
Student Number: 180240438

Nicholas Hitch

Measuring Adoption of Security Mechanisms in the

HTTPS Ecosystem

Supervisor: Simon Bell

Submitted as part of the requirements for the award of the

MSc in Information Security at

Royal Holloway, University of London.

Anti-Plagiarism Declaration

I declare that this assignment is all my own work and that I have acknowledged all

quotations from published or unpublished work of other people. I also declare that

I have read the statements on plagiarism in Section 1 of the Regulations Governing

Examination and Assessment Offences, and in accordance with these regulations I

submit this project report as my own work.

Nicholas Hitch

March 27, 2022

Acknowledgements

Thanks to my supervisor Simon, who has provided great advice throughout allowing the

report to be what it is.

Thanks to my father, Roger, who helped with proof reading, which aided in making the

report more grammatically correct as well as improving readability and the flow of the

report.

Lastly thanks to all the previous research that has been cited which has allowed this study

to build upon them.

Intentionally Blank

i

Executive Summary

This report is one of the required modules for the course MSc in Information Security

at Royal Holloway, University of London. This is a longitudinal study for the adoption of

several security mechanisms, including: Transport Layer Security, Content Security

Policy, STS Preloading and Security.txt.

This is accomplished by scanning the top 1 million ranked domains each day for 16 months,

from November 2020 through to the end of January 2022 and subsequent analysis of the

data in order to determine the adoption of the chosen security mechanisms.

The analysis finds that the distribution of TLS versions is trending in the right direction

with TLS 1.3 reaching a 64.4% proportion of TLS connections to websites in the top 1

million ranked domains as of January 2022.

There is still wide spread usage of the unsafe-inline and unsafe-eval keywords in

Content Security Polices, especially with the script-src directive, which allows a great

attack vector for cross site scripting attacks.

There are a relatively large proportion of domains that are STS preloaded but no longer

meet the STS preload requirements, which puts them at risk of being removed from the

STS preload list.

The security.txt mechanism currently has low utilisation, however the RFC is still in the

draft stage and the number of domains using this mechanism is trending upward. Even

with the low usage, the number of security.txt that have a Contact is encouraging.

This study also adds some novel contributions not found during the literature research

phase which are:

� Analysis of the TLS versions that are supported by a website (rather than just the

TLS version negotiated when making a HTTPS request) in section 5.3.

� Analysis of the newest Cross Origin Security headers in sections 5.10, 5.12 and 5.11.

It should be noted that scanning of websites commenced in November 2020, before the

“Project” module was officially started in October 2021. This was due to the need to

gather at least 12 months of data before the project submission deadline at the end of

March 2022.

ii

Acronyms

API Application Programming Interface

CSS Cascading Style Sheets

CORS Cross-Origin-Request-Sharing

CSP Content Security Policy

DOM Document Object Model

FIPS Federal Information Processing Standards

HTML Hypertext Markup Language

HPKP HTTP Public Key Pinning

HTTP Hypertext Transfer Protocol

MIME Multipurpose Internet Mail Extensions

URI Uniform Resource Identifier

URL Universal Resource Locator

SSL Secure Socket Layer

TLS Transport Layer Security

XSS Cross-Site Scripting

iii

Glossary

Application Programming Interface is an interface intended to be used by a computer

program for the purpose of allowing two computer programs to communicate to one

another in a structured format.

Cascading Style Sheets is a mechanism by which a web page can be styled by many

different aspects such as fonts, colours and spaces.

Cipher Suite defines the implementation of cryptographic primitives and additional in-

formation referable via a unique identifier such as TLS ECDHE RSA WITH AES 128

GCM SHA256 for the use in establishment of SSL/TLS connections [1].

Cross Origin-Request-Sharing is a web browser mechanism for the purpose of allowing

a resource to specify the origins allowed to access the resource via the use of HTTP

Headers.

Cross Site Scripting A browser attack whereby a malicious script is inserted into a

web page for the purpose of performing wanted actions on a user’s online account

and or gaining access to sensitive information (e.g. authentication cookies and session

identifiers) usually via a web browser.

Content Security Policy is a HTTP protocol feature to restrict which resources can be

fetched and or executed, such as for the purposes of obtaining content e.g. images,

whilst on a specific web page in a web browser. The policy details can be specified in

either a HTTP Header or in the head section of a web page via the meta tag.

Document Object Model is the web browsers internal representation of an html page

as a result of the browser parsing the html [2].

Federal Information Processing Standards standards for federal computer systems

which are developed by the National Institute of Standards and Technology (NIST)

Hypertext Markup Language a standardised language to create documents [3] for

instructing a web browser how a web page should be rendered/visualised.

Hypertext Transfer Protocol a stateless application level protocol [4] for the transmis-

sion of data (e.g. HTML) typically between a website and a web browser.

Multi-purpose Internet Mail Extensions is used to announce the intended format of

a resource (e.g document or file) [5].

iv

Universal Resource Locator a specific type of URI that has a scheme (how to ac-

cess) and a resource (where to access). The most basic form of a URI is as follows

<scheme>:<scheme-specific-part>. An example URL is

https://www.example.com

Secure Socket Layer a protocol to establish a secure communications channel mainly

used by the HTTP protocol

Transport Layer Security a protocol, successor of the SSL protocol, to establish a secure

communications channel mainly used by the HTTP protocol

v

List of Figures

3.1 High Level Design . 38

3.2 High Level Design - Implementation . 39

3.3 High Level Task Flow . 50

3.4 Grafana Dashboard . 52

5.1 Failed Tasks . 76

5.2 HTTP(S) Redirections for Top 1 Million Domains 78

5.3 TLS version negotiated for Top 1 Million Domains that support HTTPS . 80

5.4 TLS Versions Supported . 82

5.5 security.txt (only /.well-known path) by rank 87

5.6 security.txt file locations . 88

5.7 security.txt (only /.well-known path) Unique Domains vs Unique Files . . . 89

5.8 unique security.txt (top level path) by field use 90

5.9 unique security.txt (/.well-known path) by field use 91

5.10 Percentage of security.txt files (that use expires) by time until expires from

scan date . 94

5.11 CSP headers use by rank for unique domains 100

5.12 CSP headers use by name . 101

5.13 Percentage of directives present in the Content-Security-Policy 103

5.14 Percentage of reporting directives present in the Content-Security-Policy 105

5.15 Number of Domains using the STS header and its directives 108

5.16 Duration groupings of the max-age directive 109

5.17 STS Preload Overview . 111

5.18 Criteria not met for preloaded domains . 112

5.19 Number of Domains using the XCTO header and its directives 116

5.20 Number of Domains using the XFO header and its directives 118

5.21 Number of Domains using the COEP header and its directives 120

5.22 Number of Domains using the CORP header and its directives 122

vi

5.23 Number of Domains using the COOP header and its directives 124

5.24 Number of Domains using the HPKP header 126

vii

List of Tables

1.1 Same Origin triplet example violations . 8

3.1 Internet Measurement Studies Literature Review 26

3.2 Technologies used in previous measurement studies 32

3.3 Descriptions for Figure 3.1 . 38

3.4 Task Agent Parameters . 43

3.5 Task Parameters . 44

3.6 Task Parameters - Headers . 45

3.7 Cloud Infrastructure Deployment . 51

3.8 Missing Scan Archives . 54

4.1 Summary of CSP directives . 63

5.1 HTTP(S) Redirection . 79

5.2 Negotiated TLS Versions . 81

5.3 Supported TLS Version matrix for 02 Jan 2022 83

5.4 Presence of contact types from unique security.txts that contain a contact

type . 92

5.5 Top 5 email usernames for security.txt email contacts 92

5.6 Number of contacts present in a unique security.txt 93

5.7 Percentage of encryption field value type of unique security.txt 95

5.8 Percentage of preferred-languages field value type of unique security.txt files 95

5.9 Average field presence of remaining RFC fields in unique security.txt files . 96

5.10 Average field presence of remaining RFC fields in unique security.txt files . 96

5.11 CSP Directive Categories . 99

5.12 Historical CSP Header Use . 101

5.13 Percentage of keyword use in default-src directive for unique CSP Policies . 103

5.14 Percentage of keyword use in script-src directive for unique CSP Policies . 104

5.15 Historical STS Header Use . 108

viii

5.16 Historical XCTO Header Use . 116

5.17 Historical XFO Header Use . 118

5.18 Historical PKP Header Use . 126

ix

Contents

Executive Summary . ii

Acronyms . iii

Glossary . iv

List of Figures . vi

List of Tables . viii

Introduction . 1

Objectives and Scope . 3

Document Structure . 4

1 Security Mechanisms Primer 5

1.1 HTTP . 5

1.1.1 HTTP Headers . 5

1.1.2 HTTP Methods . 5

1.1.3 HTTPS . 6

1.2 Same Origin Policy . 7

1.2.1 Cross Origin Network Requests . 7

1.2.2 Cross Origin Request Sharing . 8

1.3 Selected Security Mechanisms . 9

1.3.1 SSL/TLS . 9

1.3.2 Security.txt . 9

1.3.3 Content Security Policy . 9

1.3.4 Strict Transport Security . 10

1.3.5 STS Preloading . 10

1.3.6 X Content Type Options . 11

1.3.7 X Frame Options . 11

1.3.8 Cross Origin Embedder Policy . 11

1.3.9 Cross Origin Resource Policy . 12

1.3.10 Cross Origin Opener Policy . 12

x

1.3.11 Public Key Pinning . 12

1.4 Summary . 14

2 Why Security Mechanisms Exist 15

2.1 The Need for Security Mechanisms . 15

2.1.1 Cross Site Scripting (XSS) . 16

2.1.2 Supply Chain . 18

2.1.3 Clickjacking . 18

2.1.4 Entity in the Middle . 19

2.2 Summary . 22

3 Data Acquisition 23

3.1 Ethical Considerations . 23

3.1.1 Service Degradation . 24

3.1.2 Exploitation . 25

3.1.3 Information Disclosure . 25

3.1.4 Abuse Reports . 25

3.2 Literature Review . 26

3.3 Data Acquisition . 29

3.3.1 Scanning Targets . 29

3.3.2 Scanning . 31

3.3.3 Scanning Frequency . 35

3.3.4 Monitoring . 36

3.3.5 Detailed Methodologies . 36

3.4 Methodology . 37

3.4.1 Requirements . 37

3.4.2 High Level Design . 37

3.4.3 Implementation . 39

3.4.4 Task Parameters . 44

3.4.5 Task Flow . 46

3.4.6 Deployment . 51

3.5 Summary . 55

4 Security Mechanism Overview 56

4.1 HTTPS . 56

xi

4.2 TLS . 56

4.2.1 Security Services . 57

4.3 Security.txt . 59

4.4 Content Security Policy . 60

4.4.1 Development . 60

4.4.2 Policy Delivery . 61

4.4.3 Directives defined in other standards 64

4.4.4 Source Lists . 64

4.4.5 Reporting Directives . 66

4.4.6 CSP Headers . 67

4.4.7 Content-Security-Policy-Report-Only 67

4.5 Strict Transport Security . 67

4.5.1 Directives . 67

4.6 STS Preload . 68

4.7 X Content Type Options . 69

4.7.1 Directives . 69

4.8 X Frame Options . 70

4.8.1 Directives . 70

4.9 Cross Origin Embedder Policy . 70

4.9.1 Directives . 71

4.10 Cross Origin Resource Policy . 71

4.10.1 Directives . 71

4.11 Cross Origin Opener Policy . 72

4.12 Public Key Pins . 73

4.12.1 Public-Key-Pins-Report-Only . 73

4.13 Summary . 74

5 Security Mechanism Adoption Analysis 75

5.1 Scans Overview . 75

5.1.1 Impact To Available Data For Analysis 75

5.1.2 Analysis Methodology . 76

5.1.3 Domains Unable To Be Scanned . 76

5.2 HTTP(S) Redirection . 78

5.2.1 Analysis . 78

5.3 TLS . 80

xii

5.3.1 Purpose Overview . 80

5.3.2 Analysis . 80

5.3.3 Summary . 83

5.4 Security.txt . 84

5.4.1 Purpose Overview . 84

5.4.2 Scanning . 84

5.4.3 Parser . 85

5.4.4 Analysis . 87

5.4.5 Summary . 97

5.5 Content Security Policy . 98

5.5.1 Purpose Overview . 98

5.5.2 Parser . 99

5.5.3 Analysis . 100

5.5.4 Summary . 106

5.6 Strict Transport Security . 107

5.6.1 Purpose Overview . 107

5.6.2 Analysis . 107

5.6.3 Summary . 109

5.7 STS Preload . 110

5.7.1 Purpose Overview . 110

5.7.2 Parser . 110

5.7.3 Analysis . 111

5.7.4 Summary . 114

5.8 X Content Type Options . 115

5.8.1 Purpose Overview . 115

5.8.2 Analysis . 115

5.9 X Frame Options . 117

5.9.1 Purpose Overview . 117

5.9.2 Analysis . 117

5.10 Cross Origin Embedder Policy . 119

5.10.1 Purpose Overview . 119

5.10.2 Analysis . 119

5.11 Cross Origin Resource Policy . 121

5.11.1 Purpose Overview . 121

xiii

5.11.2 Analysis . 121

5.12 Cross Origin Opener Policy . 123

5.12.1 Purpose Overview . 123

5.12.2 Analysis . 123

5.13 Public Key Pins . 125

5.13.1 Purpose Overview . 125

5.13.2 Analysis . 125

6 Discussion and Closing Remarks 127

6.1 Discussion . 127

6.1.1 Objectives Scope Justification . 127

6.1.2 Scanning . 128

6.1.3 Analysis . 129

6.1.4 Future Work . 129

6.2 Conclusions . 131

Bibliography 134

Appendices 144

A Task Agent TLS Client . 144

xiv

Introduction

The world revolves around internet communication and websites are a big part of that.

There have been many security improvements to the technology that powers the HTTPS

ecosystem and as such, analysing how these are or are not being utilised is of great interest

and value to the community.

Security is a battle ground with attackers ever changing their techniques and defenders

doing their best to thwart the attackers attempts.

In 1994 SSL was proposed [6, 7] to make interactions with websites more secure. As time

has moved on, more improved secure channel protocols, such as TLS 1.3 [8] being the most

recent, have been introduced as well as enhancements to HTTP through security headers

such as HTTP Strict Transport Security [9].

HTTPS is one of the critical security mechanisms and was introduced as HTTP does not

have any protections against the following:

� Viewing the plaintext data being exchanged between the browser and website.

� Manipulating data being exchanged between the browser and website without detec-

tion.

� Entity impersonating a website without detection.

HTTPS overcomes these issues as it provides several protections including:

� Only the user browsing a website and the website itself are able to view the plaintext

data being sent between them as it is encrypted in transit.

� If the encrypted data in transit is modified this can be detected.

� The authenticity of the identity of the website being visited can be verified using

certificate authorities.

HTTPS is detailed more extensively in section 4.1.

1

This research aims to answer the question:

What is the current adoption of security mechanisms

in the HTTPS ecosystem ?

Measuring the adoption of HTTPS security mechanisms is important for many reasons

including:

� Allowing the community to gain insight in the their use.

� Identify trends (good, bad and unexpected) leading to initiatives to improve mecha-

nism use.

� Identify the usage of obsolete and or mechanisms that should no longer be in use.

� Identify ineffective and or mis-configurations and how widespread they are.

� Attempt to infer why a mechanism has lower than expected/desired usage.

It is likely that the more complicated the security mechanism are to deploy and or imple-

ment, the less use it will see. This research intends to discover to what extent security

mechanisms are currently deployed and attempt to determine possible reasons for large or

small adoptions. Once the adoption has been measured it shall be compared to similar

research to seek indications of adoption trends.

Chapter 2 details “Why Security Mechanisms Exist” as it is provides additional context

when analysing the adoption of security mechanisms.

The usage of “Top 1 Million sites“ lists are quite popular with researchers in measurement

studies as shown by use in [10, 11, 12, 13, 14, 15, 16, 17, 18]. As these lists identify

themselves as containing the “Top” sites, this provides a source of domains that are likely

to be the most commonly used by users browsing the internet and thus a very relevant

source for study. The lists containing 1 million domains is also of sufficient size to gain a

broad insight into the websites on the internet.

The main contributions of this research are (1) Which TLS versions a website supports

(section 5.3); (2) Continuation from previous studies on the adoption of security headers;

(3) The adoption of Cross Origin security headers introduced relatively recently (sections

5.10, 5.11, 5.12).

2

Objectives and Scope

In order to conduct research to answer the question stated in the introduction in a con-

structive manner, one must set out a list of objectives to be completed:

1. Identify security mechanisms of which to measure the adoption.

2. Analyse previous related measurement research for data capture methodology.

3. Scan services in the HTTPS ecosystem to obtain the required data to be able to mea-

sure adoption of the chosen security mechanisms.

4. Analyse the adoption of chosen security mechanisms.

5. Compare and contrast the analysis outcomes to related research.

There are many services in the HTTPS ecosystem such as websites and API interfaces and

as such the target(s) of measurement will be restricted otherwise the research could take

a very long time if not endless. The research will be scoped by the following criteria:

1. The measurements will be restricted to websites as they are interacted with by a large

proportion of people today, thus providing useful analysis targets.

2. Scan websites no more than once a day for a period of at least 12 months.

3. Restrict the websites scanned to the top 1 million most popular.

4. Only metadata, i.e. headers and connection details, will be captured and not the body

content of websites.

The reasoning for the chosen scopes is discussed in section 6.1.1.

3

Document Structure

This report going forward is structured as follows:

Chapter 1 - Security Mechanisms Primer provides a breif background of relevant

technologies related to the security mechanisms to be analysed. The chosen security mech-

anisms to be analysed are given a brief overview along with attacks they are designed to

mitigate.

Chapter 2 - Why Security Mechanisms Exist details the need for security mecha-

nisms, focusing on those mentioned in chapter 1, including the following attacks: Cross

Site Scripting (XSS), Supply Chain Attacks, Clickjacking and Entity in the Middle Attacks.

Chapter 3 - Data Acquisition discusses internet scanning, the issues to be aware of

and how other similar research has captured their data. This part concludes with detailing

how this project carried out the data capture which is analysed in chapter 5.

Chapter 4 - Security Mechanisms Overview goes into further detail about each

chosen security mechanism as detailed in section 1.3 which are analysed in chapter 5. This

is to allow the reader to gain further context for the analysis chapter.

Chapter 5 - Security Mechanism Adoption Analysis analyses the chosen security

mechanisms described in section 1.3 from the data captured in chapter 3, over a 16 month

period from November 2020 to February 2022.

Chapter 6 - Conclusions and Closing Remarks brings the report to an end concluding

that apart from TLS the other chosen security mechanism, as detailed in section 1.3, that

are currently not deprecated are of relatively low usage and work needs to be done to

improve this.

4

Chapter 1

Security Mechanisms Primer

This chapter introduces the selected security mechanisms that are analysed in chapter 5

and technologies that they build upon.

1.1 HTTP

HTTP (Hypertext Transfer Protocol), standardised in 1996 [4], is a stateless protocol used

for the transmission of data between a web browser and a website. When one enters an

address into the address bar of a web browser or clicks a link on a web page, HTTP is used

to send the request to and receive the response from a website.

1.1.1 HTTP Headers

HTTP Headers make up part of the additional meta-data that accompanies request and

response payloads on the HTTP protocol.

Headers are key value pairs delimited by the colon : character [4]. The key of a header is

case insensitive.

An example header could be server: nginx where server is the key and nginx is the

value.

1.1.2 HTTP Methods

HTTP has a number of methods for the purpose of denoting the intended request action

that the request initiator is requesting to perform on a resource.

5

The below are relevant methods for this project:

� GET – Requests a specified resource without altering the resource.

� HEAD – Identical to the GET method without the resource being returned (i.e. only

metadata such as HTTP Headers)

1.1.3 HTTPS

The S in HTTPS signifies that the HTTP protocol communication shall be over a secure

channel, provided by the SSL/TLS protocols [19]. A URL starting with https:// e.g.

https://example.com signifies it will be using a SSL/TLS secure channel.

SSL/TLS provides several protections including: confidentiality, data origin authentication

and entity authentication. Entity authentication of a website is provided by the use of

“certificates” which are issued by certificate authorities. A users’ browser has a predefined

list of certificate authorities that it trusts and a website certificate will only be deemed

valid of it was issued by a certificate authority in the predefined list.

Slowly over time HTTPS has seen an ever increasing amount of adoption. There have been

several incentives over the years to encourage the use of HTTPS and reduce the barrier to

entry:

� Lets Encrypt provides free certificates, a prerequisite to enable HTTPS, for websites

and is currently able to issue at least 200 million certificates a day as of February

2020 [20]

� Search engines will rank websites higher if they use HTTPS. Google uses HTTPS as

a “very lightweight signal” [21]

� Google Chrome and Mozilla Firefox both started to show warnings in their browsers

in 2017 when users typed in passwords on a site loaded over HTTP [22, 23]

� Governments and Community resources on why to use HTTPS [24, 25]

SSL/TLS is detailed in more depth in sections 1.3.1 and 4.2.

6

1.2 Same Origin Policy

Same-Origin Policy (SOP) is a critical base security mechanism of web browsers that

restricts the origin of a resource (e.g. script) to only be able to communicate to resources

from the same origin.

The concept of SOP started in 1996 with the release of Netscape Navigator 2.0 [26] and

standardised by The Web Hypertext Application Technology Working Group (WHATWG)

[27]

If the scheme (e.g. https://), port (e.g. 443) and host (e.g. images.example.com) are the

same for two URLs they are deemed to be in the same origin. The combination of scheme,

port and host can be referred to as the origin tuple or triplet.

A request is deemed to be “cross origin” when the origin triplets of the url of the request

being made is different from that of the origin of the request.

The path of a URL after the origin triplet is NOT evaluated when origins are being

compared, for example the origin triplet of https://example.com/index.html is

https://example.com.

Table 1.1 shows several examples of same origin triplet violations of http requests when a

user is currently viewing the url https://shop.example.com/index.html in their browser,

which is of the origin https://shop.example.com.

1.2.1 Cross Origin Network Requests

A Cross origin request is one that is between two different origins, examples of which are

shown as a violation in table 1.1.

Cross Origin network requests can be summarised into 3 different categories:

� Cross-Origin reads are mostly denied (to prevent attacks such as XSS which is dis-

cussed further in section 2.1.1).

� Cross-Origin embedding is mostly allowed (e.g. <script src="..."></script>)

� Cross-Origin writes are mostly allowed (e.g. form submissions, links and redirects)

7

URL
Same Origin

Triplet
Violation

Reasoning

https://shop.example.com/books.html No
The difference

is after the origin triplet

https://shop.example.com/music.html No
The difference is after the

origin triplet

https://blog.example.com/index.html Yes
The host of the origin

triplet, blog.example.com,
is different.

https://shop.example.com:8000/forum.html Yes
The port of the origin

triplet is different (HTTPS
default port is 443)

http://shop.example.com/index.html Yes
The scheme of the origin
triplet, HTTP, is different.

Table 1.1: Same Origin triplet example violations

1.2.2 Cross Origin Request Sharing

Cross Origin Request Sharing is a web browser mechanism for the purpose of allowing a

resource to specify the restrictions to be able to access a resource via one or more of the

HTTP Headers [28].

Cross-Origin-Request-Sharing (CORS) can be used to override the default SOP behaviour,

however it must be used with caution to limit exposure to attacks.

A request is deemed to be “cross origin” when the origin triplets of the url of the re-

quest being made is different from that of the origin of the request. For example if

a script on the web page https://shop.example.com/index.com which has the origin

https://shop.example.com wants to make a request to https://www.domain.com/login.html

which has the origin https://www.domain.com the two origins are different thus the re-

quest is deemed to be cross-origin.

Under certain circumstances a ’preflight’, HTTP OPTIONS call, is made to the resource

in question to obtain the criteria that must be met for the desired request to be allowed

to be made.

8

1.3 Selected Security Mechanisms

The following security mechanisms are those that have been selected for their adoption to

be analysed. They are briefly summarised here and detailed more in depth in chapter 4

and then analysed in chapter 5.

1.3.1 SSL/TLS

For the context of this research, SSL/TLS provides the secure channel used to send HTTP

protocol traffic securely. This is more widely known as HTTPS.

SSL/TLS provides the following main security services:

� Confidentiality - the protection of data such that only those who have been given

authorisation can access the data.

� Data Origin Authentication - establishes the integrity of the SSL/TLS channel data,

i.e. to be able to verify the data was sent, and not altered in transit, by the corre-

sponding party with whom the SSL/TLS channel was established with.

� Entity Authentication - the ability for an entity to prove their identity using mech-

anisms such as digital signatures.

This mechanism is detailed further in chapter 4.2 and analysed in section 5.3.

1.3.2 Security.txt

The “security.txt” mechanism is to aid in informing security researchers how to disclose

security issues found on systems such as a website [29].

The specification specifies a number of locations where a “security.txt” file should be

placed thus allowing security researchers to know where to look to find disclosure/reporting

information should a site support the security.txt mechanism.

This mechanism is detailed further in section 4.3 and analysed in section 5.4.

1.3.3 Content Security Policy

The Content Security Policy (CSP) mechanism allows restrictions to be specified, in either

a header or HTTP meta tag, in the form of a policy.

9

A policy can consist of a number of directives targeted at restricting the loading/executing

of resources on a web page in a browser, such as only allowing scripts to be loaded from a

specific list of domains.

The main attacks that are intended to be mitigated include Cross Site Scripting (XSS),

data injection , packet sniffing and supply chain attacks.

This mechanism is detailed further in chapter 4.4 and analysed in section 5.5.

1.3.4 Strict Transport Security

The Strict-Transport Security response header (STS) is a mechanism that instructs

the browser to load the website only over HTTPS and never HTTP [9]. This prevents

an attacker trying to get the user to use HTTP to access the site so that the attacker

could perform an entity in the middle attack (detailed further in section 2.1.4) allowing

the attacker to impersonate the user or just capture sensitive information to name only a

few possibilities.

There is an issue with this header such that a browser can only know to load a website only

over HTTPS when the STS header is received. On the first visit to a website an attacker

could intercept a HTTP request to the website and keep the connection HTTP and thus

the user would not get the STS header. To overcome this, STS Preloading is required

which is detailed next.

This mechanism is detailed further in chapter 4.5 and analysed in section 5.6.

1.3.5 STS Preloading

STS Preloading is a mechanism where a browser checks to see if the requested domain is

in a predefined list and if it is, then the website must only be accessed over HTTPS.

The main reason for STS Preloading is to ensure the first time a user visits a website it is

over HTTPS. Without preloading, should a user visit the site the first time over HTTP,

an attacker could intercept the traffic and perform malicious actions such as the entity in

the middle attack as described in section 2.1.4.

Google maintains a predefined list of websites where the website owners/maintainers have

requested to be added [9].

10

This mechanism is detailed further in chapter 4.6 and analysed in section 5.7.

1.3.6 X Content Type Options

The X-Content-Type-Options (XCTO) response header is used to enforce that the “Mul-

tipurpose Internet Mail Extensions” (MIME) specified in the Content-Type header (e.g.

Content-Type: text/css) matches that of the requested resource [30].

This mechanism is intended to mitigate against such attacks as drive by downloads and

untrusted user content being treated as an executable.

This mechanism is detailed further in chapter 4.7 and analysed in section 5.8.

1.3.7 X Frame Options

The X-Frame-Options (XFO) response header is a mechanism that states if a browser

should load the url in question in any of the following html elements: <frame>, <iframe>,

<embed>, or <object>.

This mechanism is intended to mitigate against such attacks as clickjacking where an

attacker invisibly embeds another site on top of theirs tricking users, via the use of enticing

offers such as free electronics, into clicking a seemingly harmless link which actually triggers

a function on the embedded site such as transferring money via one’s banking website to

the attacker.

This mechanism is detailed further in chapter 4.8 and analysed in section 5.9.

1.3.8 Cross Origin Embedder Policy

The Cross-Origin-Embedder-Policy (COEP) response header allows a website main-

tainer to require that any cross-origin resources are only allowed to be loaded if the resource

is explicitly permitted to do so via a Cross Origin Resource Policy (CORP) or a Access

Control Allow Origin CORS header or meta tag.

A driving factor for this header being introduced was that some developers may implement

CORS in minimal way, such as setting the requesters origin in the Access-Control-Allow-

Origin header [31]. This may have the undesired affect of allowing potentially sensitive

data to be accessed unintentionally.

11

COEP has a lower risk than CORS of a similar situation form occurring as it is a lower

privilege than CORS.

This mechanism is detailed further in chapter 4.9 and analysed in section 5.10.

1.3.9 Cross Origin Resource Policy

The Cross-Origin-Resource-Policy (CORP) response header is used to restrict which

origins are allowed to read resource(s), such as scripts and images, protected by this mech-

anism.

A primary class of attacks that this mitigates against are speculative side-channel attacks.

The Spectre attack [32] is one such attack which was publicly announced in 2018.

This mechanism is detailed further in chapter 4.10 and analysed in section 5.11.

1.3.10 Cross Origin Opener Policy

The Cross-Origin-Opener-Policy (COOP) response header provides a mechanism that

prevents the sharing of browsing contexts of a top-level document with cross-origin doc-

uments. For example, preventing a popup window from communicating to the web page

(document) that opened the popup via the use of process isolation [33].

This is also known as a process-isolation mechanism, preventing attackers from gaining

access to a global object that created a popup window/tab for example.

This mechanism is detailed further in chapter 4.11 and analysed in section 5.12.

1.3.11 Public Key Pinning

The Public-Key-Pins (HPKP) response header is a mechanism that permits a cryp-

tographic public key to be advertised that must be matched to the website certificate

presented during the SSL/TLS connection establishment otherwise the website will be

prevented from loading/rendering.

This header was intended to protect websites in the event a CA provider was compromised,

such as DigiNotar in 2011 [34], and unauthorised certificates then being issued to an

attacker for the purposes of impersonating websites. The HPKP mechanism would prevent

12

the unauthorised certificate from being trusted by visitors that had previously visited the

website i.e. preventing an entity in the middle attack.

This mechanism is detailed further in chapter 4.12 and analysed in section 5.13.

13

1.4 Summary

In this opening chapter, a brief overview of the core HTTP technology was presented

leading to an overview of the selected security mechanisms (detailed in more depth in

chapter 4) the adoption of which is to be analysed later in chapter 5. Next in chapter 2

“Why Security Mechanisms Exist” attacks related to the selected security mechanisms, as

outlined in section 1.3, are detailed along with the security mechanisms that can be used

to mitigate these attacks.

14

Chapter 2

Why Security Mechanisms Exist

This chapter details reasons for security mechanisms to exist and walks through several

attack types with real world examples stating which of the chosen security mechanisms,

detailed in section 1.3, are intended to mitigate the attacks.

2.1 The Need for Security Mechanisms

As communication technologies continually improve, it has allowed and attracted an ever-

increasing amount of people to interact with services on the internet. Malicious actors and

security researches are drawn to this large online user base interacting with online services

such as those that:

� process payments [35]

� provide online banking [36]

� contain confidential information (e.g. medical related data) [37]

� provide communication channels (e.g. social networks and forums)

There are many entities that track trends and malicious activity, one of which is the

non-profit organisation Open Web Application Security Project (OWASP) which works to

advance the security of applications [38, 39].

OWASP maintain a Top Ten list, determined using a publicised methodology, which states

the most important risks to web applications [39, 40]. In the “2021 Top Ten Report”,

injection attacks (of which Cross Site Scripting (XSS) detailed in section 2.1.1 is one

15

variant) was ranked number three and of the 94% of the applications they tested, there

was an average incident rate of 3% and 274k occurrences [41].

The “Global Data At Risk State of the Web” 2020 report [42] claims that on average, the

top 1000 websites in the Alexa top one million website list, rely upon the 32 third party

integrations. This gives a great opportunity for attackers to leverage the supply chain

attack (detailed in section 2.1.2) to compromise websites that may be harder to compromise

directly. One such example of this attack is the 2018 Magecart attack on Ticketmaster [35]

to steal payment information via the compromise of third party resources.

Due to the susceptibility of data traversing the internet being intercepted and attacked,

its integrity and confidentially needs to be protected. For browser traffic this is achieved

by the use of HTTPS, which uses SSL/TLS secure channels, instead of the insure HTTP.

Unfortunately not all websites use HTTPS and or redirect to the HTTPS version should

it exist. Governments are encouraging the use of HTTPS [24] as well as the community

itself [25]. The general advice is that if one is in control of a website, it should be using

HTTPS regardless of the websites purpose or content.

The following attacks are ones that can be mitigated by one or more of the security mech-

anisms described section 1.3.

2.1.1 Cross Site Scripting (XSS)

Cross Site Scripting (XSS) attacks are part of the injection class of attacks where one

or more malicious scripts, commonly written in JavaScript, are injected and subsequently

executed on a web browser. There are four main variants of XSS attacks:

Attack Variants

Reflected

Stored XSS (also referred to as Non-Persistent, Indirect and Type II) occurs as a result of

when a request is made to a web application, that contains malicious content, the response

contains a malicious script that is executed by the web browser. The malicious script is

reflected back to the user, hence the name of this variant [43].

Stored

16

Stored XSS (also referred to as Persistent, Direct and Type I) is where a malicious actor

is able to store a malicious script on a website, by some means such as a forum post or

comment section of a website such that the script will be executed, by the web application

when a victim visits the page. The power of this variant is that the script is permanent,

until when or even if the script is detected and removed. This variant has the poten-

tial to have many visitors to become victims depending on the amount of traffic to the

compromised web page(s) [43].

DOM-Based

DOM-Based XSS (also referred to as Type 0) takes place entirely in the DOM. The Docu-

ment Object Model (DOM) is the web browsers internal representation of an html page as

a result of the browser parsing the html. The source (e.g. the parsed html), functionality

and destination of the malicious script is all contained within the DOM [43, 44].

Mutation Based

Mutation Based XSS (also referred to as mXSS) is based on the use of the innterHTML

functionality, often used to provide web application users to do custom styling, of a browser

which allows direct manipulation of the HTML content bypassing the DOM entirely. The

malicious actor crafts a “mutated” payload that once processed by the innerHTML func-

tionality, allows the script to execute [45].

Historical Example

In October of 2005 it was discovered that when users visited an infected MySpace profile

the phrase “but most of all, samy is my hero” was appended to the “hero” section of

visiting users profiles. The infected profile contained a stored XSS payload which added

itself to the visiting users profile and adding the aforementioned phrase. The attack was

initiated by “Samy” infecting his own profile with the XSS payload. Over one million user

profiles were reported to have been affected within 20 hours [46].

The attack is known as the “Samy Worm” as it propagated to other MySspace profiles just

by visiting an infected profile.

Security Mechanism(s) Providing Mitigation

� Content Security Policy (CSP) – multiple directives

17

� Cross-Origin-Resource-Policy

� X-Frame-Options

2.1.2 Supply Chain

Supply chain attacks are when a malicious entity maliciously alters one or more third party

resource(s) (such as a JavaScript library) that a web application uses, commonly hosted

on a third party location such as a CDN. These malicious modifications are for several

reasons including:

� Running a cryptominer [47] on browsers

� Capturing Payment Information

� Screen Scraping

� Ad injection

Historical Example

The 2018 Texthelp breach is one example of this type of attack where a malicious entity

compromised a JavaScript library and modified it to include a cryptominer. A cryptominer

uses computing resources to mine cryptocurrency such as (Bitcoin, Etherium and Monero).

This single compromised JavaScript library was reportedly found to be used on 4,000

websites [48].

Security Mechanism(s) Providing Mitigation

� Content Security Policy (CSP) - sub resource integrity

2.1.3 Clickjacking

A clickjacking attack is one in which a user-initiated attack is hijacked to perform unwanted

actions. A user is enticed to click on an element of a page, such as an image, however rather

than an action or outcome the user expects to occur, one determined by the attacker takes

place. To undertake the attack a malicious site renders a web page from the target website

within an iframe. The malicious site uses styling to show only what the attacker desires of

the target website [49].

18

Historical Example

The Twitter Attack, also referred to as the “Twitter Bomb”, begins by a user seeing

a twitter post that contains the text Don’t Click: http://tinyurl.com/amgzs6 [50]

and clicking on the link. Visiting the link will present the user with a page seemingly only

containing only a single button labelled Don’t Click.

Unbeknownst to the user, the twitter home page is also rendered on the page but in an invis-

ible iframe. The Don’t Click button is directly underneath the invisible “update” button

on the twitter home page, which posts a tweet. The iframe is configure to load the url

http://www.twitter.com/?status=Don’t Click: http://tinyurl.com/amgzs6 [50] and

twitters ?status= url parameter feature will pre-load the users tweet box with the value

from the ?status= url parameter.

When the user clicks the Don’t Click section of the page they are actually clicking the

invisible update button of the twitter home page which posts a tweet with the text Don’t

Click: http://tinyurl.com/amgzs6 [50] which helps to spread the message. There was

no ill intent to this clickjacking attack and as such considered more of a prank.

Security Mechanism(s) Providing Mitigation

� Content Security Policy (CSP) – frame-ancestors directive

� X-Frame-Options

2.1.4 Entity in the Middle

Malicious actors are constantly on the lookout for ways to obtain sensitive data for a

multitude of reasons including: intellectual property theft, stealing money and personal

information.

One of the ways to help prevent this is to secure the communication traffic over the internet

using HTTPS which relies on the SSL/TLS mechanism.

If a malicious actor is able to intercept and or passively monitor web traffic, the opportunity

arises to perform what is known as an Entity in the Middle attack.

The Entity in the Middle attack is where an attacker is able to intercept and manipulate

traffic between the victim and the target entity such as a website. This can lead to

19

attacks such as victims unknowingly giving their credentials to attackers as well as attackers

manipulating the response from the website before being sent back to the victim.

Over the years there have been several attacks against the SSL/TLS mechanism, compro-

mising the confidentiality and or integrity of the information it is meant to secure.

Historical Examples

BEAST (2011)

The BEAST attack, announced in 2011, was for use against TLS 1.0. The attack exploited

the TLS 1.0 implementation of the Cipher Block Chaining (CBC) encryption mode in

order to be able to decrypt parts of TLS 1.0 data packets to reveal sensitive data such

as website cookies that could be used to impersonate a user on a web application [1, 51].

Modification of padding, the primary exploitation vector, used in this attack is referred to

by the term “padding oracle”. The vulnerability was fixed in TLS 1.1.

Lucky 13 (2013)

The Lucky 13 attack is where a malicious attacker modifies, in transit, the padding (re-

dundant data to make the data packet a certain size) of TLS data packets, that are using a

CBC cipher suite, to analyse how the server reacts. Should the malicious actor be able to

determine that the server has reacted to the modifications of padding, then this can lead

to information leakage and plain text recovery [1, 52]. This attack is effective against TLS

1.0 - 1.3 and SSL 3.0 that use CBC mode (or any other mode that do not have padding

oracle countermeasures.)

Poodle (2014)

The Poodle attack is similar to the Lucky 13 attack, where unprotected padding is ex-

ploited, but restricted to SSL 3.0. In order to force the use of SSL 3.0 the malicious

attacker performed a downgrade attack which prevented a TLS handshake for any pro-

tocol version higher than SSL 3.0 to be established [1, 52]. The downgrade attack was

possible as servers would fall back to SSL 3.0 should higher protocol versions fail.

Heartbleed (2014)

The 2014 Heartbleed attack, which gained attention in the mainstream media, exploited

20

an implementation flaw in the length of a data bounds check. The flaw was in the rarely

used but commonly enabled heartbeat protocol [53] of the TLS mechanism in the OpenSSL

library (used by millions of servers).

To exploit the vulnerability, a malicious actor would send a HeartbeatRequest message,

setting the payload length set to a length larger than the actual HeartbeatRequest mes-

sage payload length [53]. This allowed the extraction of private memory on the target

which could lead to the ex-filtration of sensitive data such as website private keys and

cryptographic secrets.

The maintainers of the OpenSSL library released a fix for the vulnerability alongside the

public announcement of the vulnerability [53].

FREAK (2015)

The 2015 FREAK attack shed light that the OpenSSL library would accept weak RSA

encryption keys, from the use of export grade cipher suites, during a full-strength RSA

TLS handshake. A malicious actor would force the client to use such a weak key by sending

a SeverKeyExchange TLS protocol message to the client. If such a weak key was used,

the malicious actor could capture the traffic, brute force the key within a matter of hours

and decrypt the captured traffic. The removal of export grade cipher suites on the server

stops this attack [1, 54].

Security Mechanism(s) Providing Mitigation

� TLS/SSL

� Strict Transport Security

� STS Preloading

� Public Key Pinning

Organisations should have policies in place to keep up to date with current state of TLS

vulnerabilities and best practice recommendations to best mitigate risk to themselves and

their users from malicious actors.

21

2.2 Summary

This chapter provided context for which attacks can be mitigated by the selected security

mechanisms, as outlined in section 1.3. Real world examples of the attacks were used such

that the reader can review them in more depth should that be of interest. Next in chapter 3

a critical review is performed of previous measurement studies leading to the measurement

methodology used for this study.

22

Chapter 3

Data Acquisition

This chapter details the ethical considerations of measurement studies, critically analyses

the related studies and details the methodology of this study to obtain the data in order

to be able to analyse the adoption of the selected security mechanisms outlined in section

1.3.

3.1 Ethical Considerations

It is not feasible to request permission to conduct internet measurement scans from the

desired targets. This means that researches should take it upon themselves to evaluate

their methodology for ethical considerations in the absence of permission to conduct such

research.

The ethical considerations as outlined in [34, 55, 56, 12] were considered for this research.

During the literature research, not all research that was of a similar nature contained ethical

consideration statements. One would hope that ethical consideration was performed in the

research, but should be outlined if only minimally.

The “BCS, The Chartered Institute For IT” code of conduct [57] outlines professional

standards that should be met. This research was conducted with the same sentiment of

these standards. Below are several of the most relevant excerpts taken from the document

as presented below verbitem that represent to conduct of this research:

� “NOT disclose or authorise to be disclosed, or use for personal gain or to benefit

a third party, confidential information except with the permission of your Relevant

23

Authority, or as required by Legislation.”

� “accept your personal duty to uphold the reputation of the profession and not take”

any action which could bring the profession into disrepute.

� “only undertake to do work or provide a service that is within your professional

competence”

� “have due regard for public health, privacy, security and wellbeing of others and the

environment”

3.1.1 Service Degradation

Using the “Tranco Top 1 Million Domains” list [58] which is a “most popular” type of

domain list, similar to other lists as described in section 3.3.1, reduces the chance of

service degradation as the more popular a domain is, the more resources it is likely has

which reduces the impact of the measurement analysis.

For the purpose of obtaining the HTTP headers of a domain the “Home Page” of the

domains are requested which are more likely to be cached than other pages.

To determine the TLS versions supported by a domain, other than that used on the HTTPS

request to the home page, pure TLS connections are attempted which reduces the service

impact as HTTP requests will add additional load to that of pure TLS connections. Addi-

tionally pure TLS connections are only attempted if an HTTPS connection was successful

to a domain’s home page.

Whilst obtaining the STS preload state of a domain, as detailed in section 3.4.5, it is

first checked if the desired url has already been requested. During the processing of a

scan, including redirects, it is quite possible that the information sought has already been

obtained.

There is no retry logic for a request to a domain to additionally reduce service degradation

of the target domain.

Randomisation is another potential tactic, however as the research uses a domain list rather

than ip addresses. For randomisation to be effective the ip addresses would need to be pre

resolved which is not being undertaken in this research.

24

3.1.2 Exploitation

The software used to conduct the research against domains does not attempt to:

� Send malformed requests

� Login

� Exploit vulnerabilities

� Access hidden/private paths/URLs

3.1.3 Information Disclosure

As this research obtains publicly available information and is not revealing vulnerabilities

about any particular domain, there is not a concern of exposing information about domains

that may reveal vulnerabilities.

3.1.4 Abuse Reports

As the domains being scanned have not given permission for research to be conducted

upon them, the ip addresses that conduct the research have rDNS (reverse DNS) entries

configured such that complaints/enquires can be submitted.

The cloud service providers for the servers that conduct the research have easy to use

interfaces to allow responses to abuse reports should they be submitted.

The software that conducts the research was pre-equipped with a deny list for both ip

addresses and domains. Both ip addresses and domains are required as an IP address can

host more than one domain and a complaint may ask to block an IP address range.

There was a single abuse report, which came from the Cybersecurity and Infrastructure

Security Agency (CISA) [59] USA government agency, which stated a request for “assis-

tance in verifying possible malicious activity being hosted on a system registered to you”.

The reported domain and time of the request was checked against the scan logs and it

was found that a scan request to the domain was at the time the abuse report stated. A

response to the report was made stating that the request was made for the purpose of

internet research.

25

3.2 Literature Review

Table 3.1 is a critical review of limitations identified from previous internet measurement

studies found during the literature research and how this project aims to address them.

Table 3.1: Internet Measurement Studies Literature Review

Section Limitation Example(s)
How Addressed In

This Project

Data

Filtering

If data is filtered during data

capture, it could result in

unintended data being filtered

The researches in [10]

filter headers during

data capture, which if

not done perfectly (e.g.

spelling and case)

could produce

unintended results.

All HTTP headers,

TLS

certificates/connection

information is captured

unfiltered

www

subdomain

If using only the base domains

for HTTP(s) requests could

produce inaccurate results as

not all domains serve HTTP on

the base domain. The www

subdomain is the most common

domain to serve HTTP requests

besides the base domain.

Researchers [10, 34] do

not state if the www

subdomain was

explicitly added during

scanning.

The www subdomain

is used if base domain

does not have a DNS A

record as shown in

figure 3.3 / section

3.4.5.

HTTP

method

Browsers use the HTTP GET

method to obtain web pages. A

website might behave differently

if a non GET HTTP method

(e.g. HEAD) was used. Some

websites may not even allow the

HTTP HEAD method.

Researchers [34]

specifically use the

HEAD HTTP method

to reduce load on

target domains.

The HTTP GET

method (as detailed in

the task flow stage 3 in

section 3.4.5) is used

which is what browsers

use.

Continued on next page

26

Table 3.1 – Continued from previous page

Section Limitation Example(s)
How Addressed In

This Project

Client

Headers

Browsers send standard request

headers on the requests to a

websites home page. Including

as many of these headers as

possible when scanning

domains, allows greater browser

emulation. It is quite common

when a non browser user agent

header is detected a different

response is sent from the

website.

[13] uses 3 user-agents,

[10, 34, 60, 18, 16, 11,

12, 15] use a single

user agent. No other

request headers are

specified in the

research.

Use chrome user agent

along with other

request headers as

detailed in table 3.6.

SSL/TLS

Verifica-

tion

If SSL/TLS verification is done

at capture time there is a

possibility that the client/OS

does not necessarily have access

to all of the Root/Intermediate

certificates that a browser would

have.

None of the research

[13, 10, 34, 60, 18, 61,

16, 11, 12, 62, 17, 15]

processes SSL/TLS

verification at the

analysis stage. There

could be many reasons

for this such as it not

being common

knowledge of how

browsers cache

certificates and or

assumed that not

enough sites would be

affected.

SSL/TLS certificate

verification is

performed at the

analysis phase.

Monitoring

When a scanning session is

conducted and not monitored,

one or more sessions could fail

without the researcher(s) being

aware for an unknown amount

of time.

It is possible that the

outage mentioned in

[18] could have been

avoided or minimised

by the use of effective

monitoring.

Metrics of the status of

scanning are created

and alerted upon and

investigated as detailed

in section 3.4.6.

Continued on next page

27

Table 3.1 – Continued from previous page

Section Limitation Example(s)
How Addressed In

This Project

Scanner

Tool Verifi-

cation

One cannot assume that the

technology used to perform the

scanning is doing what one

expects or intends without due

diligence being performed.

None of the research

specifically calls out

testing of the scanner

with manual

verification of results.

Successfully and

unsuccessfully scanned

domains were picked at

random during the

creation of the scanner,

manually verifying

results and

correcting/updating

scanner as required.

Scanner

Tool Flow

The use of graphical flows allows

greater accuracy for research

replication and understanding.

Whilst most research

gives a written

overview of scanner

methodology

[10, 34, 13, 60, 18, 16,

11, 12, 17, 15], they

vary in detail and do

not have a graphical

counterpart.

Figure 3.3 is a

graphical

representation with

detailed descriptions to

enhance the

understanding of

scanner methodology.

28

3.3 Data Acquisition

In order to be able to analyse HTTP Security Headers, TLS Versions, STS Preloading and

security.txt adoption, or lack thereof, data on these desired metrics needs to be acquired.

There are several overarching ways to acquire the desired data: Active, Passive and Third-

Party data sets.

Active data collection is the act of establishing TLS connections and or making HTTP re-

quests and storing the resultant connection/request/response data. This method requires

the setup of infrastructure and software, which can involve the customisation and or devel-

opment of entire software applications. Active scanning gives great versatility, however care

needs to be taken to ensure the data is collected in a methodical and ideally a repeatable

way, in order for the methodology to be able to be reproduced.

Passive data collection is capturing data as it flows through network infrastructure. The

infrastructure required is likely to be less than that of active collection as it should only

require the duplication of pre-existing network traffic to a device that is able to store the

data. With any sort of data collection there is the always the ethical consideration to take

into account, however with passive collection privacy is of higher concern than active data

collection and needs to be treated as such.

Third Party data sets is the use of data collected by another entity that is using passive

and or active collection. The only infrastructure that should be needed by the researcher

would be that needed to analyse the data. There is great trust that the third party has

conducted the data collection in a way that makes the analysis of it meaningful.

3.3.1 Scanning Targets

Active data collection, for the purpose of measuring security mechanism adoption, requires

a list of entities to collect data from. Generating a list of domains to scan on ones own

could be potentially quite an arduous task. Using resources that contain collections of

domains is a much easier task, assuming the collection is of high relevance to the research

that is to be conducted.

29

Pre-compiled Lists

Pre-compiled, often ranked by popularity, domain lists are made available by organisations

that claim they are in a position to create such lists, such as: Alexa Top 1 Million sites

[63], Cisco Umbrella [64], Majestic Million [65] and Tranco [58]. These lists are updated

regularly, as often as once a day, which allows researchers to have up to date lists that are

freely available.

The Alexa Top 1 Million site is a favourite among researchers as shown by use in [10, 11,

12, 13, 14, 15, 16, 17, 18]. These lists are primarily used as they are intended to reflect the

most popular sites on the internet and thus are assumed to have a high amount of visitors

making them great sources for research.

Zone Lists

Zone Lists, such as a country code top level domain (ccTLD) zone lists, which is a list of

domains for a country, are another source of domains to scan. These are generally used

when the researcher’s intent is to gain insight into an entire country or continent such as

the EU [34, 11, 16, 17].

The majority of zone lists are not openly available however ICANN has created the “Cen-

tralised Zone Data Service” (CZDS) [66] which allows one to register and request access

to Zone Files.

The number of domains to scan using zone lists can be in the 10s or even 100s of millions of

domains which would likely require more infrastructure to scan on a regular basis compared

to the use of pre-compiled lists.

Search Engines

Utilising search engines can allow additional URLs for a domain to be acquired to allow

for further insight how responses might change depending on which web page of a domain

is requested [11].

IPv4 Address Space

Scanning the entire IPv4 Address space (i.e. all internet IPv4 addresses) is also a source

of entities to scan [60]. The major difference is the use of an IP address rather than a

domain which needs to take into account that servers may respond differently if an IP

30

address is used as the website address rather than a domain name (e.g. https://1.2.3.4

vs https://example.com).

The number of internet routable IP Addresses, i.e. ip addresses that can be access over

the internet, is around 232 total possible addresses minus approximately 288 million non

route-able addresses which results in approximately 4 billion addresses.

Scanning the entire IP address range can lead to abuse reports, however these can often

be revoked if the researcher works with the operator who raised the complaint to conduct

the scan in a manner in which the operator deems acceptable.

3.3.2 Scanning

Scanner Technologies

There are quite a number of scanning technologies used in measurement research and as

such there does not seem to be a proffered technology overall but what the researcher(s)

are comfortable with. This does makes sense in regards to if a particular technology has

worked for researcher in a previous study then using it in a future study, where applicable,

as they are familiar with its capabilities giving more time for other activities.

Table 3.2 details a number of measurement technologies found to be used in previous

measurement studies during the literature research.

31

Technology Description Use Case

PHP with Curl [10]

PHP is a web programming

language. Curl provides a client

library for communicating to

web services such as HTTP web

servers.

Make HTTP calls to websites

and capture the response body

and metadata.

Goscanner [34]
Tool for large scale TLS and

SSH scans.

Obtain TLS connection

information.

Bro [34, 60] A network security monitor.
Passive network packet capture

for TLS connection information.

PhantomJS [11, 16] A headless scriptable browser.

A browser that can be easily

used by JavaScript scripts for

obtaining the body of a website.

Chrome [12]
A modern desktop website

browser.

In headless mode, can be used

to capture a page rendered as

an end user would see it.

Scrapy [13]
A scriptable tool for extracting

data from websites.

Extract HTTP headers from

response to a request made to a

website.

Java with Apache [14]

Java is a programming

language, Apache provides a

HTTP client for Java.

Make HTTP calls to websites

and capture the response body

and metadata.

Zmap / Zgrab [15, 17, 60]

Zmap is a single packet network

scanner. ZGrab is an

application layer scanner.

Zmap can be used to identify IP

address with open ports. ZGrab

could then be use to capture the

body and metadata from HTTP

requests to the open port(s).

Table 3.2: Technologies used in previous measurement studies

Domain Resolving

When a HTTP client makes a request to a URL (e.g. http://example.com) the client needs

to lookup the IP address of the domain (e.g. example.com) in order to send the HTTP

request.

Scanning a large number of domains can potentially put a strain on the DNS server the

client is using to resolve the domain to an IP address. If there are a sufficiently large number

of domains to be resolved at the same time, or over a very short period of time (e.g. a few

seconds) it is possible that the DNS resolution will fail when there is an IP address that

32

cannot be resolved. There are several ways around this such as pre determining the IP

address for the domain [34], using more than DNS server and using retries.

Pre-computing DNS resolutions makes more sense when not following HTTP redirects such

as for the TLS connection establishment in [34, 17].

Using the WWW subdomain

When using lists that contain base domains (e.g. example.com) it is not known if the

website is actually hosted or available from the base domain. Websites are generally

available from the base domain (e.g. example.com) and or its www subdomain (e.g.

www.example.com).

To give a good chance of being able to obtain a HTTP response from a domain, it is

common to try both the base domain and the www subdomain [11, 12, 14, 15]. Some

researchers choose not to also try the www subdomain such as in [10, 34] (but do not

necessarily state why they chose not to do so), which can lead to unnecessarily reduced

data for analysis.

HTTP Method

In order to obtain HTTP Security Headers, one needs to make an HTTP Request. There

are several types of HTTP Request, GET and HEAD being two of them.

HTTP HEAD requests result in only metadata being returned (this includes HTTP Head-

ers) by the server. The main reason researchers choose to use HEAD HTTP Requests [34]

is to save compute resources on the server (as the server does not have to generate the

response payload such as a html web page) as well as reducing the amount of data being

sent over the internet.

Whilst using HEAD requests does save server resources, which helps in the ethics of internet

research of this kind, browsers perform GET requests which could potentially respond with

different headers for the same URL. If the researcher is intending on analysing the response

payload from a website, in the same way a browser would, then GET requests [11, 12] should

be used.

Certain applications and programming languages, such as go [67], allow the use of GET

request without requesting the actual payload from the server which leaves just the com-

33

puting resource to generate the payload. If the home page is requested, this is more likely

to be cached, as it will be one of the most visited pages which also helps to reduce the

compute load on the target resource (e.g. website).

HTTP Client Headers

When browsers make HTTP requests to websites, they send several HTTP headers with

the request. One of these headers is named user-agent and is often used to detect if

the client making the request is a browser. When a website detects that a non-browser

is making the request it can change the response which could skew the results of research

such as analysing HTTP security header adoption as would be seen by a web browser.

For the purposes of internet research when attempting to gather data from responses to

HTTP requests that would be sent to a browser, the use of a browser user-agent is typically

used [10, 13, 14, 68, 18]. The declaration from researchers of the value for such headers is

not always present [34] which could leave readers potentially questioning the reliability of

the resultant analysis.

Redirects

When a HTTP request is made, the HTTP protocol has the ability to redirect to a different

url. This is quite normal for websites to do this, and there are numerous reasons to do so,

such as redirecting from the base domain e.g. (http://example.com) to the www subdomain

e.g. (http://www.example.com) where the website is actually hosted. It is generally good

practice to follow redirects as this is what browsers do, unless researchers wish to only

analyse a response from a specific url such as the base domain, such as in [34].

Researchers need to be mindful however that redirects can lead to the same resultant

domain for different initial domains (e.g. http://example.com and http://mydomain.com

could both redirect to http://anotherdomain.com).

This phenomenon can potentially skew analysis results if the researchers do not actively

take this into account such as duplicate resultant URLs being removed as was done in [68].

SSL/TLS Certificate Validation

When a TLS connection is being established a browser will try and verify the claimed

identity of the website (e.g. example.com). If the server does not present all the necessary

34

intermediate certificates, in order to be able to validate the websites claimed identity,

the TLS connection will fail unless the browser already has the intermediate certificate

available.

Intermediate certificates can be obtained from such means as: the website being visited,

the certificate was obtained from a previously visited website, via Authority Information

Access (AIA) [69] or from preloading [70]. For further details on PKI, including certificates

and identity verification, please see [71, 72].

It is quite common to use non browser clients to conduct research. These clients are

not guaranteed to use any of the above mentioned methods for obtaining intermediate

certificates not provided by a website in order to validate the websites’ claimed identity.

To counteract this issue, the TLS/SSL validation can be disabled for the scanning of the

website and done as an offline step which enables any missing certificates to be obtained

at the researcher’s leisure.

It is not evident that any of the papers in the literature research conducted for this project

used such an approach, possibly assuming that the number of websites that would have

this issue would be minimal enough not to affect the results of analysis conducted, or not

aware of the issue itself.

Pre-Analysis Filtering

It is generally best to collect the rawest form of data for to give the greatest possible

freedom and options when conducting any analysis. If filtering was carried out at the data

acquisition phase this could restrict further analysis or potentially cause intended analysis

not to be possible due to the way the data was filtered.

A potential example of this is where in [10] the researches decided to parse the headers of

a HTTP response during the data acquisition phase. HTTP headers are caseless [4] and

depending on how the filtering is done, some headers could have been missed, however if

all the headers were captured this could have been a non issue during analysis.

3.3.3 Scanning Frequency

The number of times data gathered and how far apart they are, in terms of time, are

important in terms of showing any potential trends and having enough data to confidently

make statements from the analysis of such data.

35

Of the research sources that were reviewed for this project, those that conducted active

scanning activities make at least two scans such as [10, 34, 11, 12] and some with daily

scans for years [17].

The more data that is gathered in the same way, the higher value that analysis obtains,

assuming that the methodology of the acquisition is sound.

3.3.4 Monitoring

Conducting long running data acquisition would greatly benefit from, at minimum, some

basic metrics that show that a data acquisition has started, completed and if a critical

issue was encountered. This would help to ensure that data acquisition was successful and

to alert if not, so that it could be investigated and rectified to reduce any potential issues

to the research being conducted.

The researchers in [18] stated that they had a “measurement outage” however they do not

go into detail. It is possible that monitoring could have helped to reduce and or mitigate

the outage.

3.3.5 Detailed Methodologies

The majority of research reviewed for this project (outlined in section 3.2) state the tech-

nologies used and the high level description of the methodology used to acquire the data

later analysed, such as in [34, 11, 16].

Whilst this is generally enough for the reader to understand the high-level methodology,

those who wish or are conducting similar or related research could benefit form a more

detailed and formal method. There are several strategies presently available for researchers

to utilise.

“Strategies for Sound Internet Measurement” [73] is one such paper with specific relevance

to measurement research which is very relevant to the research for this report. The paper

outlines the inherent difficulties and pitfalls one can encounter focusing on: Precision,

Meta-data, Accuracy, Misconception, Calibration, Data Volume and Reproduceability.

36

3.4 Methodology

This section details the methodology this project used to obtain the data analysed in

chapter 5.

3.4.1 Requirements

A scanner is to obtain the following information from a list of domains:

� If the domain redirects from http:// to https://.

� If the domain redirects from https:// to http://.

� The TLS version(s) the domain supports.

� The TLS version auto negotiated against the domain when making a HTTPS request.

� If the domain meets the STS preload requirements.

� The HTTP headers, including their values, in use by the base domain (or the www

subdomain if the base domain does not have a DNS A record (IPv4 IP address)).

� The content of the security.txt of the domain.

3.4.2 High Level Design

This section covers the high-level design, represented in Figure 3.1, for the scanning of

domains to provide the data required as stated in section 3.4.1.

Existing technologies were evaluated, however a tool that met all the data capture require-

ments was not identified. In particular obtaining if the STS Preload requirements were

met was not found to be in a current tool.

37

Figure 3.1: High Level Design

Description
1 A list of domains will be acquired to scan against.

2
For each of the domains in the domain list, a task manager will create a
“task”, to be stored in a database, representing a domain to be scanned.

3 Metrics on the state of tasks will be sent to a time series database.
4 A task agent will poll an API for a new batch of tasks.
5 A task agent will scan a domain as stated in the task being processed.

6
A task agent will send the result of a domain scan to an API to be

stored in a database.

7
A task manager, once all tasks are completed, will extract all tasks

from the database to an archive file format.

8
A task manager, once all tasks are completed and archived, will delete

all the tasks from the database.

Table 3.3: Descriptions for Figure 3.1

38

3.4.3 Implementation

This section describes the chosen technologies and resources for the implementation, shown

in Figure 3.2, of the design in section 3.4.2.

Figure 3.2: High Level Design - Implementation

39

[A] Task Manager

The Task Manager performs the following tasks:

� Obtains the list of domains from the “Tranco” domain list source

(https://tranco-list.eu/top-1m.csv.zip).

� Create tasks directly in the Datastore (MongoDB).

� Creates an archive of the tasks via the Task API.

� Delete tasks from the MongoDB database.

� Identify and reset zombie tasks (tasks that have been marked as started but not

complete after a certain amount of time).

� Generate task metrics and store them directly in the time series DB (Influx DB).

The task manager was developed in python as it:

� Is a relatively high-level programming language which aids in being easier to learn

than a more low-level language.

� Has many libraries and resources freely available.

� There is a large global community generally willing to help each other.

� Being such a popular language, issues that one may come across may have already

been encountered and solved already.

� Is cross platform, i.e. will run on any computer that has a python interpretor available

to it.

[B] Tranco Domains Source List

As previously mentioned, similar research to this project have used pre-compiled lists,

predominantly using the Alex Top Sites list [10, 11, 12, 13, 14, 15, 16, 17, 18].

The research conducted by the Tranco team [74], who provide the Tranco domain list [58],

compared several of the “most popular domains” lists and identified that domains present

in the list can vary wildly on a day to day basis and are susceptible to influence by malicious

actors.

As a result of this paper and that the Tranco list uses other top site lists to influence their

list, the Tranco list [58] was chosen as the source for the domains to scan for this project.

40

[C] Datastore

The database is intended to only be an ephemeral store as it will only store the tasks until

they have all been completed.

The data that will be returned by the task agent will be of arbitrary length and structure.

A relational database is not the optimal choice as it is based on having one or more “tables”

that relate to one another with a fixed defined structure.

A NOSQL database is designed to store arbitrary length and a non pre-defined content

structured data.

The MongoDB database technology was chosen as it:

� Is a NOSQL database.

� Is relatively mature technology implementation.

� Has a community version (i.e. free).

� Many programming languages have pre-existing support (libraries).

� Has native support for unstructured data.

� Has detailed online documentation.

[D] Task API

The Task API is meant purely as a common interface for the task agent such that the task

database can be changed without the need to modify the task agent.

The HTTP protocol was chosen as the interface to the API as it is a very well known and

a standard protocol to use for an API.

The intended clients of the API is the Task Agent (for running and updating the tasks)

and the Task Manager (for creating an offline archive once all tasks have completed for

later analysis).

The Task API can perform the following functions:

� Allow a client to retrieve one or more tasks via a HTTP GET request.

� Allow the following task database filtering via url arguments when a HTTP GET

request is made:

41

– Task Status (e.g completed).

– Task Unique ID.

– Sort by Task Unique ID.

� Allow a client to update one or more tasks via a HTTP POST request.

GO (also referred to as Golang) was chosen as the programming language to implement

the API as it:

� Is a relatively low language which helps with improving performance.

� Is one of the easier lower-level languages to learn as it is one of the GO core principles

to be able to pickup up the language quickly.

� Has the ability to run tasks concurrently (the more domains scanned concurrently

the faster the scan of all domains can be completed).

� There are several community modules for GO to communicate with MongoDB (the

chosen database for this project).

� Has numerous community modules for GO for the purpose of creating a HTTP API.

[E] Task Agent

The task agent obtains tasks from the Task API. A task contains the required information

to allow the task agent to conduct scans against a domain.

Table 3.4 details the parameters of a Task Agent.

42

Parameter Data Type Value(s) Description

max HTTP redirects int
10 (Golang

default)

The number of HTTP

redirects allowed

max concurrent tasks int 100

The maximum number of

tasks that can be running

concurrently

deny domains array of strings
Domains not to

be scanned
domains not to be scanned

deny ips array of strings

IPv4 addresses

not to be

scanned

IPv4 addresses not to be

scanned

dns lookup nameservers array of strings
“open” recursive

DNS servers

A list of recursive DNS

servers

Table 3.4: Task Agent Parameters

Section 3.4.4 details the parameters of a task.

Section 3.4.5 details the high level flow for the process of performing a domain scanning

Task.

Appendix A details TLS client capabilities of the Task Agent.

As with the Task API the Task Agent will use the programming language GO.

[F] Domain

This is the target domain of a task being performed by the Task Agent.

[G] Time Series Database

The Task Manager will create metrics about tasks and send them to the time series

database. Time series databases are optimised for metrics that are time bound which

is the type of metrics that is required to be stored.

InfluxDB was the time series database technology implementation chosen as it is is rela-

tivity modern, quick to get up and running and has a community version available (free).

43

[H] Metric Grapher

A metric grapher allows the user to create charts from metrics. In the case of this project

a metric grapher was used to generate basic graphs about the state of tasks for monitoring

purposes from the metrics stored in the InfluxDB time series database.

Grafana was chosen as it is free, has built in support for communicating with InfluxDB,

has an HTTP interface and offers the ability to create basic alerts.

Alerts were configured in Grafana to fire under the following conditions:

� If there were zombie tasks (tasks that have been marked as started but not complete

after a certain amount of time)..

� If the number of tasks being processed dropped below a certain value over a specific

amount of time for a task agent, if there were tasks waiting to be processed.

[I] All Tasks Archive

Once all tasks have been processed, the Task Manager will use the Task API to create a

compressed archive file containing a JSON structured representation for each task.

This compressed archive is transferred to an archive file server for later analysis.

3.4.4 Task Parameters

A task has up to two parameters as shown in table 3.5.

Name Data Type Mandatory Description

fqdn string Yes
A domain from the domain list provided by

tranco-list.eu

headers string No
A JSON string of one or more HTTP client

headers and values

Table 3.5: Task Parameters

All tasks will be using the same request headers as shown in table 3.6. The header names

and values were those present in the HTTP request from visiting the url https://www.google.com

and were captured using chrome’s browser developer tools.

44

Name Value Description

accept

text/html,
application/xhtml+xml,

application/xml;
q=0.9,image/webp, image/apng,

/;q=0.8,
application/signed-exchange;

v=b3;q=0.9

The accepted content types e.g
html page.

accept-encoding gzip, deflate, br
The accepted content
encoding(s) e.g. gzip

accept-language en-US,en;q=0.9
The accepted languages e.g.

en-US

sec-fetch-dest document
Requested destination e.g.

document

sec-fetch-mode navigate
Differentiator for request type
e.g. navigation or websocket

sec-fetch-site none
If the request is coming from
the same origin e.g. none
(user-originated operation)

sec-fetch-user ?1
Sent for requests initiated by

user activation

upgrade-insecure-requests 1

Signal to the server that an
authenticated and encrypted
response is preferred e.g.

redirect to secure version of the
site

user-agent

Mozilla/5.0 (Windows NT 10.0;
Win64; x64)

AppleWebKit/537.36 (KHTML,
like Gecko)

Chrome/91.0.4472.101
Safari/537.36

Identification of requests
application e.g. browser

identification

Table 3.6: Task Parameters - Headers

This was done to best represent the standard request headers a browser would send to a

domain to have the best representation of response headers a user browsing the internet,

would receive from a domain.

All the headers in table 3.6 where carefully checked as to their purpose and if they were

suitable to be included in order to obtain the best response from domains for the most

relevant data to analyse from the perspective of a generic user browsing the internet.

The user-agent header is generally considered one of the most critical headers to use

for HTTP requests to be associated with coming from a browser, rather than a backend

service application, as shown by almost all related research using this header [13, 10, 34,

45

60, 18, 16, 11, 12, 15].

The headers with the prefix sec are to enhance the premise that the request is coming

from a user making the request manually in a browser. It could be argued that the accept

headers are not needed however they should only give credit that the request is from a user

rather than a service.

3.4.5 Task Flow

This section describes the high level task flow once a task has been obtained from the Task

API and is now to be processed.

The following describes the stages that task processing goes through if the task parameter

fqdn had a value of example.com. This is shown graphically in figure 3.3.

Stage 0 - Task Parameters

The task parameters are checked for validity in the following way:

� If the parameter name is not valid for the task, abort the task

� If a mandatory parameter is not present, abort the task

Stage 1 - Deny List

The fqdn parameter value example.com is checked to see if it is on the task agents deny

list, and if present the task is aborted and no further attempts will be made to process the

task.

Stage 2 - Resolve Domain

DNS lookups for Stage 2 uses a round robin methodology with the DNS servers specified

in the Task Agent parameter dns lookup nameservers, to reduce the load on any one DNS

resolver.

A DNS request to lookup the A records (IPv4 addresses) of the fqdn parameter example.com

is made.

If IPv4 addresses are returned, example.com is now referred to as the resolved domain

resulting in Stage 2 being complete and processing moves to Stage 3.

46

If no IPv4 addresses are returned, a further DNS request to lookup the A records (IPv4

addresses) of the www subdomain of the fqdn parameter i.e. www.example.com.

If the DNS request made to www.example.com returns no IPv4 addresses, the task is

aborted and no further attempts will be made to process the task.

If the DNS request made to www.example.com returns IPv4 addresses, www.example.com is

now referred to as the resolved domain resulting in Stage 2 being complete and processing

moves to Stage 3.

NOTE: For the purpose of describing the task flow, for the further stages, the resolved

domain shall from here on out be assumed to have been determined to be www.example.com

for the fqdn task parameter of example.com.

Stage 3 - HTTP(S) Request

A HTTP GET request is made to the resolved domain http://www.example.com.

Following redirects, if the last url in the redirect chain starts with

https:// (e.g. https://www.example.com/index.php) Stage 3 is deemed complete and

processing moves to Stage 4.

If the previous request did not result in a https:// url a HTTPS request is made to the

resolvable domain https://www.example.com.

Following redirects, if the last url in the redirect chain starts with https:// (e.g.

https://www.example.com/index.php) Stage 3 is deemed complete and processing moves

to Stage 4.

If the first request did result in a http:// url (e.g. http://www.example.com/index.php),

i.e. did not ultimately get redirected to a https:// url, Stage 3 is deemed complete and

processing moves to Stage 6 (skipping Stages 4 and 5 as they are only performed if a

request ends in a HTTPS url).

If no http:// or https:// response is obtained from the resolved domain, Stage 3 is

deemed to have failed and the task is aborted and no further attempts will be made to

process the task.

47

Stage 4 - TLS Versions

TLS 1.0, 1.1, 1.2 and 1.3 connections are attempted against the domain of the last url in

the redirect chain (e.g. domain www.example.com from last redirect url

http://www.example.com/index.php) from Stage 3.

The TLS version used for the HTTPS connection in Stage 3 is skipped as it has already

been attempted and was successful.

Stage 4 is deemed complete and processing moves to Stage 5.

Stage 5 - STS Preload

This stage gathers the required data, such that a determination can be made at a later

stage, if the domain of last url in the redirect chain (e.g. http://www.example.com/index.php)

from Stage 3 meets the STS Preload requirements.

The STS Preload requirements are detailed in section 4.6.

The following actions are performed on the base domain of the last url in the redirect

chain from Step 3 and the results of which are recorded. The base domain of the url is

determined by the use of the Golang library “Golang.org/x/net/publicsuffix”. If any of

the actions have already been performed in section 3, they are skipped as the results have

already been captured:

� If the base domain (e.g. example.com) is running a HTTP server, on port 80, make

a HTTP request to example.com i.e. http://example.com

� If the www subdomain has a DNS (A record) try and establish a TLS connection to

the www subdomain www.example.com

� Make a HTTPS call to the base domain https://example.com and capture the

HTTP headers

Stage 6 - security.txt

The path of the last url in the redirect chain (e.g. http://www.example.com/index.php)

from Stage 3 is replaced with .well-known/security.txt i.e.

http://www.example.com/.well-known/security.txt.

48

A call is made to this url and if the Content-Type header is present with the value

text/plain the body of the response is captured.

49

Figure 3.3: High Level Task Flow

50

3.4.6 Deployment

This section details how the implementation in section 3.4.3 was deployed.

The components as outlined in Section 3.4.3 were deployed using cloud infrastructure as

detailed in Table 3.7.

Component(s) OS # vCPU RAM SSD Qty

MongoDB FreeBSD 12.2 2 2GB 25GB SSD 1

InfluxDB+Grafana FreeBSD 12.2 1 1GB 25GB SSD 1

Task API FreeBSD 12.2 1 1GB 25GB SSD 1

Task Agent FreeBSD 13.0 1 512MB 60GB SSD 5

Table 3.7: Cloud Infrastructure Deployment

FreeBSD 13.0 was used for the task agents as it was the most recent version available at the

time of deployment. There were no performance or security issues identified that required

the effort to upgrade the components that remained on FreeBSD 12.2.

The number of Task Agents deployed was 5, such that the scanning could be conducted

well within 24 hours to allow a reasonable amount of time to rectify issues should they

occur. The average time for all 1 million domains to be scanned is approximately 11 hours.

Monitoring

A dashboard was created in Grafana to visualise the progress/status of scans. Over time

several alerts were configured after issues were encountered as detailed in table 3.8. Figure

3.4 shows a screen shot of the dashboard representing a time window of 7 days.

51

There are several monitoring charts as detailed below:

� The Tasks Status By Agent chart displays the number of tasks of each task status’

for a specific task agent. The ”Agent” drop down box allows the user to select the

task agent to be shown.

� The In Progress Tasks / Completed Tasks / Ready / Error Cannot Retry / Pending

Ready charts show the number of tasks, per task agent, of the charts title task status.

� Ready Delta - This is to monitor and alert for task agents that do not continually

take new tasks if there are pending tasks.

� The Tasks in Zombie State is to monitor and alert for tasks that are in the In Progress

state but have not reached Completed or Error Cannot Retry status after a certain

amount of time.

Figure 3.4: Grafana Dashboard

52

Automation

The Task Manager is scheduled to obtain the latest Tranco domain list and create tasks

to scan each day at 0000 UTC. This will only occur if the previous day was completed

successfully.

The Task Manager is scheduled to check if all the tasks have been completed between 1000

UTC to 2300 UTC. Once all tasks have been completed, they are collected to create the

“All Tasks Archive” and then the tasks are deleted from the MonogDB datastore. Each

“All Tasks Archive” is approximately 4GB in size.

A Task Agent continually look for new tasks to perform and performs up to 100 concurrent

tasks.

Issues Encountered

Zombie Tasks

A zombie task is one where it is started but does not complete within a set amount of

time. For this research the duration limit for a task deemed to be a zombie task is 120

minutes (2 hours). This occurred less than one task per 10 million tasks performed.

A scan outage for a duration of 27 days was caused by zombie tasks. A single task not

completing will prevent the archive create process from starting. As a result changes were

made such that when a low amount of zombie tasks were detected they were reset and

re-attempted. All reset tasks completed successfully. If there were several zombie tasks

detected this would raise alert and human intervention would be required to resolve the

situation.

It was not looked into why zombie tasks occurred as the rate was so low it was not an

efficient use of time and would not affect the research results as the tasks were successfully

re-attempted.

Data Loss

An unexpected permanent loss of access to the storage location where the “All Tasks

Archives” were stored resulted in the permanent loss of 17 days worth of scan archives.

Since this incident, scan archives are stored in more than one location within several hours

of a scan archive being created.

53

Programming

Golang has, as of November 2021, a bug [75] where when a non standard HTTP code is

received, it will cause Golang to panic and the program will terminate. There was a single

domain that caused this issue and it was put in the deny list to overcome this issue.

Development Work

An 8 day scan outage was the result of development tasks being created in the same

database as the production tasks. The archive creation process will not initiate unless

there are the correct amount of tasks present. A procedure was put in place to remove

development tasks after use.

Missing Scans Overview

Table 3.8 summarises the extent of missing scan archives.

Start Date Duration Cause Action Taken

24 Jan 2021 8 Days

Development tasks

not removed after use

which prevented scan

archive creation

Added procedure to

remove development

tasks to mitigate

further occurrences

16 March 2021 12 Days
Bug in archive

creation process

Fixed bug and

deployed updated

scripts

31 July 2021 27 Days

One or more tasks did

not complete

preventing future

scans to start

Enhanced alerting to

detect long running

tasks

17 September

2021
17 Days

Archive storage server

permanently

unavailable

Scan archives stored

in multiple locations

Table 3.8: Missing Scan Archives

54

3.5 Summary

This chapter looked at previous research related to measurement studies and walked

through the methodology that was used to obtain the required data for the selected secu-

rity mechanism the adoption of which is to be analysed later in chapter 5. Next, in chapter

4 a more detailed look at the selected security mechanisms which were introduced in the

opening chapter in section 1.3.

55

Chapter 4

Security Mechanism Overview

This chapter is a detailed overview of the selected security mechanisms from section 1.3 to

said in providing context in understanding the analysis in chapter 5.

4.1 HTTPS

This mechanism is analysed in section 5.2.

The S in HTTPS signifies that the HTTP protocol communication shall be over a secure

channel, provided by the SSL/TLS protocols [19]. A URL starting with https:// e.g.

https://example.com signifies it will be using a SSL/TLS secure channel.

It has become quite common for websites to automatically redirect a user to a HTTPS url

if the user enters or follows a HTTP url e.g. the URL http://example.com redirecting to

https://example.com. This helps to enable the use of the HTTP protocol over a secure

channel without the user having to actively seek out the HTTPS URL of a website (which

most users are unlikely to do).

4.2 TLS

This mechanism is analysed in section 5.3.

The SSL (Secure Socket Layer)/TLS (Transport Layer Security) protocols were designed

to establish a secure communications channel between two entities e.g. a web browser and

a website. Protocols such as HTTP can utilise SSL/TLS to secure its communication.

56

With each new version of SSL/TLS more security features were added in response to

attacks against the protocols, weakness identified and the desire to make the protocols

more secure.

The acronyms SSL and TLS are often used interchangeably to refer to the secure channel

they provide, even though none of the SSL versions should be used any more due to the

vulnerabilities and weaknesses of SSL 2.0 and SSL 3.0 [6].

4.2.1 Security Services

The SSL/TLS mechanism provides several security services, as of the release of TLS 1.3 the

main categories are: Confidentiality, Data Origin Authentication, Entity Authentication

and Perfect Forward Secrecy.

Confidentiality

Confidentiality is the protection of data such that only those who have been given autho-

risation can access the data.

Two entities should be able to establish a SSL/TLS connection between one another such

that only these two entities can access the plain text data being sent over it. This should

result in the prevention of any third parties that are able capture the traffic from being

able to recover the plain text data being sent over the SSL/TLS channel [76].

Data origin authentication

The purpose of Data origin authentication is to establish the integrity of the SSL/TLS

channel data such that any modifications can be detected. This is accomplished using

message authentication codes (MAC) or authenticated encryption with associated data

(AEAD) algorithms [1] which use keys derived from when the SSL/TLS connection was

established.

Entity Authentication

Entity Authentication provides the ability for an entity to prove their identity using mech-

anisms such as digital signatures.

In SSL/TLS entity authentication is mandatory and used to show that during the estab-

lishment of a SSL/TLS channel the client can verify that it really is communicating directly

57

with the website/server they intended to. This is accomplished via the use of PKI (Public

Key Infrastructure) with X.509 certificates and root stores. For further details on PKI

please see [71, 72].

It is optional for a client to prove its identity to the server using PKI during the establish-

ment of the SSL/TLS channel.

Perfect forward secrecy

Perfect forward secrecy ensures that if the private key that is paired with the certificate

of a server/website was compromised, any SSL/TLS traffic that was captured being sent

to or from this server could not be decrypted with the private key being revealed. This is

accomplished via the use of Ephemeral Diffie-Hellman key exchange [76].

Perfect forward secrecy is mandatory as of TLS 1.3 and as such RSA key exchange was

removed in TLS 1.3 due to its reliance on the certificates’ private key.

SSL/TLS Versions

SSL 2.0 [1994]

Netscape Communications started developing a protocol, named Secure Socket Layer

(SSL), for securing HTTP communications in 1993 [6], due to the fact that when HTTP

was first introduced it did not provide a means by which to secure its communications [6].

Netscape Communications introduced SSL 2.0 in 1994 [6, 7].

SSL 3.0 [1995]

SSL 3.0 was introduced 1995 [1, 6] and was a re-write of the SSL protocol, rather than

additions/modifications, as many vulnerabilities and weaknesses had been identified in SSL

2.0 [1, 77].

SSL 3.0 was eventually standardised as RFC6101 [78].

TLS 1.0 [1999]

In 1996 the IETF Transport Layer Security (TLS) Working Group was established [6, 79]

which produced TLS 1.0 as RFC4436 in 1999 [80].

TLS 1.0 was based on SSL 3.0 and introduced some enhancements and modifications [81].

Due to the changes made in TLS 1.0, it was allowed to be used by the US government as

58

it gained FIPS approval [1].

TLS 1.1 [2006]

TLS 1.1 was released as RFC4346 in 2006 [82] which included a number of changes from

TLS 1.0 some of which are:

� CBC (block mode) has to use explicit IVs which addressed the predictable IV weak-

ness [1].

� bad record macalert required to be used in the response when there are padding

problems to protect against padding attacks [1].

� The addition of TLS extensions [1] as described in RFC3546 [83]

TSL 1.2 [2008]

TLS 1.2 was released as RFC5246 in 2008 [84] which included a number of changes from

TLS 1.1 some of which are:

� IDEA and DES cipher suites were removed

� Authenticated encryption was added

� The extension signature algorithms was added

TLS 1.3 [2018]

TLS 1.3 was released as RFC8446 in 2018 [8] which is currently the latest published, as an

RFC, TLS version as of 2022 which included a number of changes from TLS 1.2 some of

which are:

� Removal of RSA for key exchange

� Removal of MD5, SHA-224 and DSA for Signature Algorithms

� Enforcement of Perfect Forward Secrecy

4.3 Security.txt

This mechanism is analysed in section 5.4.

59

The security.txt [29] is a text file for the primary purpose of providing a security researcher

the required information on how to report a security issues they have identified on such

systems as websites.

For websites, a file named “security.txt”must be placed in the path /.well-known/security.txt

e.g. https://example.com/.well-known/security.txt.

For legacy reasons it is also permitted to store a security.txt at the top level path e.g.

https://example.com/security.txt or redirect to the /.well-known/security.txt path.

A response to a request of the security.txt file must respond with a Content-Type header

with the value of text/plain, and served only over HTTPS.

The RFC is currently in the draft stage and seeing updates as recently as May 2021.

An example security.txt file is presented below:

Contact : mai l to : security@example . com

Expires : 2022=12=31T00 : 0 0 : 0 0 . 0 0 0Z

Encryption : https : // example . com/pgp=key . txt

Acknowledgments : https : // example . com/ ha l l=of=fame . txt

Pre fe r red=Languages : en , es , ru

4.4 Content Security Policy

This mechanism is analysed in section 5.5.

The Content-Security-Policy (CSP) is a mechanism of a web browser that allows the main-

tainer of a website to control, via the use of a policy, the resources that are allowed to be

retrieved and or loaded by the browser. CSP is an evolution of the Same-Origin Policy

(SOP) browser mechanism detailed in section 1.2.

The Same Origin Policy mechanism is rather restrictive and this is where Content Se-

curity Policy gives more control to website maintainers and developers.

4.4.1 Development

CSP is developed and maintained by The World Wide Web Consortium (W3C) [85]. CSP

Level 1 initial draft was published in 2012 [85] and finalised in 2015 [86]. CSP Level 2

60

had its first draft in 2014 [87] and was finalised in 2016 [88] which included the following

changes:

� base-uri, child-src, form-action, frame-ancestors, plugin-types directives added

� frame-src depreciated

� Inline scripts / stylesheets allowed via nonces

� New fields added to violation reports

CSP Level 3 first public draft introduced in 2016 [89] with the most recent draft in 2021

[90] and is currently in the working draft state which included the following changes:

� Spec re-written

� frame-src undepreciated (uses child-src if not present)

� manifest-src, worker-src directives added

� ’strict-dynamic’ source expression added

� child-src substantially changed

� deprecation of the report-uri directive in favour of a more recent directive report-to

4.4.2 Policy Delivery

The CSP policy can be delivered either by the use of one of two HTTP headers (Content-

Security-Policy and Content-Security-Policy-Report-Only) or in the <meta> element in

the html body of a web page.

CSP Directive

A CSP Policy consists of one or more directives which are bound to a specific type of

resource. For example, the script-src directive controls the restrictions, or lack thereof, for

the location(s) scripts can be obtained, executed or loaded from. A CSP Directive can

have one or more values.

Should a directive be absent from a CSP Policy it is deemed to have no values i.e. “open”.

Configuring the default-src directive in a CSP policy cause most directives that are not

present in a csp policy to inherit the values of specified for the default-src directive.

61

Table 4.1 details the directives from CSP Level 1 until CSP Level 3 (29 June 2021). CSP

Level 3 is still a working draft and as such until CSP Level 3 is finalised the data within table

4.1 may become inaccurate should there be any changes before CSP Level 3 is finalised.

62

Directive Restrictive Context Sources CSP Level

default-src
Fall-back for interactions that are covered by CSP but

not specified in other directives
1

script-src
script sources: e.g. <script> elements, inline script

blocks and XSLT stylesheets
1

object-src Restricts the source of plugin requests/content 1

style-src
Style sources: e.g. <style> elements and <link

rel=’stylesheet’> elements
1

connect-src
The URLs being called from scripts e.g.

XMLHttpRequest requests
1

img-src Image sources: e.g. elements 1

media-src
Restricts the source of video/audio and related

metadata
1

frame-src
Restrict the source of loading resources into child
browsing contexts (e.g. <iframe> elements)

1

font-src Restricts the source of font resources 1
connect-src Restricts source of script interface requests 1

report-uri
Destination URI for sending CSP violates reports

Deprecated as of CSP Level 3 in favour of report-to
1

base-uri Restrict URIs for a document’s base element 1.1

child-src
web worker sources and child browsing contexts (e.g.

<iframe> elements)
1.1

form-action Restrict URIs for Form action target 1.1

frame-ancestors
Restrict source of embedded child browsing contexts

(e.g. <iframe> elements)
1.1

plugin-types
Restricts the media type of plugins. No longer present

as of W3C Working Draft, 10 March 2021 [91]
1.1

sandbox Apply sandbox policy to a resource 1.1
manifest Restricts source of application manifests 3
prefetch-src Restricts source of pre-fetched/pre-rendered resources 3
script-src-elem Restricts source of <script> elements only 3

script-src-attr
Restricts source of inline scripts (e.g. onclick) (not

<script> elements)
3

style-src-elem
Restricts source of <style> and <link> elements

containing rel="stylesheet" only
3

style-src-attr Restricts source of inline style 3

worker-src-attr
Restricts source of resources loaded as Worker,

SharedWorker, or ServiceWorker
3

navigate-to Restricts source of any navigations 3
report-to Reporting group for sending CSP violates reports 3

Table 4.1: Summary of CSP directives

63

4.4.3 Directives defined in other standards

There are several CSP directives defined in other standards.

upgrade-insecure-requests

Converts any http:// request made by the browser to use https:// i.e. all http://

requests will be forced to use https://.

block-all-mixed-content

Does not allow the browser to make any http:// requests for assets if the page was loaded

over https://. This directive is processed after the upgrade-insecure-requests is processed,

should it be present.

4.4.4 Source Lists

Below are the types of sources for values of CSP directives.

Keyword

The values below are keywords that can be used as values for directives:

� none – does not allow the use of resources that apply to the directive in question.

� self – restricts the resources to the domain of the web page and does not include

subdomains.

� unsafe-inline – Permits the resource to be inline, .e.g. a scripts code resides in a

<script> element rather that in a separate file.

� unsafe-eval – Permits the use of mechanisms, such as eval(), which transform

plain text into executable code.

� unsafe-allow-redirects – Used with the navigate-to directive. Not currently

supported in browsers.

� unsafe-hashes – Allows the use of inline scripts if the script matches a hash in the

script-src directive.

64

Both unsafe-inline and unsafe-eval are deemed to be dangerous as inline resources

and the use of mechanisms such as eval() are attack vectors for malicious actors, hence

the use of the prefix unsafe.

Host

One or more “hosts” can be specified as values for a directive. Wildcards are permitted

via the use of the star (*) character. The following are all valid examples of host values:

� domain.com

� *.domain.com

� https://*.domain.com:81

� domain.com/script.js

Scheme

Scheme values, referring the to protocol via which to access resources, may be used in

directives. For example:

� http:

� https:

� data:

Nonce

A nonce can be used to allow inline resources to be allowed without the need to use the

dangerous unsafe-inline keyword. The nonce would need to be included in both the

CSP Policy directive and the inline resource.

For example if an in-line script was required, only scripts from the same origin are to be

allowed, and the nonce was to be MyRandomNonce, then the CSP Policy would be:

Content-Security-Policy: script-src ’self’ ’nonce-MyRandomNonce’

The inline script would also have the nonce:

<script nonce="MyRandomNonce">...</script>

65

Digest

A hash (digest) value can be used for scripts, the script-src directive, and non-script ele-

ments, such as the style-src directive. An example digest for the script-src directive:

Content-Security-Policy: script-src ’sha256-MyHashDigest=’

If a digest value is present, each script element will be hashed and the resultant hash

compared to the hash value in the directive and if a match occurs the script is deemed to

be allowed.

The current hashing functions specified in CSP Level 3 are sha256, sha368 and sha512.

4.4.5 Reporting Directives

report-uri

Upon a CSP Policy violation and a value is present for report-uri, the browser will send

a report to the location specified for report-uri. The report is in the form of JSON docu-

ment(s) and sent using the HTTP POST method.

As of the most recent CSP Level 3 working Draft (29 June 2021), report-uri is deprecated

in favour of report-to.

An example report-uri configuration can be seen below:

Content-Security-Policy: ...; report-uri https://report.example.com;

report-to

Upon a CSP Policy violation and a value is present for report-to and the group is defined

in the header Report-To, the browser will send a report to the location specified in the

group configuration. The report is in the form of JSON document(s) and sent using the

HTTP POST method.

An example report-to configuration can be seen below:

Content-Security-Policy: ...; report-to <group name>

66

4.4.6 CSP Headers

There are a number of CSP headers, shown below, that have been created leading up

to the current Content-Security-Policy and Content-Security-Policy-Report=Only

headers.

� Content-Security-Policy

� Content-Security-Policy-Report-Only

� X-Content-Security-Policy (Used by and now deprecated by Firefox browser)

� X-Webkit-CSP (Introduced and now deprecated by the chromium project since 2013

[92])

4.4.7 Content-Security-Policy-Report-Only

The header Content-Security-Policy-Report-Only behaves the same as

Content-Security-Policy with the exception that violations are only reported and not

enforced. One of the main uses of this is when webmasters and developers are creating a

CSP Policy and do not want to impact the end user experience until the policy is configured

as desired.

Example basic CSP policy report only header: Content-Security-Policy-Report-Only:

default-src ’self’; script-src ’self’ cdn.example.com; style-src ’self’

4.5 Strict Transport Security

This mechanism is analysed in section 5.6.

The Strict-Transport Security response header (STS) is a mechanism that instructs

the browser to load the website only over HTTPS and never HTTP [9].

4.5.1 Directives

max-age

The duration, in seconds, the browser will honour the Strict-Transport Security request to

only load the page over HTTPS.

67

includeSubDomains

Instructs the browser to also load any subdomains of the site only over HTTPS.

preload

Must be present if the site is to be preloaded via Google’s STS preload service.

Example STS header configuration: Strict-Transport-Security: max-age 31536000;

includeSubDomains; preload.

4.6 STS Preload

This mechanism is analysed in section 5.7.

STS Preloading is a mechanism where a browser checks to see if the requested site is in a

predefined list and if it is then the website must only be accessed over HTTPS.

Google maintains a predefined list, launched in 2010 [15], of websites where the website

owners/maintainers have requested to be added and required an email to be sent to a

google engineer to be included in the list [93]. This service later gained a web portal in

mid-2014 [15] for the request to be included in the preload list.

The Firefox browser generates its own preload list. Each domain from the preload lost

maintained by Google is checked and if it meets all the preload requirements it is included

in the Firefox preload list.

The following criteria must be met in order for a domain to qualify to be included in the

preload list:

� The website has a valid certificate trusted by browsers.

� If the domain (e.g. example.com) is running a HTTP server, on port 80, it must

redirect to the HTTPS on the same domain.

e.g.: if http://example.com is accessible, it must redirect to https://example.com

� All subdomains should be served over HTTPS, however only the www subdomain (e.g.

www.example.com) is checked if present in DNS.

68

� A STS header (Strict-Transport-Security) is present on the base domain (e.g.

example.com) for HTTPS requests with the following configuration:

– max-age directive must be no less than 31536000 seconds (i.e. 1 year).

– includeSubDomains directive must be present.

– preload directive must be present.

– Should the site redirect away when accessed over HTTPS, the site must have

the STS header.

– Example STS header preload configuration: Strict-Transport-Security: max-age

31536000; includeSubDomains; preload.

If a domain in the preload list stops meeting the above criteria it runs the risk of being

removed from the preload list.

4.7 X Content Type Options

This mechanism is analysed in section 5.8.

The X-Content-Type-Options header (XCTO) is used to enforce that the “Multipurpose

Internet Mail Extensions” (MIME) specified in the Content-Type header (e.g.

Content-Type: text/css) matches that of the requested resource [30].

4.7.1 Directives

nosniff

Denies requests under either of the two below conditions:

� A request has a destination of type script-like (one of audioworklet, paintworklet,

script, serviceworker, sharedworker, or worker) and the MIME type (from the

Content-Type header) is not a JavaScript MIME type.

� A request has a destination of type style and the MIME type (from the Content-Type

header) is not text/css.

Example XCTO Header: X-Content-Type-Options: nosniff

69

4.8 X Frame Options

This mechanism is analysed in section 5.9.

The X-Frame-Options (XFO) response header is a mechanism that states whether or not

a browser should load the url in question in any of the following html elements: <frame>,

<iframe>, <embed>, or <object>.

4.8.1 Directives

DENY

The page must not be rendered in any of the following html elements: <frame>, <iframe>,

<embed>, or <object>.

SAMEORIGIN

The page is allowed to be rendered in any of the following html elements: <frame>,

<iframe>, <embed>, or <object>, if the origin of the page that contains the element is

that of the page to be rendered in the element.

ALLOW-FROM <uri>

Behaves the same as the above SAMEORIGIN directive but only for <frame> elements.

This directive is now deprecated and should not to be used.

Example XFO Header: X-Frame-Options: DENY

4.9 Cross Origin Embedder Policy

This mechanism is analysed in section 5.10.

The Cross-Origin-Embedder-Policy (COEP) header provides a mechanism that does

not allow any cross-origin resources from being loaded unless explicitly allowed (via the

use of Cross-Origin Resource Sharing or a Cross-Origin-Resource-Policy).

70

4.9.1 Directives

unsafe-none

Disables the mechanism allowing resources to be loaded without explicit permission being

given. This is the default behaviour.

require-corp

Enables this mechanism only allowing resources being loaded from the same origin or from

other origins that explicitly give permissions to do so (via the use of Cross-Origin Resource

Sharing or a Cross-Origin-Resource-Policy).

Example COEP Header: Cross-Origin-Embedder-Policy: require-corp

4.10 Cross Origin Resource Policy

This mechanism is analysed in section 5.11.

The Cross-Origin-Resource-Policy (CORP) header provides a mechanism that restricts

which origins are permitted to load a resource [94].

4.10.1 Directives

same-site

If the request initiator’s origin and the request destination’s origins are of the same site

then load the resource. For example, if the request initiator’s origin is

https://account.example.com/index.html and the request destination is

https://signin.example.com/script.js, the resource can be loaded as both are of the

same site example.com.

same-origin

If the request initiator’s origin and the request destination’s origin are the same then load

the resource. For example, if the request initiator’s origin is https://blog.example.com

and the request destination is https://blog.example.com, the resource can be loaded as

both are of the same origin https://blog.example.com.

71

cross-origin

The resource is allowed to be loaded regardless of the sites/origins involved.

Example COEP Header: Cross-Origin-Resource-Policy: same-origin

Example CORP Header: Cross-Origin-Embedder-Policy: require-corp

4.11 Cross Origin Opener Policy

This mechanism is analysed in section 5.12.

The Cross-Origin-Opener-Policy (COOP) header provides a mechanism that prevents

the sharing of browsing contexts of a top-level document with cross-origin documents. For

example, preventing a popup window from communicating to the web page (document)

that opened the popup via the use of process isolation [33].

Directives

unsafe-none

Disables the mechanism unless the document (e.g. popup) uses this header with either

of the two directives: same-origin and same-origin-allow-popups. This is the default

behaviour.

same-origin-allow-popups

Allows the communication of a new window or tab (e.g. popup) to the originating page

(document) if a COOP header is not present, or has the directive unsafe-none, on the

new window or tab.

same-origin

Does not allow communication (isolates) from new windows or tab to the originating page

(document) unless they are from the same origin. If not from the same origin they are

placed in a separate browsing contexts.

Example COOP Header: Cross-Origin-Opener-Policy: same-origin

72

4.12 Public Key Pins

This mechanism is analysed in section 5.13.

The Public-Key-Pins (HPKP) response header is a mechanism that permits a cryp-

tographic public key to be advertised that must be matched to the website certificate

presented during the SSL/TLS connection establishment otherwise the website will be

prevented from loading/rendering.

There have been several issues with HPKP such as HPKP Suicide [95, 96] or Ransom PKP

[96] which are forms of Hostile Pinning [97]

This header is now deprecated by most modern web browsers.

4.12.1 Public-Key-Pins-Report-Only

The Public-Key-Pins-Report-Only header does not enforce the pinning rather only sends

violation reports.

73

4.13 Summary

This chapter gave a in depth overview of the selected security mechanisms which were

introduced in the opening chapter in section 1.3. This should allow the reader to have

a better understanding and context of these security mechanisms for the next chapter

“Security Mechanism Adoption Analysis” which analyses and discusses the adoption of

the mechanisms.

74

Chapter 5

Security Mechanism Adoption

Analysis

This chapter takes the data captured as described in chapter 3 and analyses the adoption

of the selected security mechanisms (introduced in section 1.3 and detailed in chapter 4).

5.1 Scans Overview

5.1.1 Impact To Available Data For Analysis

There are several gaps in the available scanning archives summarised in table 3.8, detailed

in section 3.4.6 and listed below:

� 24 Jan 2021 for 8 days

� 16 March 2021 for 12 days

� 31 July 2021 for 27 days

� 17 September 2021 for 17 days

In the following sections these date ranges will be visible on certain charts. As the scanning

has been for an extended period and any single time period is no longer than 27 days, it

is believed it will not have a material impact on any trends identified.

75

5.1.2 Analysis Methodology

Each scan archive (which consists of a single days scan of 1 million domains as described

in section 3.4.6) was processed, grouping related data together, such as all the security.txt

files, to produce a JSON file to allow for easier analysis of the data.

A python application was created to parse these JSON files to produce further JSON files

that were be used for creating charts.

A further python application was created to plot charts using the matplotlib charting

library [98].

Each analysis section details how the data was processed.

5.1.3 Domains Unable To Be Scanned

As with other research, not all of the domains in the list of domains to be scanned were

able to have a HTTP or HTTPS connection made to them.

On average the scanner was able to obtain a HTTP and or a HTTPS request 95% of the

time from the Tranco list of 1 million domains, shown in figure 5.1.

(a) Average percentage of domain scan final status (b) Average percentage of domain scan failure

cause

Figure 5.1: Failed Tasks

Of the 5% of domains that the scanner was not able to obtain a HTTP or a HTTPS

76

response, 51% were due to differing errors, such as timeouts, in the establishment of a

HTTP/HTTPS connection (stage 3 of the task flow) and the transmission of data across

such a connection. The remaining 49% was due to not receiving one or more IP addresses

from the DNS lookup request (stage 2 of the task flow).

77

5.2 HTTP(S) Redirection

Background for this mechanism is detailed in section 4.1.

5.2.1 Analysis

Figure 5.2: HTTP(S) Redirections for Top 1 Million Domains

The research by Buchanan et al [10] found that in August 2015 only 6.7% of sites when

accessed over HTTP redirected to HTTPS and increased to 24.78% in May 2017. This

study finds that in November 2020 the number of sites redirecting from HTTP to HTTPS

further increased to 56% and continued this trend to reach 64.5% in January 2022 as shown

in table 5.1 and figure 5.2.

78

Redirection
Buchanan et al
[10] August 2015

Buchanan et al
[10] May 2017

November 2020 January 2022

HTTP > HTTPS 6.7% 24.78% 56% 64.5%
HTTPS > HTTP NA NA 3.5% 1.7%

Table 5.1: HTTP(S) Redirection

This upward trend of HTTP to HTTPS redirection is slowing. However it is hoped that

more sites continue to implement redirection such that future research does not show a

plateau before nearly all sites in the top 1 Million redirect to HTTPS.

To some surprise there are a number of sites that redirect from HTTPS to HTTP, 3.5%

in November 2020 and down to 1.7% in January 2022. It is assumed that this is done on

purpose, and that as the trend is on the decline that the reasons for implementing HTTPS

to HTTP redirection are being overcome or are not relevant any more.

There are a number of sites that only support HTTP and do not support HTTPS, ∼16%

in November 2020 and down to ∼9% in January 2022 again trending in the right direction.

79

5.3 TLS

Background for this mechanism is detailed in section 4.2.

5.3.1 Purpose Overview

TLS is used to protect the data in transit between a users’ browser and the website they

are interacting with.

Changes to the data being sent across the TLS secure channel during its journey over

the network (e.g the internet) are detected. The identity of the website is verified before

the secure channel is established. The data being sent across the TLS secure channel is

also encrypted. All of these properties of TLS are intnded to prevent entity in the middle

attacks.

There have been several vulnerabilities found in the SSL/TLS protocols, some of which

are detailed earlier in section 2.1.

5.3.2 Analysis

Negotiated TLS Versions

Figure 5.3: TLS version negotiated for Top 1 Million Domains that support HTTPS

80

Figure 5.3 shows the negotiated TLS version of websites that ended with HTTPS URLs

after HTTP redirection was completed. The scanner supported the following TLS versions

when attempting to connect to a website with a HTTPS url:

� TLS 1.0

� TLS 1.1

� TLS 1.2

� TLS 1.3

No version of the legacy SSL technology is supported by the built in HTTP client in Go

(the programming language used to create the scanner used to gather the data for analysis).

The lack of support of SSL is not of concern as the use of SSLv3 (the last version of SSL

that was widely used) currently is essentially 0% as shown by the research by Kotzias et

al [60] which showed that analysing passively collected SSL/TLS usage, SSLv3 usage was

0.01% of all TLS/SSL connections they had for analysis in February 2018.

As shown in figure 5.3, November 2020 appears to show that it was just before this time

that TLS 1.3 started to become the dominant TLS version negotiated, replacing TLS 1.2

as the dominant version. This assumption is enhanced by the research of Holz et al

[17] which showed that in November 2019 from the analysis of passively collected TLS

connection details, ∼79% of connections were using TLS 1.2 with a downward trend and

∼19% of connections using TLS 1.3 with an upward trend.

TLS Version
Kotzias et al [60]

July 2013

Kotzias et al [60]

August 2014

Holz et al [17]

November 2019
January 2022

TLS 1.0 ∼73% ∼48% <1% <1%

TLS 1.1 ∼17% <1% <1% <1%

TLS 1.2 ∼1% ∼48% ∼79% 35.2%

TLS 1.3 NA NA ∼19% 64.4%

Table 5.2: Negotiated TLS Versions

81

Supported TLS Versions

Figure 5.4: TLS Versions Supported

For each website that did support HTTPS, it was also checked to see which of the 4 TLS

versions it supported. Figure 5.4 shows how many domains supported the 4 TLS versions.

The measurement of supported TLS versions was not observed in the research consulted

for this project, indicating that it could be uncommon and as such this report may be one

of only a handful that has conducted these measurements.

TLS 1.2 is supported by over 99% of domains. The reason for this is likely due to TLS

1.2 being the most recent TLS versions supported by some legacy devices and is likely to

remain like this for many years to come. As one might expect, TLS 1.3 is on an upward

trend going from 50% in November 2020 and reaching 64% in January 2022.

Both TLS 1.0 and TLS 1.1 look to follow the same downward trend with 44% and 48% in

January 2022 respectively. As they follow the same trend it is likely due to when libraries

and or applications are upgraded, rather than manual configuration changes to remove

support for TLS 1.0 and TLS 1.1.

For the 0.2% of websites that negotiate with TLS 1.0 or TLS 1.1 they did not support any

version higher than that they negotiated with. There should not be a significant reason

that TLS 1.2 and TLS 1.3 cannot be supported whilst also supporting TLS 1.0 and or TLS

82

Domains TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3
9 � �

23 � �

32 � �

69 � � �

75 � � �

1579 � �

2305 �

4888 �

12898 � �

15954 � � �

137501 � � �

201151 � � � �

261762 � �

Table 5.3: Supported TLS Version matrix for 02 Jan 2022

1.1 for use by legacy devices.

It is possible that websites are running old/outdated versions of applications, supporting

only TLS 1.0 and or TLS 1.1, serving these websites and the maintainers are unaware or

the updating of these older systems are of low priority. A reverse proxy would at least

allow the public endpoint of such websites to use TLS 1.2 and TLS 1.3.

Table 5.3 is a matrix for the different combinations of TLS versions supported by domains

on 02 Jan 2022. The highest concentration of domains is for supporting both TLS 1.2 and

TLS 1.3 which is quite encouraging.

5.3.3 Summary

The trend for negotiated TLS versions is going in the right direction, with TLS 1.3 being

the dominant version currently, as this research began with an upward trend and as yet

does not show sings of tapering off. TLS negotiations that result in either TLS 1.0 or TLS

1.1 is less than 1% of all TLS negotiations.

The use of TLS 1.1 and TLS 1.0 were declining rapidly at the same rate at the end of 2020,

however the trend is now starting to slow down which likely means TLS 1.1 and TLS 1.0

will still be in use s for some time.

83

5.4 Security.txt

Background for this mechanism is detailed in section 4.3.

5.4.1 Purpose Overview

The “security.txt” mechanism is to aid in informing security researchers how to disclose

security issues found on systems such as a domain hosting a HTTP(S) sever [29].

The primary emphasis of using a security.txt is that its location is known. Without knowing

where to find the information required to report vulnerabilities, security researches may

not be able to reach the right team in the organisation able to take action on the report

for some time or even at all.

Security researches can spend quite a long time trying numerous channels such as Linkedin,

contact pages on websites and guessing security email addresses. If private messaging

attempts fail, some researchers resort to seeking assistance via twitter, however this also

draws attention to there being a vulnerability on the organisation in the tweet which could

allow malicious actors to discover and exploit the vulnerability before it is fixed.

5.4.2 Scanning

As the RFC Draft stated that “For web-based services, organizations MUST place the

”security.txt” file under the ”/.well-known/” path” [29] e.g.

https://example.com/.well-known/security.txt the scanner was initially configured

to only try and obtain the security.txt from this location. The statement regarding an

exception for legacy devices was missed when creating the scanner. The legacy exception

was added in the 8th revision of the RFC dated November 19, 2019 [29].

At the end of November 2021 the research paper Who you gonna call? an empirical

evaluation of website security.txt deployment [18] was discovered and found that 18% of

security.txt were found only at the top level path of the domain e.g.

https://example.com/security.txt.

As a result of this information, in December 2021 the scanner was reconfigured to attempt

to capture at both paths. Even thought this would only allow a short time of data analysis

it would allow, if only at least minimally, a comparison of results from this research to the

84

research from [18].

5.4.3 Parser

A parser was created in python that processed security.txt request responses that had

HTTP 2xx or 3xx status codes, split each security.txt on new line terminations and pro-

ceeded to process each line individually. Lines that started with a hash ”#” (%x23) were

skipped as these are comments as defined in the draft RFC.

If the first line was deemed to represent a non security.txt file, such as a html or php file,

the entire security.txt file was skipped.

All non comment lines that were not able to have a field name determined were not

processed any further and checked once all security.txt files had been processed. If any of

the apparent non RFC format adhering lines were found to have been skipped, when they

should not have been, the parser logic was analysed and corrected as needed until there

we only non RFC con-formant lines skipped.

As the scanner followed redirects, the parser kept track of the resultant domain of any such

redirects and skipped processing a security.txt if the resultant domain had already had a

security.txt processed.

If after processing a security.txt file no fields were detected, the security.txt was deemed

to be invalid.

Contact values and expires date-times had multiple specially crafted regular expressions

constructed in order to accurately categorise the field values, mainly due to many variants

of the following:

� email obfuscation formats

� phone number formats

� date-time formats

Even though Acknowledgments (American spelling) is the spelling used in the RFC

Acknowledgements (British spelling - has an extra e), the parser considered it to be

Acknowledgments for the purposes of charting as the they are both valid spellings of the

same word.

85

If a security.txt file was deemed to be con-formant it was hashed using the SHA256 hashing

algorithm to determine how many unique security.txt files were present and how many

domains shared the same security.txt file.

During the process of creating the parser it was noticed that some security.txt files had

a dynamic value set for the Expires field (visiting the file manually on different occasions

would show the expires time to be a constant time from the time of request). As this

would affect the detection of unique security.txt, all Expires field lines were removed before

hashing took place.

86

Figure 5.5: security.txt (only /.well-known path) by rank

5.4.4 Analysis

Distribution by Rank

Figure 5.5 shows the percentage of domains that the scanner was able to identify having a

valid security.txt at the path /.well-known/security.txt e.g.

https://example.com/.well-known/security.txt. The line chart is split by rank groups

using the rank provided in the domains list file from tranco-list.eu for the day the scan was

conducted.

Figure 5.5 closely matches, with a uniformly overall reduced percentage however, that of

figure 1 in [18]. It is not clear from [18] whether the ranking always starts from 1 or from

the previous smaller rank.

The ranks ranges in Figure 5.5 in this report are as stated in the legend, domains from

rank 1 to rank 100, rank 101 to 1000 and so on. The last rank is from 100001 to 1 million.

Rank 1-100 from figure 5.5 should be comparative to that of the Top 100 of figure 1 in

[18] while taking into account the potential 18% discrepancy (where security.txt are only

found in the top level path e.g. https://example.com/security.txt).

The uniformly overall percentage difference is roughly the 18% of security.txt files that are

87

Figure 5.6: security.txt file locations

potentially missing from this reports figure 5.5 due to the finding in [18] that 18% of sites

only serve a security.txt at their top level path.

Distribution by Path

As noted in the scanning section above, the scanner was initially configured to only scan

for security.txt at the /.well-known location. Figure 5.6 shows (from December 2021)

onwards, that there are a significant about of security.txt only hosted at the top level path

of the domain e.g.

https://example.com/security.txt.

Unique Domains vs Unique Security.txt

Figure 5.7 shows the number of unique security.txt files across all domains scanned and

the number of unique domains that had a security.txt file (separated by whether they

are valid or not) that were found in the /.well-known location. The number of invalid

security.txt files are a small percentage of all security.txt files and the majority of them are

html documents unrelated to the security.txt mechanism.

88

Figure 5.7: security.txt (only /.well-known path) Unique Domains vs Unique Files

The number of unique security.txt files is roughly half of all security.txt files found on

unique domains. A reason for this could be that one organisation is responsible for multiple

domains and uses a common security.txt for most and or all domains under their control.

Due to the large difference between the number of unique security.txt and number of

unique domains further investigation was conducted to identify any large groupings of

domains that used the same security.txt. From the 02 January 2022 scan, Google has

the highest number of domains (198) with tumblr having (189) coming in a close second.

The domains were grouped by the hash of the security.txt file. As one might expect the

domains associated with Google predominantly started with google. e.g. google.com.

The domains associated with tumblr had “Please report abusive content (including spam,

privacy violations, etc) at https://www.tumblr.com/abuse” in their security.txt file and did

not appear to have a particular naming format. However the Hackerone link revealed that

an organisation named “Automatic” manages the Hackerone representation.

Whilst this is nice to see that organisations look to be using unified configurations this does

give another potential method by which to identify/fingerprint sites that are controlled

by large organisations. This gives the opportunity to find sites with potentially weaker

security (inherited from an acquisition for example) in order to laterally move to the

parent organisations’ infrastructure.

89

Figure 5.8: unique security.txt (top level path) by field use

Fields

A low amount of security.txt files (17%) contained digital signatures which allow the se-

curity researcher to verify the legitimacy of the security.txt. It should be noted that the

digital signature should be allowed to be verified using out of band methods (i.e. not a

link in the security.txt itself) such as DNSSEC.

Figure 5.9 shows the field use of unique security.txt files. If a field is present more than

once in a security.txt it is only counted once for the purposes of only showing if a field is

present in a security.txt.

Figure 5.8 shows the field use distribution from December 2021 onwards for security.txt

files found in the top level path location. Compared to the distributions in figure 5.9 they

do not differ to such an extreme to discount the analysis from herein out which is only

using the security.txt files found in the /.well.known location due to larger number of

scans for analysis.

There are 8 defined fields in the RFC, 2 of which are mandatory (Contact and Expires

shown in bold):

� Acknowledgments - links to acknowledge security researches for their efforts in re-

90

Figure 5.9: unique security.txt (/.well-known path) by field use

porting security vulnerabilities.

� Canonical - link to a canonical security.txt location.

� Contact - A method to use for reporting security vulnerabilities (e.g. email, phone

and website URLs).

� Encryption - States or links on how to encrypt communication.

� Expires - The date-time after which that data present in the security.txt should not

be used.

� Hiring - Link to a page detailing security related positions.

� Policy - Link to the vulnerability disclosure.

� Preferred-Languages - One or more languages, in order of preference, that the security

report maybe be submitted in.

Contact

Contact is a mandatory field and as such one would expect to see near 100% usage and this

is the case as can be seen in figure 5.9 which shows only that only 1.5-2% of security.txt

files do not have a Contact field present.

91

Contact Type Average Presence

Email Address 88%

HTTP Link 22%

Phone Number 1.6%

Table 5.4: Presence of contact types from unique security.txts that contain a contact type

Table 5.4 shows the average presence of the contact types detected in unique security.txt

files. Even as the number of unique security.txt files increased over time as shown in figure

5.7, the presence percentage deviation was less than 1% for all contact types.

Email Username Average Usage

security 48%

support 2.2%

info 2.2%

admin 1.7%

webmaster 1.7%

Table 5.5: Top 5 email usernames for security.txt email contacts

The most prevalent email username used was security, as shown in table 5.5 which is of

no real surprise due to the purpose of the security.txt.

There were several email addresses that were made obscure (obfuscated) which required

multiple dedicated regular expressions to be created in order for the parser to detect them

as email addresses. Some examples of email obfuscation observed are:

� security [at] example [dot] com

� security [@] example <dot > com

� security [a t] example [d o t] com

� security[@]example.com

� security(<remove me...>)at(<remove me...>)example dot com

� the email address ”security” on the domain ”example.com”

92

One reason why email addresses have been obfuscated is not wanting them to be identified

on automated scraping/crawling. This could be a result of an organisational policy or the

person(s) responsible assumed that a person would be looking at the security.txt file and

as such there was not much of a down side.

Contact Count Average Presence

1 82.5%

2 13.2%

3 2.5%

4 0.4%

5 0.05%

6 0.1%

Table 5.6: Number of contacts present in a unique security.txt

Of the security.txt files that had one or more contacts, the majority contained only 1

contact as shown in table 5.6. Interestingly there were double the amount of security.txt

files that contained 6 contacts than those that had 5 contacts.

Of the 1.5-2% of security.txt files that did contain one or more fields but did not contain

a Contact field, several did contain other non RFC contact fields including:

� openbugbounty field - openbugbounty is a not for profit organisation for the reporting

of security vulnerabilities.

� email

� mailto

� contact us at

Expires

Expires is a mandatory field and has a rather underwhelming presence starting in Novem-

ber 2020 with 0.7% (the least used field), going on to reach 4% in mid March 2021. From

March 2021 there is a marked increase in the rate at which Expires is included in secu-

rity.txt files seen in figure 5.9 reaching 24% presence at the end of December 2021 becoming

the 3rd least used field.

93

Figure 5.10: Percentage of security.txt files (that use expires) by time until expires from
scan date

If this trend continues, Expires will likely get close to 100% use such as is with the Contact

field.

There are several possible reasons that domains are not including the expires including:

� the administrative burden of regularly reviewing the security.txt.

� if a static date-time is used and it is left to expire, security researches may decide to

seek conformation other than using the information in the contact field to verify the

correct means of reporting a security vulnerability, thus delaying such reporting. If

no expires is included then it cannot expire.

Figure 5.10 shows that there are a minimal amount of security.txt files that have an expires

value in the past (ranging from 0% to ∼3%). The number of security.txt files that expire

in less than a year is trending down and those that are to expire greater than an year is

increasing. This looks to indicate that expires values are being changed to last more than

one year against the recommendation of the RFC, which is to have an expire value less

than a year to avoid staleness.

Encryption

94

The RFC states that keys should not be included in security.txt files. Despite this, ∼0.7% of

unique files do include keys. This looks to indicate either that the majority are conforming

to the RFC recommendation and or do not wish to include a key in the security.txt.

Type Presence

HTTPS ∼93.5%

HTTP ∼2%

OpenPGP4 Fingerprint Reader ∼3.0%

Table 5.7: Percentage of encryption field value type of unique security.txt

Table 5.7 shows three types of encryption reference: HTTPS, HTTP and OpenPGP4

Fingerprint Reader (openpgp4fpr). The RFC states that the Encryption field must begin

with https://, however despite this OpenPGP4 Fingerprint Reader has a presence of

∼3.0%. A reason for this could be that it was more convenient to use an OpenPGP4

Fingerprint Reader, however this might hinder the use of it if security researchers are

not familiar with this scheme type. Should a website operator want to use OpenPGP4

Fingerprint Reader scheme, it is best placed in a separate web page such that instructions

can be included on how to use such a scheme. 2% of values use the scheme http:// which

is quite surprising given the purpose of a security.txt and being present in the Encryption

field.

Preferred-Languages

As one may expect there were many different languages (over 50) represented in the

Preferred-Languages field. Table 5.8 shows the presence of the top 5 languages for

unique security.txt files.

Language Presence

English 99%

German 13%

French 11%

Czech 13%

Dutch 4%

Table 5.8: Percentage of preferred-languages field value type of unique security.txt files

95

English is the most prominent language which makes sense as that is also the most common

language used for business. If a researcher did not speak English, or any of the other

languages listed, they may be very well know someone who does in order to report an

issue.

Other RFC Fields

The remaining fields defined in the RFC that have not been analysed in this section are

of less interest and as such only their relative presence in a security.txt was analysed and

displayed in table 5.9 and figure 5.9.

Field Presence

Acknowledgements ∼7%

Canonical 30%-33%

Hiring ∼21%

Policy 28%-31%

Table 5.9: Average field presence of remaining RFC fields in unique security.txt files

Non Standard Fields

There are a number of fields, many present in only a single security.txt, that appear in

security.txt but are not defined in the RFC. Table 5.10 details the top 5 most common of

these non standard fields.

Field Presence Inferred Use

Signature ∼4.5% Link to a digital signature file

Openbugbounty ∼3.5% Link to openbugbounty.org organisation page

Permission ∼1.5% Permission to test vulnerabilities

Disclosure ∼1% Type of public disclosure permitted

Sitemap ∼1% HTTPS link to an XML file of the websites page structure

Table 5.10: Average field presence of remaining RFC fields in unique security.txt files

All of the Permission values appear to be set to none which would seem to indicate that

permission is not given to perform testing for vulnerabilities against the site.

96

The Disclosure values were seen to be a HTTPS link, Full, Partial or None which would

seem to indicate that if a security vulnerability were to be submitted the security researcher

would act in good faith and adhere to this value in regards to the public disclosure of the

security vulnerability found.

5.4.5 Summary

The use of security.txt is quite minimal with 0.5%, as of January 2022, of domains scanned

having a valid security.txt file. This is not all to surprising as the RFC is still in the draft

stage.

Approximately half of all the valid security.txt files seen were unique, meaning that a large

proportion of domains share the same security.txt file content.

Almost all security.txt files contained one or more contact which is the primary purpose of

the security,txt mechanism to provide a contact point for security researchers to have an

easy way to report vulnerabilities.

As previously mentioned, one of the paths a security.txt file can be hosted at, as specified

in the draft RFC, was not utilised by the scanner for the majority of the scans conducted.

In any future studies, all paths specified in the latest version of the RFC should be utilised.

97

5.5 Content Security Policy

Background for this mechanism is detailed in section 4.4.

5.5.1 Purpose Overview

CSP mainly provides mitigations for web applications against XSS Cross Site Scripting

(XSS), data injection attacks and packet sniffing attacks. There are several basic policy

settings that can be utilised for protection against such attacks.

Restrict locations resources can be loaded from

Using the script-src directive to only allow resources to be loaded from trusted sources

is a great first step to prevent attackers from loading scripts. The additional use of sub

resource integrity [99] can be used to prevent supply chain attacks where the attacker takes

control of a trusted source script.

Remove the need to use unsafe directives

Both unsafe-inline and unsafe-eval should be avoided especially with the script-src

and style-src directive to prevent attackers from injecting malicious script code into a

website. Inline scripting is one of the biggest attack vectors for attackers trying to run

scripts in the browser. An alternative to removing inline scripting is the use of the Digest

keyword or the Nonce keyword to allow only specified inline scripts to run.

Avoid using the data scheme

Relatively tiny amounts of information can be used with the data schema and can be

utilised for the purpose of triggering the download of malicious resources by attackers. A

malicious script could be converted and placed into a data schema, injecting it into a page,

leading to it being executed.

Keep up to date with CSP Bypass Techniques

CSP policy maintainers should keep up to date with CSP bypass techniques such as those

described in “Complex Security Policy? A Longitudinal Analysis of Deployed Content

Security Policies” [61].

98

Category Description
Allow All The value *
Keyword Any keyword value e.g. self
Scheme Any scheme value e.g. blob:
Nonce Any nonce value e.g. nonce-MyRandomNonce
Digest Any digest value e.g. sha256-MyHashDigest=
Host Any host value e.g. *.example.com

Table 5.11: CSP Directive Categories

5.5.2 Parser

A parser was created in python which processed the value for a content security policy

header. The parser checked all of the headers below of a scan result for the presence of a

CSP header.

� Content-Security-Policy

� Content-Security-Policy-Report-Only

� X-Content-Security-Policy

� X-Webkit-CSP

The CSP text was split on the ; (semi-colon) character which denotes that a directive

configuration has ended. Each directive configuration was split on the space character

which is the separator between directive configuration values.

A number of regular expressions were created to place each directive into one of the fol-

lowing categories as described in table 5.11.

As the scanner followed redirects, the parser kept track of the resultant domain of any such

redirects and skipped processing a CSP if the resultant domain had already had a CSP

processed.

99

5.5.3 Analysis

Distribution by Rank

Figure 5.12 shows the percentage of domains that the scanner was able to identify having a

CSP header. The line chart is split by rank groups using the rank provided in the domains

list file from tranco-list.eu for the day the scan was conducted.

Figure 5.11: CSP headers use by rank for unique domains

Each rank group shows a steady rise in the use of a CSP headers, with domains in the

Rank of 1-100 group seeing the highest relative percentage use, which is an encouraging

sign. There is a long way to go, however, to have the majority of sites using a CSP policy.

In the research by Weissbacher et al [100] in March 2014 showed only 2% of the sites

ranked in the top 100 use CSP increasing to 7% in the research by Ying et al [14] in

June 2015 and as of January 2022 36% use a CSP policy which is a marked increase.

100

HTTP Header
Weissbacher et al [100]

March 2014
Ying et al [14]

June 2015
Jan 2022

Content-Security-Policy 815 1241 83208
Content-Security-Policy-Report-Only 35 180 15280
X-Content-Security-Policy N/A 111 1808
X-Webkit-CSP N/A 194 728

Table 5.12: Historical CSP Header Use

Figure 5.12: CSP headers use by name

Distribution by Header

Even though the X-WebKit-CSP and X-Content-Security-Policy CSP headers are now

deprecated, there is still an increase in use from the Ying et al study [14] in June 2015 as

shown in table 5.12. The current (Jan 2022) overall percentage of use for these two headers,

however, is less that 4% of all the CSP polices from all the CSP headers combined.

Of the 4% of domains that use the X-WebKit-CSP and X-Content-Security-Policy head-

ers, only 13% of these only use either of these two headers i.e. 87% of domains that use

X-WebKit-CSP and X-Content-Security-Policy also use the Content-Security-Policy.

The presumed reason that domains use both deprecated and current CSP headers is back-

wards comparability for older browsers. Other possible reasons could be that legacy config-

101

urations that have been added to rather than removing the deprecated headers, or tooling

in use automatically configures the deprecated headers.

There is a spike in use from 20 December 2020 to 11 January 2021 for the

Content-Security-Policy-Report-Only header. The policy looks to be exclusively

worker-src ’none’; report-uri /csp-report and all the server header values were

cloudflare. Cloudflare provides many services for websites such as web increased perfor-

mance via caching.

The CSP policy will send a report if a Worker, SharedWorker, or ServiceWorker script is

attempted to be run. There does not seem to be any correlation between the websites other

than using Cloudflare services. The short period the policy was deployed for, indicates that

Cloudflare was doing some testing and or a beta program of some kind.

As of January 2022 33% of domains that are using the

Content-Security-Policy-Report-Only header have not configured a report-uri or

report-to directive, which results in reports not being sent upon policy violations. De-

velopers might consider they do not as yet need to configure a reporting directive as they

are still in the development phase and are using browser developer tools to identify policy

violations.

102

Directives

Figure 5.13: Percentage of directives present in the Content-Security-Policy

Figure 5.13 shows the percentage of directives present in the polices from the

Content-Security-Policy header. The reason to single out Content-Security-Policy

is that it is the only non deprecated header that is available for enforcing a CSP Policy as

Content-Security-Policy-Report-Only merely reports on CSP violations.

default-src

Keyword
Ying et al [14]

June 2015
Jan 2022

* 14.10% 4.40%

none 2.74% 9.3%

self 42.55% 72.76%

unsafe-inline 5.80% 37.56%

unsafe-eval 6.69% 31.14%

unsafe-hashes N/A 8.38%

Table 5.13: Percentage of keyword use in default-src directive for unique CSP Policies

103

The distribution use of keywords has changed quite significantly since the study by Ying

et al [14] in June 2015. It should be noted that there are also significantly more domains

utilising CSP as well as the understanding of CSP will have increased which could very

well have had an effect of keyword distribution change seen.

It is good to see that keyword * (essentially providing no protections) proportionally

has reduced significantly from 14% to 4%. Unfortunately the proportional use of both

unsafe-inline and unsafe-eval has over doubled.

The self keyword (restricting resources to the origin of the web page) sees a decent

proportional increase from 43% to 73%. unsafe-hashes does not see that much use which

is not surprising as it is a relatively new (introduced in 2018) keyword.

script-src

Keyword
Ying et al [14]

June 2015
Jan 2022

* 14.34% 6.99%

none 0.00% 0.12%

self 51.09% 83.70%

unsafe-inline 58.66% 86.83%

unsafe-eval 62.61% 79.17%

unsafe-hashes N/A 1.41%

Table 5.14: Percentage of keyword use in script-src directive for unique CSP Policies

It can be seen from table 5.13 that self has had a marked increase in proportional use

from Ying et al [14] in June 2015 for the script-src directive. The use of keywords

unsafe-inline and unsafe-eval have unfortunately significantly increased to over 87%

and 79% respectively.

It is quite disappointing that the use of unsafe-inline and unsafe-eval is still so preva-

lent as setting these keywords allow a big attack vector for malicious actors. This indicates

that website maintainers are struggling to be able to create CSP policies that are more

restrictive but also do not impact the users experience, some may have even given up on

the prospect.

104

Figure 5.14: Percentage of reporting directives present in the Content-Security-Policy

Reporting Directives

The reporting directives are a great way for policy developers to gain feedback on the po-

lices, via the violation reports, being written and deployed for issues such as missing sources

that need to be allowed, spelling mistakes in URLs and other flaws with a configuration to

name a few.

There are online services dedicated to receiving and processing the CSP policy violation

reports which greatly aids in getting value from the reports and reduces the barrier to entry

which can lead to more use of reporting directives that are configured to send violation

reports.

The reports can also serve as a possible detection mechanism for malicious entities trying

to or have already exploit a website.

The report-uri reporting directive, part of the CSP specification that was released in

2012, is in use by 15% of domains using the Content-Security-Policy in January 2022

and the report-to directive is in use by 1.5% of domains. The report-uri reporting

directive is deprecated as of CSP 3, which is yet to be published (it is still in a working

draft stage) which would point as to the reason report-uri is dominant over the report-to

directive.

105

Figure 5.14 shows that the overall percentage use of the reporting directive is declining,

however the number of domains using a CSP policy is increasing which indicates that

figure 5.14 is showing as more domains start using a CSP policy they are not using a

reporting directive or potentially domains are removing the reporting directives or even a

combination of both.

5.5.4 Summary

The ability to utilise a CSP policy has been available since 2012. It is now 10 years on and

in January 2022 only 83 thousand domains (9%) in the top 1 million ranked websites are

using a CSP policy to protect their sites. This could indicate that website developers are

finding it difficult to implement a CSP policy.

An alarming amount of script-src directive configurations are still using the unsafe

prefixed keywords (86% that allow inline scripts) which allows one of the biggest attack

vectors for websites that allow attacks such as cross site scripting attacks.

Websites are becoming more and more feature rich and being developed at an every increas-

ing rate for many reasons such as staying competitive and demands from users. Libraries

are often used along with numerous scripts created by the website developers which makes

it very difficult or seemingly impossible to maintain a CSP policy that is both effective in

protecting users as well as not impacting user experience (e.g. not blocking scripts that

have changed and or added to add functionality to the website).

For a greater adoption of CSP, the frameworks and tooling used to create websites need

to incorporate the facility to generate CSP polices as this would allow the ”system” to

know which scripts and external sources are needed thus already knowing the information

required to create a policy.

106

5.6 Strict Transport Security

Background for this mechanism was detailed in section 4.5.

5.6.1 Purpose Overview

The STS header prevents an attacker trying to get the user to use HTTP to access the

site so that the attacker could perform an entity in the middle attack (described in section

2.1.4), allowing the attacker to impersonate the user or just capture sensitive information

to name only a few possibilities.

There is an issue however, in that a browser can only know to load over HTTPS when

the header is received. On the first visit to a website an attacker could intercept a HTTP

request to the website and keep the connection HTTP and thus the user would not get the

STS header. To overcome this, preloading is required which was discussed in the section

4.6.

5.6.2 Analysis

Figure 5.15 shows the usage of the STS header and its directives max-age, includeSubDomains

and preload. It is difficult to see, however, the usage of the STS Header as directive

max-age is present in almost every STS Header.

The usage of the directive includeSubDomains is consistently 40% of all directives used.

Modern websites and applications can have a vast amount of sub-domains and as such

will take time to make them all HTTPS if not already. This can be a major factor in the

relatively low use of this directive.

There are many more sites that have the preload directive set (21.5%) than are in Google’s

preload list (3.5% - shown in figure 5.15 as “Preloaded Domains”). This could be websites

preparing to be added to the preload list but as yet are not ready to meet the preload

requirements. Currently there is no known use for using the preload directive other than

being included in Google’s preload list.

107

Figure 5.15: Number of Domains using the STS header and its directives

Weissbacher et al [100]
March 2014

Ying et al [14]
June 2015

Buchanan et al [10]
May 2017

January 2022

3,005 (∼ 0.3%) 9,795 (∼ 0.9%) 45,527 (5.4%) 200493 (21.1%)

Table 5.15: Historical STS Header Use

108

Figure 5.16: Duration groupings of the max-age directive

Figure 5.16 shows groups of the duration of the max-age directive. The most common

duration is 1-3 years which is not unsurprising as the RFC states a value of 1 year. The

upward trend is in the 1-3 years bracket which indicates that as sites add a STS header

they are doing so with at least a year for the max-age directive.

This shows confidence that website maintainers are intending to keep their websites HTTPS

for the foreseeable future.

As of January 2022 5% of the max-age directive values are set to a value of 0, down from

6% in November 2020. This essentially is “opting out” of the STS mechanism itself.

In table 5.15 it can be seen that there has been a near 5 fold increase in the use of the STS

header from May 2017.

5.6.3 Summary

As of January 2022 21.1% of the top 1 million domains are using the STS header with an

upward trend. This is quite promising to see and it is hoped the trend continues.

The most common value for the max-age directive is 1-3 years and a number of domains

are using a value of 0 which means they are now actively opting out of the STS mechanism

perhaps due to some endpoints not available over https as yet.

109

5.7 STS Preload

Background for this mechanism was detailed in section 4.6.

5.7.1 Purpose Overview

The main reason for STS Preloading is to ensure the first time a user visits a website it is

over HTTPS. Without preloading, should a user visit the site the first time over HTTP,

an attacker could intercept the traffic and perform malicious actions such as the entity in

the middle attack as described in section 2.1.4.

5.7.2 Parser

The scanner was not initially configured to capture all the required information to be able

to evaluate the conformance to the preload requirements. In March 2021 the base redirect

and www subdomain check were added to the scanner.

The parser was configured to only analyse domains that were specifically added to the

preload list. This is due to entire TLDs (e.g. .app, bank and .dev) being configured in the

STS preload list and thus domains of these TLDs were not necessarily set up to meet the

preload list criteria.

In the preload commit (Tue Nov 09 22:54:06 2021) there are 34 TLDs configured. This

means that any site that is of one of these preload lists is preloaded (i.e. the domain itself

is not in the preload list, only the TLD)

All of the STS preload lists were obtained from chromium.googlesource.com and the most

recent list preceding the time of a scan was used to identify if a domain was preloaded or

not.

A random selection of domains that the parser identified as both meeting the preload

criteria and not meeting the preload criteria were checked on the https://STSpreload.org/

website for verification that the parser was working as intended.

110

Figure 5.17: STS Preload Overview

5.7.3 Analysis

Preload Criteria Conformity

Figure 5.17 shows an overall summary of the current state of top 1 million domains that

are in the preload list managed by Google. The number of preloaded domains is quite a low

percentage. As of January 2022 only 0.72% of the top 1 million domains were preloaded.

The most recent STS preload list is from February 2022, as of January 2022, which contains

157192 (up from 1258 in 2010 [15]) entries which would seem to indicate that most of the

preloaded domains are not in the top 1 million most popular domains.

The low amount of sites that are preloaded in the top 1 million most popular domains

could be due to that the majority of sites being maintained by individuals with an interest

in security and thus not likely to be a very popular domains compared to all the site on

the internet.

As of January 2022 38% of domains preloaded do not meet the preload requirements

anymore. This is rather a high percentage and these domains are at risk of being removed

as per the message displayed on STSpreload.org when checking a domain that no longer

meets the preload requirements: “Status: <domain> is currently preloaded, but no longer

meets the requirements. It may be at risk of removal.”.

111

Figure 5.18: Criteria not met for preloaded domains

Domains in the preload list that no longer meet the criteria and were in the preload list

before the requirements were formally documented and the web portal rolled out in 2014,

are not subject for removal from the preload list however.

Any data/publications detailing actual removal of domains due to them no longer meeting

the requirements was unable to be identified.

Criteria Not Met

Figure 5.18 shows the percentage of each criteria not met for domains that are preloaded

from those that were scanned. The most prevalent criteria not met was the lack of presence

of the STS header followed by not redirecting from HTTP to HTTPS on the base domain.

No Base Redirect

If a website is running a HTTP server on its base domain on port 80 it must redirect to

HTTPS on the same domain. For example the base domain of https://blog.example.com

is example.com. If a HTTP connection was able to be made to http://example.com it

must then redirect to https://example.com.

As of January 2022 12.6% of preloaded domains no longer redirect correctly from the base

112

domain. A reason for this could be that the redirect was changed from redirecting to the

base domain over HTTPS e.g. https://example.com but to the main url of the website

such as https://wwww.example.com to save a redirect to the desired main website url for

the end user.

Subdomain not HTTPS

The includeSubdomains parameter must be included on the STS header, meaning that

all subdomains of the base domain will be forced to load over HTTPS. Only the www

subdomain is checked to see if it has a DNS entry and subsequently checked if the domain

supports HTTPS on the www subdomain e.g. https://www.example.com.

As of January 2022 less than 0.1% of preloaded domains no longer use HTTPS on the

www subdomain. This is not at all unsurprising, as it is unlikely that the www subdomain

would have HTTPS support removed after it has been preloaded since it would be a primary

subdomain to check for issues with HTTPS during the stage of making a domain preload

compliant.

STS Header

- No STS Header

By far the most prevalent reason that a domain no longer met the preload criteria was

a missing STS header. Many websites have numerous subdomains and it can be hard to

keep track of all that are in use. Those managing the security aspect may not be aware

of all the subdomains and by preloading the base domain could have caused issues if one

or more subdomains were configured with only HTTP or invalid HTTPS configurations.

This would lead to the request to have the base domain removed from the preload list.

- Max Age too short

4.2% of preloaded domains that presented a STS header, have a max-age directive value

of less than one year (31,536,000 seconds). This also happens to be the value given in the

STS RFC [9].

For 02 January 2022 the most common duration under a year was 180 days (6 months).

There were also 3 domains that presented a max-age of 31104000 which is only 5 days

below the required 365 days. 20 domains used a value of 0, essentially “opting out” of

113

both the preloading and STS mechanism itself.

- Missing preload

1.6% of preloaded domains did not provide the directive preload in the STS header. As

this directive is only used for the purpose of preloading, one might assume that this was

done on purpose indicating that preloading was not longer desired.

- Missing includeSubdomains

1.8% of preloaded domains do not include the includeSubdomains directive and 0.8% are

missing both the includeSubdomains directive and the preload directive.

5.7.4 Summary

The usage of STS Preloading is as yet not all that common with 0.72% of the top 1 million

domains currently utilising it.

Of the domains that do use STS Preloading, 38% no longer meet the requirements which

could result in their removal from the list thus removing the extra security layer the STS

Preloading mechanism provides.

As of January 2022, not having a STS header was 30% of all reasons that a domain no

longer met the preload requirement meaning they have opted out of both the STS header

protection and STS Preloading.

114

5.8 X Content Type Options

Background for this mechanism was detailed in section 4.7.

5.8.1 Purpose Overview

This mechanism is intended to mitigate against such attacks as drive by downloads and

untrusted user content being treated as an executable.

5.8.2 Analysis

It should be noted that in figure 5.19 representation for XTCO header cannot be seen. This

is due to the fact that nosniff was the only value for this header and has an identical

representation, thus it is completely overshadowing XTCO header.

Figure 5.19 shows the usage of the XCTO header and its single directive nosniff. As

there is only one directive for XCTO, the number of domains using it and those using the

directive nosniff are identical.

There is a somewhat linear increase in usage over the measurement period (November 2020

- January 2022) which is encouraging to see.

115

Figure 5.19: Number of Domains using the XCTO header and its directives

Weissbacher et al [100]
March 2014

Ying et al [14]
June 2015

Buchanan et al [10]
May 2017

Jan 2022

44,954 (∼ 4.5%) 46,405 (∼ 4.6%) 89,053 (10%) 205,679 (21.5%)

Table 5.16: Historical XCTO Header Use

In table 5.16 it can be seen that there has been a near 5 fold increase in the use of the

XTCO header from 2015 and just over a 2 fold increase since May 2017. As of January

2022 the XCTO header is in use by only 21% of scanned domains. Whilst the trend is on

a linear increase trend, more awareness and guidance is needed to get a faster adoption of

XCTO and the other security headers analysed in this report.

116

5.9 X Frame Options

Background for this mechanism was detailed in section 4.8.

5.9.1 Purpose Overview

The XFO mechanism intended to mitigate against such attacks as clickjacking where an

attacker invisibly embeds another site on top of theirs tricking users, via the use of enticing

offers such as free electronics, into clicking a seemingly harmless link which actually triggers

a function on the embedded site such as transferring money via one’s banking website to

the attacker.

5.9.2 Analysis

Figure 5.20 shows the usage of the XFO header and its directives deny, sameorigin and

the deprecated allow-from. The sameorigin directive has a near constant usage of 84%

which is great to see and not all that unsurprising as it is not all that common for the need

to embed foreign origins into ones website or the need for foreign origins to embed one’s

website.

That being said, with only a 21% usage of the XFO header as of January 2022, many more

websites should be able to use the header with the sameorigin, or the more secure deny,

directive without affecting the user experience and in turn protect the users from attacks

such as clickjacking.

The deny directive has a fairly constant presence in domains with 14.3% use in January

2022. deny gives the most protection by not allowing the website to be embedded in any

of the following html elements: <frame>, <iframe>, <embed>, or <object>.

117

Figure 5.20: Number of Domains using the XFO header and its directives

Weissbacher et al [100]
March 2014

Ying et al [14]
June 2015

Buchanan et al [10]
May 2017

Jan 2022

25,282 (∼ 2.5%) 40,848 (∼ 4.0%) 93,601 (11.1%) 207,522 (21.8%)

Table 5.17: Historical XFO Header Use

The deprecated directive allow-from has a very low but constant usage of 1.5%. The low

usage reflects its deprecation status and is likely present due to configurations that have

either not been changed in a while or not removed when configuration changes have been

made.

118

5.10 Cross Origin Embedder Policy

Background for this mechanism was detailed in section 4.9.

5.10.1 Purpose Overview

The COEP mechanisms is to allow a website maintainer to enforce cross-origin resources

that must be explicitly allowed to be loaded via the use of the CORP header or CORS

otherwise the resources will be blocked from being loaded in the browsers.

A driving factor for this header being introduced was that some developers may implement

CORS in minimal way, such as setting the requesters origin in the Access-Control-Allow-

Origin header [31]. This may have the undesired affect of allowing potentially sensitive

data to be accessed unintentionally.

5.10.2 Analysis

Figure 5.21 shows the usage of the COEP header and its directives unsafe-none and

require-corp. The usage of the COEP header is rather low and as of January 2022 only

353 domains in the top 1 million most popular use it and of those only 15% of them use

the require-corp directive (the only directive that imposes restrictions).

There is a sharp rise in its use in March 2021 with the directive of unsafe-none which

indicated that the header was added perhaps for the purposes of an audit or similar that

suggested its use as unsafe-none is the default behaviour (i.e. the same as not specifying

the header at all).

Alternatively the sharp rise could be due to preparation of changing the headers directive

to require-corp at a later date. However the directive appears to have remained set to

unsafe-none for 9 months now.

119

Figure 5.21: Number of Domains using the COEP header and its directives

The use of the require-corp directive is very low as of January 2022.

The COEP header was introduced recently enough that similar analysis of header usage

was not seen in research consulted thus no comparison is able to be made.

120

5.11 Cross Origin Resource Policy

Background for this mechanism was detailed in section 4.10.

5.11.1 Purpose Overview

A primary class of attacks that this mitigates against are speculative side-channel attacks.

The Spectre attack [32] is one such attack which was publicly announced in 2018.

5.11.2 Analysis

Figure 5.22 shows the usage of the CORP header and its directives same-site, same-origin

and cross-origin. The usage of the CORP header almost double that of the COEP header

in January 2022, but is still rather low.

The most common directive used is same-origin, 63% of all directives (387 domains) in

January 2022, which the most restrictive of the available directives which is great to see.

The use of cross-origin, being the least restrictive directive, allows resources to be loaded

from any source is the second most used with 157 domains and 25% of all directives used

in January 2022. This would indicate the there are one or more resources that that are

not from the same site as the website being visited or that website maintainers have added

the header with the least restrictive directive or a combination of both.

121

Figure 5.22: Number of Domains using the CORP header and its directives

Lastly same-site which allows resources to be loaded from any site whos origin matches

the origin of the current website being visited is in use by 63 sites.

There are a couple of spikes. One in April 2021 and another in July 2021 for the use of

same-origin directive.

The CORP header was introduced recently enough that similar analysis of header usage

was not seen in research consulted, thus no comparison is able to be made.

122

5.12 Cross Origin Opener Policy

Background for this mechanism was detailed in section 4.11.

5.12.1 Purpose Overview

The COOP mechanism is to prevent a new window or tab spawned from a website from

communicating back to a website. If an attacker is able to spawn this new window or

tab that is of a site they control, COOP with the directive same-origin will prevent the

attacker from communicating back to the website that spawned the new window or tab.

This stops the attacker from trying to control the website or exfiltrating data from it.

5.12.2 Analysis

Figure 5.23 shows the usage of the COOP header and its directives unsafe-none,

same-origin-allow-popups and same-origin. The usage of the COOP header is almost

double that of the CORP header and quadruple that of the COEP header in January 2022,

but is still rather low.

The most common directive used by far is same-origin, with 67% of all directives (1013

domains) in January 2022. It is the most restrictive of the available directives which is

great to see. It is of no real surprise that this is the case and it is relatively safe to assume

that most websites would want isolation between windows or tabs as most functionality

required would be within the same tab/window.

The same-origin-allow-popups directive has the second most usage with 289 domains

and 19% of all directives used in January 2022. Lastly the unsafe-none the least used

with 194 domains and 13% of all directives used in January 2022.

123

Figure 5.23: Number of Domains using the COOP header and its directives

The COOP header was introduced recently enough that similar analysis of header usage

was not seen in research consulted, thus no comparison is able to be made.

124

5.13 Public Key Pins

Background for this mechanism was detailed in section 4.12.

5.13.1 Purpose Overview

This header was intended to protect websites in the event a CA provider was compromised,

such as DigiNotar in 2011 [34], and unauthorised certificates being issued to an attacker

for the purposes of impersonating websites. The HPKP mechanism would prevent the

unauthorised certificate from being trusted by visitors that had previously visited the

website i.e. preventing an entity in the middle attack.

5.13.2 Analysis

Figure 5.24 shows the usage of the HPKP header. As the header is deprecated by most

modern browsers only the domains that used the header were analysed.

From November 2020 to mid March 2021 there was a steady decline, however since then

usage has slightly fluctuated and the use in January 2022 is that of Mid March 2021. This

indicates that there are a number of domains that have as yet to deprecate the HPKP

header.

Table 5.18 shows that May 2017 was potentially the peak use of the PKP header and as

of January 2022 there are only 526 sites using the header.

125

Figure 5.24: Number of Domains using the HPKP header

Weissbacher et al [100]
March 2014

Ying et al [14]
June 2015

Buchanan et al [10]
May 2017

Jan 2022

NA 118 (∼ 0.01%) 6,624 (0.7%) 526 (0.05%)

Table 5.18: Historical PKP Header Use

126

Chapter 6

Discussion and Closing Remarks

6.1 Discussion

6.1.1 Objectives Scope Justification

As a refresher the scope for the objectives for this study are:

1. The measurements will be restricted to websites as they are interacted with by a large

proportion of people today, thus providing useful analysis targets.

2. Scan websites no more than once a day for a period of at least 12 months.

3. Restrict the websites scanned to the top 1 million most popular.

4. Only metadata, i.e. headers and connection details, will be captured and not the body

content of websites.

The reason for scanning against domains that are amongst the most popular was to analyse

domains that had a high number of visitors. It would seem prudent to perform analysis

on domains that had the highest amount off traffic as that should have the most number

of users affected by security mechanism adoption on domains.

Scans were conducted at a maximum of once a day as it is unlikely any significant changes

that were intended to persist would remain much longer than a single day and is also

appropriate as this study is performing analysis over a large time period (16 months).

Scanning once a day could be deemed as quite high, however an added benefit is if there

127

were issues with some scans there should be enough remaining scans to allow effective

analysis to occur. There were such issues with this research as detailed in section 5.1.1,

which has occurred for other research, for example in [18].

The target domains for each scan was limited to the Tranco top 1 million list as it would

have been impractical to generate a source list manually as there was limited time and

resources which was better spent focussing on the scanning itself. There being 1 million

domains in the Tanco list was deemed to be off sufficient amount and quality and as

previously mentioned in section 3.3.1 many other studies have used such lists.

The use of a richer set of domains could have had an effect of the outcome of the analysis,

however this is true of all measurement studies. Scanning a larger set of domains would

provide a greater insight into security mechanism adoption however this could start to

provide diminishing returns unless a significant amount of domains are used. A significantly

larger set of domains might show sub trends within specific industries and or countries.

Using a set of domains in an extreme range, such as in the 100’s of millions or all of the

domains registered for one or more TLD’s (top level domains e.g. .com or .co.uk), would

seem to be of some use if the desire was to use more than the top 1 million websites.

A secondary reason to use only 1 million domains was to reduce the resources required for

them all to be scanned once a day as there is a real world cost to running the infrastructure

required which was ∼$51 a month which equates to $816 for a 16 month period. This is

not an insignificant amount of money for a personal budget.

With any measurement study one needs to set a limit to the amount of data to be analysed.

The choice to restrict the data collection to only metadata was to limit the scope such that

there was a reasonable chance of being able to sufficiently analyse the data in the limited

time made available to complete this study. This looks to have been a wise choice as it

has taken the majority of time available to complete this study.

6.1.2 Scanning

As detailed in section 5.1.1 there were several time periods of missing scan data not available

for analysis. This essentially comes down to effective monitoring in order to reduce the

impact. It is not possible to make a system 100% reliable, however extra vigilance such as

frequent manual inspection could have reduce the impact to missing data.

128

Creating an application is easy, however, creating a stable system with effective monitoring

takes a lot of effort and generally requires teams of people working in shifts to be very

effective.

6.1.3 Analysis

A large proportion of time spent on the analysis phase was constructing the tooling to

process the data from the domain scans. Great care had to be taken to verify the output

of this tooling and on several occasions when analysing the charts generated, inaccuracies

in the data representation could be seen and had to be corrected.

The analysis conducted was not merely just charting chosen data over the time period,

significant deviations from trends warranted investigation. One such deviation, detailed

in section 5.5.3, was a spike in content-security-policy-report-only header use for a

short time period where cloudflare appeared to be conducting some sort of trial.

Unless one conducts a measurement study it is not particularly realised how much time

it takes to collect and process the data into a usable form and how easy it is to misrep-

resent and or inaccurately represent the collected data. The study “Strategies for Sound

Internet Measurement” [73] goes into great detail into what one needs to be aware of for

measurement studies in order to obtain a more accurate outcome.

6.1.4 Future Work

There is a large scope for future studies due to the ever changing HTTPS ecosystem and

its complexity. A number of possible areas for further work are detailed below that came

to light during this study.

Legacy TLS Usage

For the websites the only support the legacy TLS versions, TLS 1.0 and TLS 1.1, it could

be investigated into why this is the situation and leading to what could be done to support

TLS 1.2 and TLS 1.3.

STS Preloaded sites that no longer meet the preload criteria

There are rather a large proportion of websites that are currently STS preloaded but no

longer meet the criteria. It could be investigated why this is the case and thus could lead to

129

enhanced documentation in how to better prepare for and keep conformity for preloading

and or enhanced organisational procedures to prevent unintentionally no longer meeting

one or more of the preload criteria.

Content Security Policy - Unsafe keyword usage

The use of the unsafe prefixed keywords especially for the script-src directive is rel-

atively high currently. If a study was able to uncover the reasons for this it could help

both the website operators trying to implement secure policies as well as the body that

maintains the CSP standard in order to work together to best protect users with CSP

policies.

Continued Adoption Studies

There is always a need for adoption studies as it gives insight into how security mechanisms

are being used, which influences the evolution of such mechanisms, provides guidance for

which mechanisms should be looked into more deeply and a historical record for longitu-

dinal research.

130

6.2 Conclusions

The overarching goal of this study was to answer the question:

What is the current adoption of security mechanisms

in the HTTPS ecosystem ?

This was achieved by scanning the top 1 million ranked websites (as determined by Tranco

[58]) each day for 16 months and analysing the results.

Throughout the study the number of websites supporting HTTPS remained at a near con-

stant of ∼80% indicating that a plateau of websites supporting HTTPS has been reached.

For these remaining sites it may very likely need a simple, potentially, free service to get

these sites supporting HTTPS. There are a number of these services available, however

it may seem too much of a barrier as the operators may not see HTTPS as a necessary

feature of their site unfortunately.

With TLS 1.3 climbing from 50% in November 2020 to 64% in January 2022 (as shown

in figure 5.3), of websites scanned that support HTTPS, there a is strong support for the

latest TLS versions and this trend looks as thou it will continue to rise providing more

security for users browsing the internet. Also encouraging to see is the continued decline

of the support of TLS 1.0 and TLS 1.1 (as shown in figure 5.4) which could indicate the

website operators are increasingly comfortable to stop supporting these legacy versions

possibly as there are a minimal amount of devices that require them still in use.

The security.txt mechanisms is still in its infancy as it is still in the draft RFC stage which

shows in its adoption which is 0.5% (as stated in section 5.4.5) of websites scanned as

of January 2022. The goal of this mechanism is admirable and its relevance looks quite

promising as the majority of security.txt files found have a contact field defined, which is

the primary piece of information that security researches are looking for in order to report

a security vulnerability. It is hoped that more tutorials and setup procedures for website

hosting, prompts for the information for a security.txt to be deployed such that a wider

adoption can be made.

A Content Security Policy is a critical mechanism in assisting to mitigate cross site scripting

attacks, however only 9% of domains scanned are using a CSP policy as of January 2022.

The use of usafe-inline and unsafe-eval keywords are still very prevalent, especially

131

for the script-src directive (as shown in table 5.14) which negates one of the strongest

protections against XSS attacks. This is likely due to several contributing factors including

the complexity of websites and the amount of work required to refactor website code in

order not to have the need for these directives. This finding is quite disappointing and an

in depth study should be conducted to uncover the definitive primary reasons why this is

still the case.

As previously stated there are several time periods during the data capture phase where

there is missing data, which is not all that uncommon for this type of study. The reasons

for the missing data has been identified (as detailed in section 3.4.6), along with measures

intended to prevent further occurrences which will hopefully allow future studies to learn

from them. The largest gap is 27 days and even though this is almost a month of data, it

seems not to have been an issue for analysis and the identification of longitudinal trends.

The main issue is with the identification of short live spikes/fluctuations, such as that seen

by the use of the CSP report only header.

Another critique of this study is of the choice not to retry HTTP(S) or TLS connections

that failed in order to reduce the load on the target domains. If retries had been utilised it

is quite possible that some of these failed HTTP(S) or TLS connections would have been

successful, however this is likely not to be significant enough to have changed the analysis

findings.

To conclude, apart from TLS the other security mechanisms see a rather low usage within

the top 1 million ranked websites. More work should be done to improve their usage

(such as better tutorials, prompts during setup wizzards, default configs and best practice

guidance) as well as finding out why the usage is as low as it is.

132

Intentionally Blank

133

Bibliography

[1] I. Ristic, Bulletproof SSL and TLS. Feisty Duck, Jul. 2017.

[2] Apple, Google, Mozilla, and Microsoft, “DOM standard,” URL

https://dom.spec.whatwg.org/; Accessed 04 November 2021.

[3] T. Berners-Lee and D. Connolly, “RFC 1866: Hypertext markup language - 2.0, au-

gust 1995,” URL https://datatracker.ietf.org/doc/html/rfc1866; Accessed 24 October

2021, 1995.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk, “RFC1945: Hypertext transfer pro-

tocol - HTTP/1.0, may 1996,” URL https://datatracker.ietf.org/doc/html/rfc1945;

Accessed 24 October 2021, 1996.

[5] N. Freed, J. Klensin, and T. Hansen, “RFC6838: Media type specifications and reg-

istration procedures,” URL https://datatracker.ietf.org/doc/html/rfc6838; Accessed

02 November 2021, 2013.

[6] R. Oppliger, SSL and TLS: Theory and Practice, Second Edition. Artech House,

Mar. 2016.

[7] C.-H. j. Wu and J. David Irwin, Introduction to Computer Networks and Cybersecu-

rity. CRC Press, Apr. 2016.

[8] E. Rescorla, “RFC8446: The transport layer security (TLS) protocol version 1.3, au-

gust 2018,” URL https://datatracker.ietf.org/doc/html/rfc8446; Accessed 24 October

2021, 2018.

[9] J. Hodges, C. Jackson, and A. Bart, “RFC6797: HTTP strict transport security

(HSTS), november 2012,” URL https://datatracker.ietf.org/doc/html/rfc6797; Ac-

cessed 24 October 2021, no. rfc6797, 2012.

134

[10] W. J. Buchanan, S. Helme, and A. Woodward, “Analysis of the adoption of security

headers in HTTP,” IET Inf. Secur., vol. 12, no. 2, pp. 118–126, Mar. 2018.

[11] P. Chen, L. Desmet, C. Huygens, and W. Joosen, “Longitudinal study of the use of

client-side security mechanisms on the european web,” in Proceedings of the 25th In-

ternational Conference Companion on World Wide Web, ser. WWW ’16 Companion.

Republic and Canton of Geneva, CHE: International World Wide Web Conferences

Steering Committee, Apr. 2016, pp. 457–462.

[12] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A. Halderman, and M. Bai-

ley, “Security challenges in an increasingly tangled web,” in Proceedings of the 26th

International Conference on World Wide Web, ser. WWW ’17. Republic and Canton

of Geneva, CHE: International World Wide Web Conferences Steering Committee,

Apr. 2017, pp. 677–684.

[13] K. Patil and Vishwakarma Institute of Information Technology, India, “An insecure

wild web: A large-scale study of effectiveness of web security mechanisms,” ICTACT

j. commun. technol., vol. 08, no. 01, pp. 1466–1471, Mar. 2017.

[14] M. Ying and S. Q. Li, “CSP adoption: current status and future prospects,” Secur.

Commun. Netw., vol. 9, no. 17, pp. 4557–4573, Nov. 2016.

[15] K. Michael and B. Joseph, “Upgrading https in mid-air: An empirical study of strict

transport security and key pinning,” in NDSS Symposium, 2015.

[16] T. van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen, “Large-Scale

security analysis of the web: Challenges and findings,” in Trust and Trustworthy

Computing. Springer International Publishing, 2014, pp. 110–126.

[17] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-Rodriguez, and

O. Hohlfeld, “Tracking the deployment of tls 1.3 on the web: A story of experimen-

tation and centralization,” Comput. Commun. Rev., vol. 50, no. 3, pp. 3–15, Jul.

2020.

[18] T. Poteat and F. Li, “Who you gonna call? an empirical evaluation of website se-

curity.txt deployment,” in Proceedings of the 21st ACM Internet Measurement Con-

ference, ser. IMC ’21. New York, NY, USA: Association for Computing Machinery,

Nov. 2021, pp. 526–532.

135

[19] E. Rescorla, “RFC2818: HTTP over TLS, may 2000,” URL

https://datatracker.ietf.org/doc/html/rfc2818; Accessed 24 October 2021, 2000.

[20] “Preparing to issue 200 million certificates in 24 hours,” https://letsencrypt.org/

2021/02/10/200m-certs-24hrs.html, accessed: 2021-12-22.

[21] “HTTPS as a ranking signal,” https://developers.google.com/search/blog/2014/08/

https-as-ranking-signal, accessed: 2021-12-22.

[22] T. Vyas, “Communicating the dangers of non-secure HTTP,” https://blog.mozilla.

org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/, Jan.

2017, accessed: 2021-12-22.

[23] Google, “Moving towards a more secure web,” https://security.googleblog.com/2016/

09/moving-towards-more-secure-web.html, accessed: 2021-12-22.

[24] “Serve websites over HTTPS (always),” https://www.ncsc.gov.uk/blog-post/

serve-websites-over-https-always, accessed: 2021-12-16.

[25] “Does my site need HTTPS?” https://doesmysiteneedhttps.com/, accessed: 2021-

12-16.

[26] S. Preston, Learn HTML5 and JavaScript for iOS. Apress, 2012.

[27] Multiple, “Same origin policy,” URL https://html.spec.whatwg.org/multipage/browsers.html#cross-

origin-objects; Accessed 01 November 2021, 1996.

[28] Apple, Google, Mozilla, and Microsoft, “CORS protocol,” URL

https://fetch.spec.whatwg.org/#cors-protocol; Accessed 03 November 2021, 2006.

[29] E. Foudil and Y. Shafranovich, “RFC-DRAFT: A file format to aid in security

vulnerability disclosure,” URL: https://datatracker.ietf.org/doc/html/draft-foudil-

securitytxt-12; Accessed 03 November 2021, 2021.

[30] Apple, Google, Mozilla, and Microsoft, “X-Content-Type-Options header,” URL

https://fetch.spec.whatwg.org/#x-content-type-options-header; Accessed 02 Novem-

ber 2021.

[31] “Cross-origin embedder policy,” https://wicg.github.io/

cross-origin-embedder-policy/, accessed: 2022-2-7.

136

https://letsencrypt.org/2021/02/10/200m-certs-24hrs.html
https://letsencrypt.org/2021/02/10/200m-certs-24hrs.html
https://developers.google.com/search/blog/2014/08/https-as-ranking-signal
https://developers.google.com/search/blog/2014/08/https-as-ranking-signal
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://www.ncsc.gov.uk/blog-post/serve-websites-over-https-always
https://www.ncsc.gov.uk/blog-post/serve-websites-over-https-always
https://doesmysiteneedhttps.com/
https://wicg.github.io/cross-origin-embedder-policy/
https://wicg.github.io/cross-origin-embedder-policy/

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting

speculative execution,” in 2019 IEEE Symposium on Security and Privacy (SP), May

2019, pp. 1–19.

[33] Apple, Google, Mozilla, and Microsoft, “Cross-origin opener policies,” URL:

https://html.spec.whatwg.org/multipage/origin.html#the-headers; Accessed 03

November 2021.

[34] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz, “Mission ac-

complished? HTTPS security after diginotar,” in Proceedings of the 2017 Internet

Measurement Conference, ser. IMC ’17. New York, NY, USA: Association for Com-

puting Machinery, Nov. 2017, pp. 325–340.

[35] J. Herman and Y. Klijnsma, “Magecart: The state of a growing threat,” Computer

Fraud & Security, vol. 2019, no. 10, p. 4, Oct. 2019.

[36] A. Gezer, G. Warner, C. Wilson, and P. Shrestha, “A flow-based approach for trickbot

banking trojan detection,” Computers & Security, vol. 84, pp. 179–192, Jul. 2019.

[37] D. M. Mrdjenovich, “Saving the electronic person from digital assault: The case for

more robust protections over our electronic medical records,” Duquesne Law Rev.,

vol. 58, p. 146, 2020.

[38] “OWASP foundation,” https://owasp.org/about/, accessed: 2021-11-4.

[39] D. Kellezi, C. Boegelund, and W. Meng, “Securing open banking with Model-View-

Controller architecture and OWASP,” Proc. Int. Wirel. Commun. Mob. Comput.

Conf., vol. 2021, Sep. 2021.

[40] “OWASP top 10:2021,” https://owasp.org/Top10/, accessed: 2021-11-4.

[41] “OWASP top ten 2021 - injection attacks,” https://owasp.org/Top10/A03

2021-Injection/, accessed: 2021-11-4.

[42] Tala Security, “Global data at risk state of the web report,”

https://go.talasecurity.io/hubfs/Content/White%20Papers%20and%20Reports/ Global%20Data%20at%20Risk 2020%20State%20of%20the%20Web%20Report .pdf,

Jul. 2020, accessed: 2021-12-15.

137

https://owasp.org/about/
https://owasp.org/Top10/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/

[43] G. E. Rodŕıguez, J. G. Torres, P. Flores, and D. E. Benavides, “Cross-site scripting

(XSS) attacks and mitigation: A survey,” Computer Networks, vol. 166, p. 106960,

Jan. 2020.

[44] A. Klein, “DOM based cross site scripting or XSS of the third kind,” Web Application

Security Consortium, Articles, vol. 4, pp. 365–372, 2005.

[45] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang, “mXSS at-

tacks: attacking well-secured web-applications by using innerHTML mutations,” in

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security, ser. CCS ’13. New York, NY, USA: Association for Computing Machinery,

Nov. 2013, pp. 777–788.

[46] C.-H. Lee, S. Tenneti, and D. Y. Eun, “Transient dynamics of epidemic spreading and

its mitigation on large networks,” in Proceedings of the Twentieth ACM International

Symposium on Mobile Ad Hoc Networking and Computing, ser. Mobihoc ’19. New

York, NY, USA: Association for Computing Machinery, Jul. 2019, pp. 191–200.

[47] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A. Selcuk, “In-Browser cryp-

tomining for good: An untold story,” in 2021 IEEE International Conference on

Decentralized Applications and Infrastructures (DAPPS), Aug. 2021, pp. 20–29.

[48] A. Billman, “Cryptojacking: Abusing computational power for profit,” Ph.D. disser-

tation, 2018.

[49] K. S. Jamwal, “Clickjacking attack: Hijacking user’s click,” International Journal of

Advanced Networking and Applications, vol. 10, no. 1, pp. 3735–3740, Aug. 2018.

[50] N. B. Jani and B. B. Panchal, “A critical review of scriptless timing attacks and web

browser privacy,” IJSRD - International Journal for Scientific Research & Develop-

ment, vol. 3, no. 1, pp. 46–48, 2015.

[51] O. Levillain, B. Gourdin, and H. Debar, “TLS record protocol: Security analysis

and defense-in-depth countermeasures for HTTPS,” in Proceedings of the 10th ACM

Symposium on Information, Computer and Communications Security, ser. ASIA CCS

’15. New York, NY, USA: Association for Computing Machinery, Apr. 2015, pp.

225–236.

138

[52] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and DTLS

record protocols,” in 2013 IEEE Symposium on Security and Privacy, May 2013, pp.

526–540.

[53] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,

D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The matter of heart-

bleed,” in Proceedings of the 2014 Conference on Internet Measurement Conference,

ser. IMC ’14. New York, NY, USA: Association for Computing Machinery, Nov.

2014, pp. 475–488.

[54] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,

A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy state of the union: Taming

the composite state machines of TLS,” 2015.

[55] C. Partridge and M. Allman, “Ethical considerations in network measurement pa-

pers,” Commun. ACM, vol. 59, no. 10, pp. 58–64, Sep. 2016.

[56] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman, “A search

engine backed by Internet-Wide scanning,” in Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’15. New York,

NY, USA: Association for Computing Machinery, Oct. 2015, pp. 542–553.

[57] BCS, “CODE OF CONDUCT FOR BCS MEMBERS,” Jun. 2011.

[58] “Tranco,” https://tranco-list.eu/, accessed: 2021-11-17.

[59] “Cisa: Report incidents, phishing, malware, or vulnerabilities,” https://us-cert.cisa.

gov/report, accessed: 2021-12-1.

[60] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-Rodriguez, and

J. Caballero, “Coming of age: A longitudinal study of TLS deployment,” in Proceed-

ings of the Internet Measurement Conference 2018, ser. IMC ’18. New York, NY,

USA: Association for Computing Machinery, Oct. 2018, pp. 415–428.

[61] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and others, “Complex security

policy? a longitudinal analysis of deployed content security policies,” Proceedings of

the 27th, 2020.

[62] S. Calzavara, A. Rabitti, and M. Bugliesi, “Semantics-Based analysis of content

security policy deployment,” ACM Trans. Web, vol. 12, no. 2, pp. 1–36, Jan. 2018.

139

https://tranco-list.eu/
https://us-cert.cisa.gov/report
https://us-cert.cisa.gov/report

[63] “Alexa - top sites,” https://www.alexa.com/topsites, accessed: 2021-11-17.

[64] “Cisco popularity list,” http://s3-us-west-1.amazonaws.com/umbrella-static/index.

html, accessed: 2021-11-17.

[65] “Majestic million - majestic,” https://majestic.com/reports/majestic-million, ac-

cessed: 2021-11-17.

[66] “ICANN centralised zone data service,” https://czds.icann.org/home, accessed:

2021-11-17.

[67] “Go HTTP client GET method,” https://pkg.go.dev/net/http, accessed: 2021-11-

17.

[68] A. Lavrenovs and F. J. R. Melón, “HTTP security headers analysis of top one million

websites,” in 2018 10th International Conference on Cyber Conflict (CyCon), May

2018, pp. 345–370.

[69] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, and Housley, R: Polk, W, “RFC5280:

Internet x.509 public key infrastructure certificate and certificate revocation list

(CRL) profile,” 2008.

[70] D. Keeler, “Preloading intermediate CA certificates

into firefox,” https://blog.mozilla.org/security/2020/11/13/

preloading-intermediate-ca-certificates-into-firefox, Nov. 2020, accessed: 2021-

11-18.

[71] J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting past challenges

and evaluating certificate trust model enhancements,” in 2013 IEEE Symposium on

Security and Privacy, May 2013, pp. 511–525.

[72] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL landscape: a thorough

analysis of the x.509 PKI using active and passive measurements,” in Proceedings of

the 2011 ACM SIGCOMM conference on Internet measurement conference, ser. IMC

’11. New York, NY, USA: Association for Computing Machinery, Nov. 2011, pp.

427–444.

[73] V. Paxson, “Strategies for sound internet measurement,” in Proceedings of the 4th

ACM SIGCOMM conference on Internet measurement, ser. IMC ’04. New York,

NY, USA: Association for Computing Machinery, Oct. 2004, pp. 263–271.

140

https://www.alexa.com/topsites
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://majestic.com/reports/majestic-million
https://czds.icann.org/home
https://pkg.go.dev/net/http
https://blog.mozilla.org/security/2020/11/13/preloading-intermediate-ca-certificates-into-firefox
https://blog.mozilla.org/security/2020/11/13/preloading-intermediate-ca-certificates-into-firefox

[74] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen,

“Tranco: A Research-Oriented top sites ranking hardened against manipulation,”

Jun. 2018.

[75] “http: http2pipe.closeWithErrorCrashed · issue #43965 · golang/go,” https://

github.com/golang/go/issues/43965, accessed: 2021-12-9.

[76] K. M. Martin, Everyday Cryptography: Fundamental Principles and Applications.

Oxford University Press, 2017.

[77] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in The Second

USENIX Workshop on Electronic Commerce Proceedings, vol. 1, 1996, pp. 29–40.

[78] A. Freier, P. Karlton, and P. Kocher, “RFC6101: The secure

sockets layer (SSL) protocol version 3.0, november 1996,” URL

https://datatracker.ietf.org/doc/html/rfc6101; Accessed 24 October 2021, 2011.

[79] S. Farrell, “Why didn’t we spot that? [practical security],” IEEE Internet Comput-

ing, vol. 14, no. 1, p. 85, Jan. 2010.

[80] T. Dierks and C. Allen, “RFC2246: The TLS protocol version 1.0, january 1999,”

URL https://datatracker.ietf.org/doc/html/rfc2246; Accessed 24 October 2021, 1999.

[81] E. Rescorla, SSL and TLS: Designing and Building Secure Systems. Addison-Wesley,

2001.

[82] T. Dierks and E. Rescorla, “RFC4346: The transport layer security (TLS) pro-

tocol version 1.1, april 2006,” URL https://datatracker.ietf.org/doc/html/rfc4346;

Accessed 24 October 2021, 2006.

[83] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and

T. Wright, “RFC3546: Transport layer security (TLS) extensions,” URL

https://datatracker.ietf.org/doc/html/rfc3546; Accessed 30 October 2021, 2003.

[84] T. Dierks and E. Rescorla, “RFC5246: The transport layer security (TLS) protocol

version 1.2, august 2008,” URL https://datatracker.ietf.org/doc/html/rfc5246; Ac-

cessed 24 October 2021, 2008.

141

https://github.com/golang/go/issues/43965
https://github.com/golang/go/issues/43965

[85] A. Barth and B. Sterne, “Content security policy 1.0, 2012,” URL

https://www.w3.org/TR/2012/CR-CSP-20121115/; Accessed 01 November 2021,

2012.

[86] A. Barth and B. Sterne, “Content security policy 1.0, 2015,” URL

https://www.w3.org/TR/2015/NOTE-CSP1-20150219/; Accessed 01 November

2021, 2015.

[87] M. West, A. Barth, D. Veditz, and B. Sterne, “Content security policy level 2, 2014,”

URL https://www.w3.org/TR/2014/WD-CSP2-20140703/; Accessed 01 November

2021, 2014.

[88] M. West, A. Barth, D. Veditz, and B. Sterne, “Content security policy level 2, 2016,”

URL https://www.w3.org/TR/2016/REC-CSP2-20161215; Accessed 01 November

2021, 2016.

[89] M. West, “Content security policy level 3; 2016,” URL

https://www.w3.org/TR/2016/WD-CSP3-20160126/; Accessed 01 November

2021, 2016.

[90] M. West, “Content security policy level 3, 2021,” URL

https://www.w3.org/TR/2021/WD-CSP3-20210629/; Accessed 01 November

2021, 2021.

[91] “Remove plugin-types,” accessed: 2022-01-29.

[92] Google, “Rich notifications in chrome,” https://blog.chromium.org/2013/05/, ac-

cessed: 2022-2-1.

[93] A. Langley, “Strict transport security,” https://www.imperialviolet.org/2010/01/26/

sts.html, accessed: 2022-2-12.

[94] Apple, Google, Mozilla, and Microsoft, “Cross-Origin-Resource-Policy header,”

URL https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header; Accessed

02 November 2021.

[95] P. Chen, “Empirical study on the use of client-side web security mechanisms,” Ph.D.

dissertation, ARENBERG DOCTORAL SCHOOL, Sep. 2018.

142

https://blog.chromium.org/2013/05/
https://www.imperialviolet.org/2010/01/26/sts.html
https://www.imperialviolet.org/2010/01/26/sts.html

[96] L. Chuat, C. Krähenbühl, P. Mittal, and A. Perrig, “F-PKI: Enabling innovation

and trust flexibility in the HTTPS Public-Key infrastructure,” Aug. 2021.

[97] C. Evans and Palmer, C: Sleevi, R, “RFC7469: Public key pinning extension for

HTTP,” URL: https://datatracker.ietf.org/doc/html/rfc7469, Accessed 28 November

2021, 2018.

[98] “Matplotlib — visualization with python,” https://matplotlib.org/, accessed: 2022-

1-23.

[99] w3c, “Subresource integrity,” https://w3c.github.io/

webappsec-subresource-integrity/, accessed: 2022-3-27.

[100] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is CSP failing? trends

and challenges in CSP adoption,” in Research in Attacks, Intrusions and Defenses.

Springer International Publishing, 2014, pp. 212–233.

143

https://matplotlib.org/
https://w3c.github.io/webappsec-subresource-integrity/
https://w3c.github.io/webappsec-subresource-integrity/

Appendices

A Task Agent TLS Client

The below list contains the TLS 1.0 - TLS 1.2 cipher suites that the Task Agent supported:

� TLS RSA WITH RC4 128 SHA

� TLS RSA WITH 3DES EDE CBC SHA

� TLS RSA WITH AES 128 CBC SHA

� TLS RSA WITH AES 256 CBC SHA

� TLS RSA WITH AES 128 CBC SHA256

� TLS RSA WITH AES 128 GCM SHA256

� TLS RSA WITH AES 256 GCM SHA384

� TLS ECDHE ECDSA WITH RC4 128 SHA

� TLS ECDHE ECDSA WITH AES 128 CBC SHA

� TLS ECDHE ECDSA WITH AES 256 CBC SHA

� TLS ECDHE RSA WITH RC4 128 SHA

� TLS ECDHE RSA WITH 3DES EDE CBC SHA

� TLS ECDHE RSA WITH AES 128 CBC SHA

� TLS ECDHE RSA WITH AES 256 CBC SHA

� TLS ECDHE ECDSA WITH AES 128 CBC SHA256

� TLS ECDHE RSA WITH AES 128 CBC SHA256

� TLS ECDHE RSA WITH AES 128 GCM SHA256

144

� TLS ECDHE ECDSA WITH AES 128 GCM SHA256

� TLS ECDHE RSA WITH AES 256 GCM SHA384

� TLS ECDHE ECDSA WITH AES 256 GCM SHA384

� TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256

� TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256

The below list contains the TLS 1.3 cipher suites that the Task Agent supported:

� TLS AES 128 GCM SHA256

� TLS AES 256 GCM SHA384

� TLS CHACHA20 POLY1305 SHA256

145

	Executive Summary
	Acronyms
	Glossary
	List of Figures
	List of Tables
	Introduction
	Objectives and Scope
	Document Structure
	Security Mechanisms Primer
	HTTP
	HTTP Headers
	HTTP Methods
	HTTPS

	Same Origin Policy
	Cross Origin Network Requests
	Cross Origin Request Sharing

	Selected Security Mechanisms
	SSL/TLS
	Security.txt
	Content Security Policy
	Strict Transport Security
	STS Preloading
	X Content Type Options
	X Frame Options
	Cross Origin Embedder Policy
	Cross Origin Resource Policy
	Cross Origin Opener Policy
	Public Key Pinning

	Summary

	Why Security Mechanisms Exist
	The Need for Security Mechanisms
	Cross Site Scripting (XSS)
	Supply Chain
	Clickjacking
	Entity in the Middle

	Summary

	Data Acquisition
	Ethical Considerations
	Service Degradation
	Exploitation
	Information Disclosure
	Abuse Reports

	Literature Review
	Data Acquisition
	Scanning Targets
	Scanning
	Scanning Frequency
	Monitoring
	Detailed Methodologies

	Methodology
	Requirements
	High Level Design
	Implementation
	Task Parameters
	Task Flow
	Deployment

	Summary

	Security Mechanism Overview
	HTTPS
	TLS
	Security Services

	Security.txt
	Content Security Policy
	Development
	Policy Delivery
	Directives defined in other standards
	Source Lists
	Reporting Directives
	CSP Headers
	Content-Security-Policy-Report-Only

	Strict Transport Security
	Directives

	STS Preload
	X Content Type Options
	Directives

	X Frame Options
	Directives

	Cross Origin Embedder Policy
	Directives

	Cross Origin Resource Policy
	Directives

	Cross Origin Opener Policy
	Public Key Pins
	Public-Key-Pins-Report-Only

	Summary

	Security Mechanism Adoption Analysis
	Scans Overview
	Impact To Available Data For Analysis
	Analysis Methodology
	Domains Unable To Be Scanned

	HTTP(S) Redirection
	Analysis

	TLS
	Purpose Overview
	Analysis
	Summary

	Security.txt
	Purpose Overview
	Scanning
	Parser
	Analysis
	Summary

	Content Security Policy
	Purpose Overview
	Parser
	Analysis
	Summary

	Strict Transport Security
	Purpose Overview
	Analysis
	Summary

	STS Preload
	Purpose Overview
	Parser
	Analysis
	Summary

	X Content Type Options
	Purpose Overview
	Analysis

	X Frame Options
	Purpose Overview
	Analysis

	Cross Origin Embedder Policy
	Purpose Overview
	Analysis

	Cross Origin Resource Policy
	Purpose Overview
	Analysis

	Cross Origin Opener Policy
	Purpose Overview
	Analysis

	Public Key Pins
	Purpose Overview
	Analysis

	Discussion and Closing Remarks
	Discussion
	Objectives Scope Justification
	Scanning
	Analysis
	Future Work

	Conclusions

	Bibliography
	Appendices
	Task Agent TLS Client

