 0.9543
Epoch 39/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0430 - accuracy: 0.9845
- val_loss: 0.1678 - val_accuracy: 0.9683
Epoch 40/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0274 - accuracy: 0.9906
- val_loss: 0.1527 - val_accuracy: 0.9721
Epoch 41/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0212 - accuracy: 0.9927
- val_loss: 0.1838 - val_accuracy: 0.9687
Epoch 42/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0242 - accuracy: 0.9921
- val_loss: 0.1827 - val_accuracy: 0.9656
Epoch 43/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0236 - accuracy: 0.9920
- val_loss: 0.1605 - val_accuracy: 0.9690
Epoch 44/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0179 - accuracy: 0.9935
- val_loss: 0.1753 - val_accuracy: 0.9687
Epoch 45/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0321 - accuracy: 0.9890
- val_loss: 0.2094 - val_accuracy: 0.9637
Epoch 46/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0225 - accuracy: 0.9915
- val_loss: 0.1675 - val_accuracy: 0.9664
Epoch 47/400

 95

166/166 [==============================] - 5s 28ms/step - loss: 0.0274 - accuracy: 0.9904
- val_loss: 0.1672 - val_accuracy: 0.9653
Epoch 48/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0241 - accuracy: 0.9925
- val_loss: 0.1639 - val_accuracy: 0.9705
Epoch 49/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0225 - accuracy: 0.9933
- val_loss: 0.1612 - val_accuracy: 0.9683
Epoch 50/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0182 - accuracy: 0.9937
- val_loss: 0.1757 - val_accuracy: 0.9690
Epoch 51/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0113 - accuracy: 0.9968
- val_loss: 0.1894 - val_accuracy: 0.9690
Epoch 52/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0182 - accuracy: 0.9936
- val_loss: 0.1906 - val_accuracy: 0.9656
Epoch 53/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0191 - accuracy: 0.9931
- val_loss: 0.2398 - val_accuracy: 0.9668
Epoch 54/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0269 - accuracy: 0.9917
- val_loss: 0.1760 - val_accuracy: 0.9751
Epoch 55/400
166/166 [==============================] - 5s 27ms/step - loss: 0.0102 - accuracy: 0.9963
- val_loss: 0.1888 - val_accuracy: 0.9728
Epoch 56/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0085 - accuracy: 0.9971
- val_loss: 0.1966 - val_accuracy: 0.9687
Epoch 57/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0150 - accuracy: 0.9959
- val_loss: 0.2047 - val_accuracy: 0.9702
Epoch 58/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0214 - accuracy: 0.9935
- val_loss: 0.2134 - val_accuracy: 0.9653
Epoch 59/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0162 - accuracy: 0.9940
- val_loss: 0.1952 - val_accuracy: 0.9645
Epoch 60/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0235 - accuracy: 0.9907
- val_loss: 0.1991 - val_accuracy: 0.9656
Epoch 61/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0151 - accuracy: 0.9949
- val_loss: 0.1721 - val_accuracy: 0.9713
Epoch 62/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0112 - accuracy: 0.9968
- val_loss: 0.2048 - val_accuracy: 0.9694
Epoch 63/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0165 - accuracy: 0.9951
- val_loss: 0.2197 - val_accuracy: 0.9687
Epoch 64/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0222 - accuracy: 0.9930
- val_loss: 0.1587 - val_accuracy: 0.9728
Epoch 65/400

 96

166/166 [==============================] - 5s 28ms/step - loss: 0.0052 - accuracy: 0.9992
- val_loss: 0.1775 - val_accuracy: 0.9732
Epoch 66/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0047 - accuracy: 0.9986
- val_loss: 0.2018 - val_accuracy: 0.9717
Epoch 67/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0081 - accuracy: 0.9979
- val_loss: 0.2532 - val_accuracy: 0.9581
Epoch 68/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0150 - accuracy: 0.9954
- val_loss: 0.2075 - val_accuracy: 0.9660
Epoch 69/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0096 - accuracy: 0.9972
- val_loss: 0.2006 - val_accuracy: 0.9687
Epoch 70/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0232 - accuracy: 0.9915
- val_loss: 0.1875 - val_accuracy: 0.9721
Epoch 71/400
166/166 [==============================] - 5s 27ms/step - loss: 0.0030 - accuracy: 0.9993
- val_loss: 0.2027 - val_accuracy: 0.9705
Epoch 72/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0158 - accuracy: 0.9943
- val_loss: 0.1977 - val_accuracy: 0.9649
Epoch 73/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0092 - accuracy: 0.9976
- val_loss: 0.1763 - val_accuracy: 0.9747
Epoch 74/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0033 - accuracy: 0.9989
- val_loss: 0.2588 - val_accuracy: 0.9619
Epoch 75/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0211 - accuracy: 0.9945
- val_loss: 0.1723 - val_accuracy: 0.9717
Epoch 76/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0093 - accuracy: 0.9971
- val_loss: 0.1942 - val_accuracy: 0.9721
Epoch 77/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0071 - accuracy: 0.9973
- val_loss: 0.1773 - val_accuracy: 0.9747
Epoch 78/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0093 - accuracy: 0.9967
- val_loss: 0.2371 - val_accuracy: 0.9671
Epoch 79/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0231 - accuracy: 0.9922
- val_loss: 0.1763 - val_accuracy: 0.9747
Epoch 80/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0048 - accuracy: 0.9984
- val_loss: 0.1859 - val_accuracy: 0.9739
Epoch 81/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0055 - accuracy: 0.9977
- val_loss: 0.1853 - val_accuracy: 0.9773
Epoch 82/400
166/166 [==============================] - 5s 27ms/step - loss: 0.0118 - accuracy: 0.9956
- val_loss: 0.1868 - val_accuracy: 0.9743
Epoch 83/400

 97

166/166 [==============================] - 5s 28ms/step - loss: 0.0090 - accuracy: 0.9976
- val_loss: 0.1766 - val_accuracy: 0.9717
Epoch 84/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0063 - accuracy: 0.9982
- val_loss: 0.1858 - val_accuracy: 0.9747
Epoch 85/400
166/166 [==============================] - 5s 29ms/step - loss: 0.0011 - accuracy: 0.9999
- val_loss: 0.1802 - val_accuracy: 0.9770
Epoch 86/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0040 - accuracy: 0.9988
- val_loss: 0.2088 - val_accuracy: 0.9656
Epoch 87/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0072 - accuracy: 0.9971
- val_loss: 0.1722 - val_accuracy: 0.9751
Epoch 88/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0150 - accuracy: 0.9958
- val_loss: 0.1738 - val_accuracy: 0.9762
Epoch 89/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0044 - accuracy: 0.9985
- val_loss: 0.1698 - val_accuracy: 0.9796
Epoch 90/400
166/166 [==============================] - 5s 28ms/step - loss: 0.0038 - accuracy: 0.9988
- val_loss: 0.2613 - val_accuracy: 0.9551
Epoch 00090: early stopping

ConvLSTM
Epoch 1/400
43/43 [==============================] - 16s 306ms/step - loss: 0.6707 - accuracy: 0.7454
- val_loss: 0.6799 - val_accuracy: 0.5887
Epoch 2/400
43/43 [==============================] - 12s 289ms/step - loss: 0.3762 - accuracy: 0.8463
- val_loss: 0.7627 - val_accuracy: 0.7032
Epoch 3/400
43/43 [==============================] - 12s 289ms/step - loss: 0.2917 - accuracy: 0.8802
- val_loss: 0.5253 - val_accuracy: 0.7122
Epoch 4/400
43/43 [==============================] - 12s 290ms/step - loss: 0.2110 - accuracy: 0.9236
- val_loss: 0.5135 - val_accuracy: 0.7168
Epoch 5/400
43/43 [==============================] - 12s 289ms/step - loss: 0.1472 - accuracy: 0.9507
- val_loss: 0.5011 - val_accuracy: 0.7390
Epoch 6/400
43/43 [==============================] - 12s 290ms/step - loss: 0.1244 - accuracy: 0.9606
- val_loss: 0.4904 - val_accuracy: 0.7304
Epoch 7/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0873 - accuracy: 0.9752
- val_loss: 0.4902 - val_accuracy: 0.7353
Epoch 8/400
43/43 [==============================] - 13s 291ms/step - loss: 0.0637 - accuracy: 0.9829
- val_loss: 0.4525 - val_accuracy: 0.7326
Epoch 9/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0399 - accuracy: 0.9907
- val_loss: 0.4388 - val_accuracy: 0.7576
Epoch 10/400

 98

43/43 [==============================] - 12s 290ms/step - loss: 0.0422 - accuracy: 0.9891
- val_loss: 0.3440 - val_accuracy: 0.8278
Epoch 11/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0371 - accuracy: 0.9917
- val_loss: 0.3147 - val_accuracy: 0.8844
Epoch 12/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0342 - accuracy: 0.9930
- val_loss: 0.3577 - val_accuracy: 0.8093
Epoch 13/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0166 - accuracy: 0.9975
- val_loss: 0.2772 - val_accuracy: 0.8758
Epoch 14/400
43/43 [==============================] - 12s 291ms/step - loss: 0.0120 - accuracy: 0.9986
- val_loss: 0.2584 - val_accuracy: 0.8852
Epoch 15/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0063 - accuracy: 0.9993
- val_loss: 0.1965 - val_accuracy: 0.9369
Epoch 16/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0071 - accuracy: 0.9989
- val_loss: 0.2024 - val_accuracy: 0.9267
Epoch 17/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0244 - accuracy: 0.9940
- val_loss: 0.1191 - val_accuracy: 0.9721
Epoch 18/400
43/43 [==============================] - 12s 291ms/step - loss: 0.0184 - accuracy: 0.9970
- val_loss: 0.1406 - val_accuracy: 0.9702
Epoch 19/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0089 - accuracy: 0.9987
- val_loss: 0.1188 - val_accuracy: 0.9743
Epoch 20/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0079 - accuracy: 0.9996
- val_loss: 0.1017 - val_accuracy: 0.9811
Epoch 21/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0040 - accuracy: 0.9996
- val_loss: 0.1094 - val_accuracy: 0.9815
Epoch 22/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0023 - accuracy: 0.9999
- val_loss: 0.0954 - val_accuracy: 0.9838
Epoch 23/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0022 - accuracy: 0.9999
- val_loss: 0.0973 - val_accuracy: 0.9823
Epoch 24/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0023 - accuracy: 1.0000
- val_loss: 0.0983 - val_accuracy: 0.9826
Epoch 25/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0017 - accuracy: 1.0000
- val_loss: 0.0952 - val_accuracy: 0.9819
Epoch 26/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0016 - accuracy: 1.0000
- val_loss: 0.0938 - val_accuracy: 0.9823
Epoch 27/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0017 - accuracy: 0.9999
- val_loss: 0.0971 - val_accuracy: 0.9800
Epoch 28/400

 99

43/43 [==============================] - 12s 290ms/step - loss: 0.0109 - accuracy: 0.9969
- val_loss: 0.1834 - val_accuracy: 0.9569
Epoch 29/400
43/43 [==============================] - 12s 291ms/step - loss: 0.0165 - accuracy: 0.9954
- val_loss: 0.1145 - val_accuracy: 0.9732
Epoch 30/400
43/43 [==============================] - 12s 291ms/step - loss: 0.0086 - accuracy: 0.9982
- val_loss: 0.1008 - val_accuracy: 0.9773
Epoch 31/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0046 - accuracy: 0.9998
- val_loss: 0.0950 - val_accuracy: 0.9811
Epoch 32/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0021 - accuracy: 1.0000
- val_loss: 0.2069 - val_accuracy: 0.9800
Epoch 33/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0020 - accuracy: 0.9999
- val_loss: 0.1523 - val_accuracy: 0.9815
Epoch 34/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0014 - accuracy: 0.9999
- val_loss: 0.1363 - val_accuracy: 0.9789
Epoch 35/400
43/43 [==============================] - 12s 290ms/step - loss: 7.6161e-04 - accuracy:
1.0000 - val_loss: 0.1219 - val_accuracy: 0.9789
Epoch 36/400
43/43 [==============================] - 12s 290ms/step - loss: 0.0014 - accuracy: 0.9999
- val_loss: 0.0865 - val_accuracy: 0.9807
Epoch 37/400
43/43 [==============================] - 12s 289ms/step - loss: 8.3377e-04 - accuracy:
1.0000 - val_loss: 0.0850 - val_accuracy: 0.9796
Epoch 38/400
43/43 [==============================] - 12s 290ms/step - loss: 5.1040e-04 - accuracy:
1.0000 - val_loss: 0.0836 - val_accuracy: 0.9796
Epoch 39/400
43/43 [==============================] - 12s 289ms/step - loss: 5.7735e-04 - accuracy:
0.9999 - val_loss: 0.0805 - val_accuracy: 0.9841
Epoch 40/400
43/43 [==============================] - 12s 289ms/step - loss: 4.1574e-04 - accuracy:
1.0000 - val_loss: 0.0781 - val_accuracy: 0.9853
Epoch 41/400
43/43 [==============================] - 12s 290ms/step - loss: 5.1508e-04 - accuracy:
1.0000 - val_loss: 0.0822 - val_accuracy: 0.9819
Epoch 42/400
43/43 [==============================] - 12s 290ms/step - loss: 2.7000e-04 - accuracy:
1.0000 - val_loss: 0.0814 - val_accuracy: 0.9841
Epoch 43/400
43/43 [==============================] - 12s 290ms/step - loss: 5.1441e-04 - accuracy:
1.0000 - val_loss: 0.0843 - val_accuracy: 0.9811
Epoch 44/400
43/43 [==============================] - 12s 290ms/step - loss: 2.2395e-04 - accuracy:
1.0000 - val_loss: 0.0844 - val_accuracy: 0.9830
Epoch 45/400
43/43 [==============================] - 12s 290ms/step - loss: 1.9423e-04 - accuracy:
1.0000 - val_loss: 0.0881 - val_accuracy: 0.9811
Epoch 46/400

 100

43/43 [==============================] - 12s 289ms/step - loss: 2.0816e-04 - accuracy:
1.0000 - val_loss: 0.0892 - val_accuracy: 0.9815
Epoch 47/400
43/43 [==============================] - 12s 289ms/step - loss: 2.1666e-04 - accuracy:
1.0000 - val_loss: 0.0892 - val_accuracy: 0.9830
Epoch 48/400
43/43 [==============================] - 12s 289ms/step - loss: 1.8244e-04 - accuracy:
1.0000 - val_loss: 0.0910 - val_accuracy: 0.9830
Epoch 49/400
43/43 [==============================] - 12s 290ms/step - loss: 1.5665e-04 - accuracy:
1.0000 - val_loss: 0.0908 - val_accuracy: 0.9811
Epoch 50/400
43/43 [==============================] - 12s 290ms/step - loss: 1.9227e-04 - accuracy:
1.0000 - val_loss: 0.0907 - val_accuracy: 0.9807
Epoch 51/400
43/43 [==============================] - 12s 289ms/step - loss: 3.1638e-04 - accuracy:
0.9999 - val_loss: 0.0940 - val_accuracy: 0.9777
Epoch 52/400
43/43 [==============================] - 12s 290ms/step - loss: 2.6351e-04 - accuracy:
1.0000 - val_loss: 0.0922 - val_accuracy: 0.9792
Epoch 53/400
43/43 [==============================] - 12s 289ms/step - loss: 2.2118e-04 - accuracy:
1.0000 - val_loss: 0.0972 - val_accuracy: 0.9792
Epoch 54/400
43/43 [==============================] - 12s 289ms/step - loss: 1.6434e-04 - accuracy:
1.0000 - val_loss: 0.0936 - val_accuracy: 0.9811
Epoch 55/400
43/43 [==============================] - 12s 289ms/step - loss: 1.3784e-04 - accuracy:
1.0000 - val_loss: 0.0950 - val_accuracy: 0.9807
Epoch 56/400
43/43 [==============================] - 13s 291ms/step - loss: 1.2349e-04 - accuracy:
1.0000 - val_loss: 0.0958 - val_accuracy: 0.9807
Epoch 57/400
43/43 [==============================] - 12s 289ms/step - loss: 1.2453e-04 - accuracy:
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9826
Epoch 58/400
43/43 [==============================] - 12s 289ms/step - loss: 4.9190e-04 - accuracy:
1.0000 - val_loss: 0.0910 - val_accuracy: 0.9834
Epoch 59/400
43/43 [==============================] - 12s 290ms/step - loss: 1.4997e-04 - accuracy:
1.0000 - val_loss: 0.0913 - val_accuracy: 0.9830
Epoch 60/400
43/43 [==============================] - 12s 290ms/step - loss: 1.2631e-04 - accuracy:
1.0000 - val_loss: 0.0941 - val_accuracy: 0.9826
Epoch 61/400
43/43 [==============================] - 13s 294ms/step - loss: 1.1994e-04 - accuracy:
1.0000 - val_loss: 0.0938 - val_accuracy: 0.9826
Epoch 62/400
43/43 [==============================] - 12s 289ms/step - loss: 9.8613e-05 - accuracy:
1.0000 - val_loss: 0.0941 - val_accuracy: 0.9823
Epoch 63/400
43/43 [==============================] - 12s 289ms/step - loss: 8.9673e-05 - accuracy:
1.0000 - val_loss: 0.0938 - val_accuracy: 0.9830
Epoch 64/400

 101

43/43 [==============================] - 12s 291ms/step - loss: 8.9802e-05 - accuracy:
1.0000 - val_loss: 0.0949 - val_accuracy: 0.9834
Epoch 65/400
43/43 [==============================] - 12s 291ms/step - loss: 1.0624e-04 - accuracy:
1.0000 - val_loss: 0.0958 - val_accuracy: 0.9830
Epoch 66/400
43/43 [==============================] - 12s 290ms/step - loss: 1.2228e-04 - accuracy:
1.0000 - val_loss: 0.0953 - val_accuracy: 0.9823
Epoch 67/400
43/43 [==============================] - 12s 289ms/step - loss: 8.3825e-05 - accuracy:
1.0000 - val_loss: 0.0960 - val_accuracy: 0.9819
Epoch 68/400
43/43 [==============================] - 12s 289ms/step - loss: 7.6459e-05 - accuracy:
1.0000 - val_loss: 0.0952 - val_accuracy: 0.9826
Epoch 69/400
43/43 [==============================] - 12s 291ms/step - loss: 1.5976e-04 - accuracy:
1.0000 - val_loss: 0.0983 - val_accuracy: 0.9819
Epoch 70/400
43/43 [==============================] - 12s 290ms/step - loss: 1.1244e-04 - accuracy:
1.0000 - val_loss: 0.0963 - val_accuracy: 0.9826
Epoch 71/400
43/43 [==============================] - 12s 289ms/step - loss: 9.7221e-05 - accuracy:
1.0000 - val_loss: 0.0967 - val_accuracy: 0.9830
Epoch 72/400
43/43 [==============================] - 12s 290ms/step - loss: 1.1543e-04 - accuracy:
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9826
Epoch 73/400
43/43 [==============================] - 12s 290ms/step - loss: 6.5503e-05 - accuracy:
1.0000 - val_loss: 0.0973 - val_accuracy: 0.9841
Epoch 74/400
43/43 [==============================] - 12s 289ms/step - loss: 7.3900e-05 - accuracy:
1.0000 - val_loss: 0.0973 - val_accuracy: 0.9841
Epoch 75/400
43/43 [==============================] - 12s 290ms/step - loss: 6.5488e-05 - accuracy:
1.0000 - val_loss: 0.0978 - val_accuracy: 0.9841
Epoch 76/400
43/43 [==============================] - 12s 289ms/step - loss: 9.0457e-05 - accuracy:
1.0000 - val_loss: 0.0975 - val_accuracy: 0.9841
Epoch 77/400
43/43 [==============================] - 12s 290ms/step - loss: 7.1202e-05 - accuracy:
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9841
Epoch 78/400
43/43 [==============================] - 12s 290ms/step - loss: 6.4039e-05 - accuracy:
1.0000 - val_loss: 0.0985 - val_accuracy: 0.9826
Epoch 79/400
43/43 [==============================] - 12s 290ms/step - loss: 6.0770e-05 - accuracy:
1.0000 - val_loss: 0.0984 - val_accuracy: 0.9823
Epoch 80/400
43/43 [==============================] - 12s 291ms/step - loss: 9.9124e-05 - accuracy:
1.0000 - val_loss: 0.0978 - val_accuracy: 0.9826
Epoch 81/400
43/43 [==============================] - 12s 289ms/step - loss: 4.6517e-05 - accuracy:
1.0000 - val_loss: 0.0969 - val_accuracy: 0.9834
Epoch 82/400

 102

43/43 [==============================] - 12s 289ms/step - loss: 4.9163e-05 - accuracy:
1.0000 - val_loss: 0.0973 - val_accuracy: 0.9834
Epoch 83/400
43/43 [==============================] - 12s 289ms/step - loss: 5.6726e-05 - accuracy:
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9826
Epoch 84/400
43/43 [==============================] - 12s 290ms/step - loss: 5.7549e-05 - accuracy:
1.0000 - val_loss: 0.0972 - val_accuracy: 0.9834
Epoch 85/400
43/43 [==============================] - 12s 290ms/step - loss: 5.9657e-05 - accuracy:
1.0000 - val_loss: 0.0959 - val_accuracy: 0.9841
Epoch 86/400
43/43 [==============================] - 12s 289ms/step - loss: 0.0026 - accuracy: 0.9990
- val_loss: 0.1082 - val_accuracy: 0.9785
Epoch 87/400
43/43 [==============================] - 12s 289ms/step - loss: 3.3738e-04 - accuracy:
1.0000 - val_loss: 0.0984 - val_accuracy: 0.9807
Epoch 88/400
43/43 [==============================] - 12s 290ms/step - loss: 1.6985e-04 - accuracy:
1.0000 - val_loss: 0.0985 - val_accuracy: 0.9811
Epoch 89/400
43/43 [==============================] - 13s 292ms/step - loss: 2.0327e-04 - accuracy:
1.0000 - val_loss: 0.0963 - val_accuracy: 0.9823
Epoch 90/400
43/43 [==============================] - 12s 290ms/step - loss: 1.5512e-04 - accuracy:
1.0000 - val_loss: 0.0935 - val_accuracy: 0.9834
Epoch 00090: early stopping

