
Bluetooth Low Energy security analysis
framework

Jennifer Ann Janesko

Technical Report

RHUL–ISG–2018–5

5 April 2018

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX
United Kingdom

Student Number: 120232774

Janesko, Jennifer Ann

Title: Bluetooth Low Energy
Security Analysis Framework

Supervisor: Jorge Blasco Alis

Submitted as part of the requirements for the award of the

Msc in Information Security

at Royal Holloway, University of London.

- 2-

This page is intentionally left blank.

Janesko, Jennifer Ann – SRN: 120232774

- 3-

Acknowledgements

I would like to thank my thesis advisor, Dr. Jorge Blasco Alis, of the

Information Security Group at Royal Holloway, University of London. He

provided exactly the right amount of guidance and direction to keep me on

track. He has read multiple drafts of this thesis and provided both constructive

and encouraging feedback. I hope that this thesis meets his expectations in

terms of quality and deliverables.

I would also like to acknowledge and thank those professors and instructors

whose courses gave me the background knowledge to work on (and enjoy) this

project: Dr. David Evans, Dr. Dan Boneh, Dr. Keith Martin and Mr. Po Yau.

I would also like to thank my running partner, Aygul Shugeva. During our

jogs she listened to my discoveries and stresses surrounding BLE testing and

provided technical feedback and ideas that I had not yet considered. It is great

to have an embedded pentester as a friend.

I would like to thank Mike Ryan for taking a minute from his hectic schedule

to clarify the vocabulary pertaining to the BLE’s description of encryption and

MACs. Without his prompt feedback, I would not have been able to move

forward in a timely fashion.

And, last but not least, I want to thank my husband and partner in all things,

Tim Thomas. He gave me the time, space and (some) gadgets for this project,

he listened when I prattled on about specifications, writing and scripting, he

booked the hotel room with a balcony and wifi overlooking the ocean and he

gave me encouragement and chocolate as needed. I’m done, Schatz. Let’s go

climb a mountain.

Janesko, Jennifer Ann – SRN: 120232774

- 4-

Table of Contents

1 Project Introduction...11

1.1 Bluetooth Low Energy...11

1.2 Project scope..14

1.3 Project Limitations...15

1.4 Note on Referencing..16

2 BLE Technology Concepts..17

2.1 Chapter Scope..17

2.2 Overview of the BLE Stack...18

2.3 Application Data Storage...21

2.4 BLE Communication...25

2.4.1 Advertising Channel Communication..27

2.4.2 Data Channel Communication...36

2.4.2.1 LL Control PDUs...39

2.4.2.2 LL Data PDUs..44

2.5 Bluetooth LE Security Features...54

2.5.1 Device address privacy..54

2.5.2 Pairing and bonding...57

2.5.3 Security Modes and Procedures...59

2.6 Chapter Summary..60

3 Generic BLE Attack Surface...63

3.1 Exit and Entry Point Identification..64

3.2 Asset Identification..67

3.3 Identification of External Dependencies...70

3.4 Use Scenario Definition...71

3.5 System-Specific Points for Analysis..72

3.6 Modeling the System...73

3.6.1 Process Flow Type #1: System Initialization.................................73

3.6.2 Process Flow Type #2: Advertising...74

3.6.3 Process Flow Type #3: Scanning...76

3.6.4 Process Flow #4: Initiating Connection...77

Janesko, Jennifer Ann – SRN: 120232774

- 5-

3.6.5 Process Flow #5: Exchanging Data over Data Channels...............79

3.6.6 Process Flow #6: Control Messages..80

3.6.7 Process Flow #7: LE Legacy Pairing/Bonding..............................81

3.6.7.1 LE Legacy Pairing Phase 1..82

3.6.7.2 LE Legacy Pairing Phase 2..83

3.6.7.3 LE Legacy Pairing Phase 3..85

3.6.8 Process Flow #8: LE Secure Pairing/Bonding...............................86

3.6.8.1 Process Flow #8.1: LE Secure Just Works and Numeric

Comparison..86

3.6.8.2 Process Flow #8.2: LE Secure Passkey Entry........................88

3.6.8.3 Process Flow #8.3: LE Secure OOB......................................90

3.6.8.4 Process Flow #8.4: LE Secure LTK, CSRK and IRK............92

3.6.9 Process Flow #9: Link Encryption Process Flow (Encryption and

Authentication)...93

3.6.9.1 MIC (message integrity check)..96

3.6.9.2 Link Encryption..97

3.6.10 Process Flow #10 Authenticating Packets without Encryption. . .97

3.6.11 Process Flow #11: Private Address Generation and Resolution. .98

4 Over-the-Air Threat Model...100

4.1 Spoofing...101

4.1.1.1Spoofing Device Addresses on Advertising Channel............101

4.1.1.2 Spoofing Access Addresses on the Data Channel................103

4.1.1.3 Spoofing the Signature on the Data Channel.......................106

4.1.1.4 Spoofing via Service Offerings..107

4.1.1.5 Spoofing via Application-Specific Mechanisms..................108

4.2 Tampering..108

4.2.1 Tampering and BLE Packet Exchange Protocol..........................109

4.2.1.1 Advertising Channel...109

4.2.1.2Data Channel...109

4.2.2 Tampering and BLE Packet CRC...112

4.2.3 Tampering and the Data Channel PDU BLE Signature...............113

4.2.4 Tampering and Data Channel PDU Encryption/MIC..................114

4.2.5 Tampering and Man-in-the-Middle..114

Janesko, Jennifer Ann – SRN: 120232774

- 6-

4.3 Information Disclosure..116

4.3.1 Data Exposure..117

4.3.1.1 Unencrypted Transmissions...117

4.3.1.2 Pairing BLE Legacy...117

4.3.1.3 Pairing and Bonding BLE Secure..118

4.3.1.4 Side Channel Attacks..119

4.3.1.5 Poor Key Management...120

4.3.2 Privacy...120

4.3.2.1 Data on the Advertising Channel...120

4.3.2.2 Public and Random Static Device Addresses.......................121

4.3.2.3 Private, Resolvable Addresses..121

4.3.2.4 Long Range Surveillance...122

4.4 Elevation of Privileges...123

4.4.1 Exploitation of Exposed Attributes..123

4.4.2 Fuzzing Attacks..123

4.4.2.1 GATT/ATT Profile Fuzzing...124

4.4.2.2 BLE Protocol Fuzzing..124

4.4.3 Injection Attacks..124

4.4.4 Brute Force Attacks and Whitelists..125

4.4.5 Replay Attack...125

4.4.6Reflection/Relay Attack..125

4.4.7 Application Logic Exploitation..128

4.5 Denial of Service...129

4.5.1 Electrical Interference..129

4.5.2 Battery Drain..130

4.5.3 DoS via BLE Protocol/Application Logic...................................130

4.6 Repudiation..131

4.7 Other Threat Models..132

5 Performing a BLE Security Analysis..135

5.1 Pre-Engagement Interactions...136

5.2 Intelligence Gathering...139

5.2.1 Passive Information Gathering..140

5.2.2 Semi-Passive Information Gathering...141

Janesko, Jennifer Ann – SRN: 120232774

- 7-

5.2.3 Active Information Gathering..142

5.3 Threat Modeling..143

5.4 Vulnerability Analysis...143

5.5 Exploitation...147

5.6 Post-Exploitation...148

5.7 Reporting...148

5.8 BLE Security Testing Tools...149

5.8.1 BlueZ..149

5.8.2 hciconfig/gatttool...150

5.8.3 Pygatt...150

5.8.4 NCC Group BLE Python Scripts...151

5.8.5 noble/bleno...151

5.8.6 gattacker...152

5.8.7 BtleJuice...153

5.8.8 PyBT / Scapy...153

5.8.9 Nordic NRF51 dongle..154

5.8.10 Texas Instruments CC2540 Dongle...156

5.8.11 Ubertooth and Crackle...156

5.8.12 Nordic NRF Connect and NRF Toolbox....................................157

5.8.13 LightBlue Explorer [iOS]..158

5.8.14 RamBLE [Android]...158

5.8.15 Android Bluetooth Developer Mode and the Bluetooth HCI

Snoop Log...159

5.8.16 Testing Tool Summary...159

6 The BLE Security Testing Challenge..160

7 Appendix...161

7.1 Appendix 1: GAP & GATT Attribute Definitions...............................161

7.1.1 Peripheral Preferred Connection Parameters...............................163

7.1.2 Characteristic Properties..164

7.1.3 Extended Properties Bit Field..164

7.1.4Client Characteristic Configuration Bit Fields.............................164

7.1.5 Character Configuration Bits...165

7.1.6 Characteristic Presentation Format Attribute Value Fields..........165

Janesko, Jennifer Ann – SRN: 120232774

- 8-

7.2 Appendix 2: Advertsing Channel Air Interface Packet Details...........165

7.2.1 Specification References..165

7.2.2 Access Address Value for the Advertising Channel.....................166

7.2.3 Advertising Channels...166

7.2.4 Advertising PDU Structure..166

7.2.5 Advertising PDU Header Structure..166

7.2.6 Table Summary of Advertising PDU Type Descriptions.............167

7.2.6.1 LLDATA of the CONNECT_REQ Advertising PDU..........169

7.2.7 Advertising Data Payload Structure...170

7.2.8 AD Types and AD Data Descriptions in AD Structure................171

7.2.8.1 Flag Values...173

7.2.8.2 LE Role Values...174

7.3 Appendix 3: Data Channel Air Interface Packet Details.....................174

7.3.1 LL Control PDU Details..174

7.3.1.1 LL Control PDU Structure...174

7.3.1.2 LL Control PDU Operations..175

7.3.1.3 Features Supported in the Link Layer for Over-the-air

Communication..177

7.3.2 LL Data PDU (Attribute PDU) Details..178

7.3.2.1 Attribute PDU Structure...178

7.3.2.2Attribute PDU Details...179

7.3.2.3 Error Codes for Attribute PDU Opcode 0x01......................181

8 References...182

Janesko, Jennifer Ann – SRN: 120232774

- 9-

Index of Figures

Climate Management Example..12

Screen capture of packet exchange using Texas Instruments SmartRF Packet

Sniffer...17

BLE Stack...18

Physical host-controller configurations [Townsend]..20

Example of a BLE service enumerated using a pygatt script...........................23

PASS Characteristics [KOY15]..24

Link Layer Packet Format [BLE-LL,38]...26

Advertising PDU Structure [BLE-LL, 39]...28

Advertising PDU Header Structure [BLE-LL, 40]..29

Structure of Advertising Data [BLE-GAP, 389]...32

Example of a connection procedure [BLE-LL, 144]..36

Logical representation of a data channel PDU [BLE-LL, 46].........................38

Logical representation of LL control PDU [BLE-LL, 48]..............................39

Attribute PDU Format [BLE-ATT, 478]..44

Device Address Formats [BLE-LL, 43-46]..55

Capture of sniffed BLE packets...61

BLE Exit and Entry Points...64

Initialization: Setting a random address [BLE-LL,134]...................................73

Initialization: Adding entries to whitelist [BLE-LL,134].................................74

Initialization: Configuration of a resolving list [BLE-LL,135]........................74

Advertising: One to Many Communication...75

Advertising: Internal Flows in Advertiser for Undirected Advertisements

[BLE-LL, 137]..76

Scanning: Scanner Issues Scan Requests in Response to Advertisements

[BLE-LL, 140]..77

Initiating Connection: Scanner Moves to Initiator State..................................78

Initiating Connection: Connection Request and Data Channel Establishment

[BLE-LL, 144]..78

Initiating Connection: Master with Multiple Slaves..79

Janesko, Jennifer Ann – SRN: 120232774

- 10-

Data Exchange: Both Peripherals Act as Client and Server [BLE-LL, 148]. . .80

Control Messages: Master Resets Connection Parameters [BLE-LL, 149].....80

Example of a Disconnect Flow (Initiated by Either Master or Slave) [BLE-LL,

157]...81

Phase 1 pairing message exchange [BLE-SMP,661]..82

LE Legacy Phase 2 Pairing Process Flow [BLE-SMP, 661-663].....................83

Phase 4 LE Legacy Pairing - Exchange of Cryptographic Material [BLE-

SMP,678]..85

LE Secure Just Works and Numeric Comparison [BLE-SMP,666].................87

LE Secure Passkey Entry [BLE-SMP, 670]...89

LE Secure OOB [BLE-SMP, 674]..91

LE Secure LTK establishment [BLE-SMP, 676-677]......................................92

Link session encryption establishment [BLE-LL, 95-98]................................94

Fields used to calculate the MIC [BLE-SMP,167]...96

Fields to be encrypted [BLE-LL, 167]...97

Relationship of SignCounter and PDU Payload [BLE-GAP, 381]..................98

Resolvable private address AdvA format [BLE-SMP, 45]...............................98

hopInterval Calculation[RYA13b]..105

channelsHopped Calculation[RYA13b]...105

Example of Packet Exchanges on a Connection [BLE-LL, 100]...................111

Logical Representation of a BLE Man-in-the-Middle Attack........................115

Debug Diffie-Hellman Values for LE Secure [BLE-SMP, 615].....................119

Logical Organization of a Reflection Attack..126

Examples of common Bluetooth dongles...150

Nordic NRF51 Dongle...154

Texas Instruments 2540 Sniffer..156

Ubertooth sniffer..157

[BLE-LL, 39]..166

[BLE-LL, 40]..166

LLData Fields [BLE-LL, 44]...169

AD Structure [BLE-GAP, 389]..170

Logical representation of LL control PDU [BLE-LL, 48]............................174

Attribute PDU Format [BLE-ATT, 478]...178

Janesko, Jennifer Ann – SRN: 120232774

- 11-

1 Project Introduction

1.1 Bluetooth Low Energy

Bluetooth low energy (BLE) is a wireless communication technology that

allows the short range, wireless exchange of communication between devices.

It is a special type of Bluetooth that was developed by the Bluetooth SIG with

the specific goal to operate as efficiently as possible so that devices conserve

battery power. It was introduced in version 4.0 of the Bluetooth specification.

At the start of this project, the Bluetooth specification is at version 4.2. At the

time of writing, the Bluetooth SIG started promoting version 5.0, although it

had not officially been released.

Traditionally, Bluetooth has been used as a technology to organize devices

wirelessly into networks called “piconets”. These piconets are often described

as “ad hoc” because they can be built up and torn down quickly. “Ad hoc” has

the connotation that the use of Bluetooth are impermanent and possibly only

relevant for non-serious applications such as exchanging pictures between to

mobile phones. But, the Bluetooth SIG has been marketing its Bluetooth low

energy technology as a solution for Internet of things communications [B516].

Internet of things, or “IoT”, is a term that is used in the press, but is not clearly

defined. Zielgedorf, et. al., outline a reference model by which IoT

components can be categorized. IoT is described as “anyone and anything

[that] is interconnected anywhere at any time via any network participating in

any service.” While this definition seems overly broad, the authors refine it by

describing five1 types of entities that participate in an IoT application and their

related information flows.

1 Ziegeldorf, et.al., actually introduce four entities where “subjects” and “recipients” are

combined into one entity under the category of “humans”. This is appropriate for their

paper because their research focuses on the privacy challenges embedded in the use of IoT

devices by human individuals in everyday life. This paper will use IoT in a broader sense

to include subjects and recipients that are non-human which is fitting to smart home

technologies and manufacturing automation technologies.

Janesko, Jennifer Ann – SRN: 120232774

- 12-

• Smart things: These are everyday devices that have been augmented

with ICT components to collect data and share this data via services.

• Subjects: These are the entities from or about which smart things

collect data for reporting.

• Services hosted on backends: These are services that collect data from

the smart things and process that data for use in decision making.

• Recipients: These are the entities that receive feedback and

information from the services on the backend.

• Infrastructure: These are the networks that allow communication

between smart devices and their backend services. [JHZ13]

Take as a simple example, the logical representation of a smart climate

management system in figure 1.

This could be considered an IoT example. In the example there are smart

things, the thermometers and motion sensors, that collect data from their

subjects. In this case, the thermometers’ subject is the room temperature. The

motion sensors’ subject is the (human) movement in the room. These smart

devices communicate their data to the client, i.e., the backend client

Janesko, Jennifer Ann – SRN: 120232774

Figure 1: Climate Management Example

- 13-

management system. This system reports statistics to an on-line web

application which is viewable by the owner of the building. Based on input

from the sensors and the climate and usage statistics over time, the climate

management system determines whether to modify the climate controls in

each individual room. This type of system has the advantages of being

environmentally friendly as well as cutting heating costs.

In the example above, the infrastructure is the network that is set up between

the sensors and the server and the server and the external web application.

These infrastructures most likely rely on different protocols for

communication. The infrastructure that provides a connection to the Internet

is often TCP/IP-based. For manufacturing automation, the long-distance

communication protocol may be specific to the application. The

communication between the smart things and the server usually take place

over a wireless protocol.

Wireless protocols provide a few advantages over cabled protocols. Setting up

a wireless communications network is usually less costly and requires less

effort for physical installation. In addition to this, wireless devices can be

installed in areas where it might be a challenge to install cabling. In the IoT

market, there are a small number of wireless protocols that are often

mentioned: Zigbee, BLE and Thread [VT14]. Zigbee is a proprietary protocol

that has been on the market since 2004. Thread is a newcomer (2014) and is

backed by IT-giants like Google and NXP. BLE came to the market in 2013,

was delivered on 165 million devices by 2014 and is expected to reach 1.2

billion devices by 2018. [RQ15]

Initially, BLE was known for being the communication protocol for smart

devices like Apple’s iBeacon or for fitness trackers such as a Fitbit. But,

BLE’s low power consumption has also made it ideal for health monitoring

devices and home automation. The fact that BLE is an open standard coupled

with its prevalence on users’ mobile devices has helped its proliferation

[PMGL16][GL16]. In 2016, there was a big move in the controller industry to

incorporate BLE for use in applications where reliability is required. Silicon

Labs, NXP and Cypress have incorporated BLE into their PSoC offerings

Janesko, Jennifer Ann – SRN: 120232774

- 14-

[SLG16][JY16][PM16][GL16]. Open RTOS implemented a BLE stack

[RM16]. Telit, an important competitor in the automation market, acquired a

BLE stack in January 2016 [TAW16]. They provide equipment in the fields of

condition monitoring, industrial automation, predictive maintenance, asset

tracking, supply chain management and telematics and fleet management.

BLE is positioned to be a core IoT infrastructure component. And, whether is

it used for tracking personal fitness, manging a home or managing factory

automation, the question of BLE’s security must be considered when

developing a device. At the time of this project’s writing, there has been little

released to provide guidance with respect to IoT. OWASP has an emerging

security testing guide for IoT, but at the time of writing, it focuses on the

communication between an IoT device and an Internet service. The NIST has

provided a set of security guidelines for the use of Bluetooth. These

guidelines do include BLE, but the guidelines refer to BLE 4.0 [MSKS13]. In

addition to this, there has been piecemeal research into the security aspects of

BLE (see Chapters 4), but no structured approach to testing the security of a

BLE device has been developed.

1.2 Project scope

The goal of this project to to provide a security analyst with the necessary

information to perform a comprehensive security analysis of a device that uses

Bluetooth Low Energy (BLE) for communication. To accomplish this task the

paper is broken down into the following major sections:

• Introduction to the Bluetooth low energy concepts

• Enumeration of the generic Bluetooth low energy attack surface

• Development of a generic Bluetooth low energy threat model

• Outlining of an approach to BLE security testing

Although the Bluetooth Low Energy communication can be regarded as

relatively simple, there is a considerable amount of detail in the specification

that is relevant for a security review. To preserve the readability of this paper,

Janesko, Jennifer Ann – SRN: 120232774

- 15-

the core body of the text in chapter 2 will be dedicated to elucidating core

BLE concepts to the reader that were deemed relevant for security. The

appendix of this document will contain a series of tables and listings that will

provide necessary detail if a reader plans to use this document as a framework

for an actual testing scenario.

1.3 Project Limitations

There are three modes of Bluetooth: BLE, EDR/BR and EDR/BR/BLE.

• BLE, as mentioned above, is Bluetooth Low Energy. BLE was

introduced in the 4.0 Bluetooth specification. BLE is also marketed as

“Bluetooth Smart”.

• EDR/BR is the version of Bluetooth that has been available since the

first release of the Bluetooth specification. EDR/BR is often simply

referred to as “Bluetooth” or “classic Bluetooth”. EDR/BR has enough

differences from BLE on the host and controller that its

communication is not compatible with BLE.

• EDR/BR/BLE devices have both the EDR/BR and BLE stacks built

into them. These are also referred to as “dual mode” devices.

This project will only focus on providing a framework for BLE mode testing.

EDR/BR and EDR/BR/BLE modes are not in scope for this project. That

being said, there is a great deal of overlap in the specification between BLE

and EDR/BR modes, and there has been significant research into the security

of EDR/BR. Where applicable, results from EDR/BR research will be taken

into consideration for this paper.

In addition to this, the version of the Bluetooth specification that was available

at the beginning of this project was version 4.2. This project will focus on the

analysis of the contents of the 4.2 specification.

Janesko, Jennifer Ann – SRN: 120232774

- 16-

1.4 Note on Referencing

Throughout the course of this work, the type of in-text referencing is used

where the first 3 letters of the author’s name is referenced plus the last two

digits of the year of the referenced publication. No page number is provided

with this type of referencing.

It is the author’s intent to make the Bluetooth specification more accessible for

others, and when referencing the Bluetooth specification, the following

conventions will be used.

• BLE-LL refers to volume 6 part E of the specification.

• BLE-GAP refers to volume 3 part C of the specification.

• BLE-ATT refers to volume 3 part F of the specification.

• BLE-GATT refers to volume 3 part G of the specification.

• BLE-SMP refers to volume 3 part H of the specification.

• BLE-Supp refers to the Core Specification Supplement version 4

(CSS)

When the specification is referenced, the page numbers of the respective

volumes will be included so that it is easier to locate the information and gain

further background information.

Janesko, Jennifer Ann – SRN: 120232774

- 17-

2 BLE Technology Concepts

2.1 Chapter Scope

The first step to performing a security analysis of an application built on top of

BLE is to understand the functional behavior of the application. Further steps

involve evaluating how that application interacts with the underlying software

and hardware for communication and data processing. A thorough

understanding of how data is stored, accessed, manipulated and communicated

provides an analyst with the tools to know where to look for security

vulnerabilities in both the application logic and the underlying technologies.

The BLE specification is embedded in a document of over 1000 pages. It is

broken up into different sections corresponding primarily to the

communication stack. In the specification, both BLE and EDR/BR concepts

are interspersed. It is common to read a section dedicated to one part of the

stack only to find that it references and relies upon other parts of the stack.

The sheer volume of information and its interdependencies in the specification

makes it difficult to obtain a quick overview of the technology. For a security

analyst, time is often a luxury that is not available when a customer has time

pressures of getting a product out to the market. There are plenty of tools that

can assist with and expedite analysis, but they produce data like that in the

packet capture in figure 2.

Janesko, Jennifer Ann – SRN: 120232774

Figure 2: Screen capture of packet exchange using Texas Instruments SmartRF Packet Sniffer

- 18-

While there is a great deal of information here, and it is helpfully highlighted,

it still needs to be interpreted so that an effective security analysis can occur.

This chapter provides an overview of BLE technology to the extent that the

different components of of the packet capture above can be interpreted. This

requires an overview of the BLE protocol stack, the interdependencies

between the “layers” in the stack and the communication modes and

procedures that facilitate the exchange of data. Special care is given to the

introduction and utilization of key concepts and vocabulary from the

specification to assist the analyst in further work with other BLE information

sources.

2.2 Overview of the BLE Stack

BLE is a technology that supports the processing and communication of data.

It is organized into a stack that is reminiscent of the OSI stack. The BLE stack

is comprised of eight separate, but interdependent components, that can be

logically represented as shown in figure 3.

Typically, as will be discussed later in the chapter, the link layer and physical

layers reside on one chip called the “controller. The L2CAP, GAP, SM, ATT

and GATT layers reside on a separate chipset called the host. A brief

description of each layer is specified in the following table. The vocabulary

Janesko, Jennifer Ann – SRN: 120232774

Figure 3: BLE Stack

- 19-

that is used in the table is typical of the BLE specification, and it will be

clarified throughout the remainder of this chapter.

Layer Description

Physical The physical layer describes the technical radio components

needed for physical, over-the-air communication.

Link

Layer

The link layer defines the packet structure for over-the-air

communication, defines core PDUs for data and control

communication, performs cryptographic functions and supports

whitelists and filtering policies. This part of the specification

introduces the following states: standby, scanning, advertising,

initiating, connection. It also introduces the following roles:

master, slave.

HCI HCI stands for host controller interface. The HCI provides a

standard interface to communicate between the host and the

controller.

L2CAP L2CAP stands for logical link control and adaptation protocol.

L2CAP establishes advertising and data channels, packages

PDUs from the host for processing by the controller and

unpackages packets from the controller for use by the host.

GAP GAP stands for generic access protocol. GAP provides a

foundation for the communication of attributes, defines control

modes and procedures for advertising communications and

serves as the foundation for security. GAP introduces the follow

roles: broadcaster, observer, peripheral, central.

SMP SMP stands for security manager protocol. SMP defines pairing,

bonding and the requisite cryptographic key material and key

distributions. Additionally, it specifies how private resolvable

addresses function.

ATT ATT stands for attribute protocol. ATT defines attributes and

describes the communication of attributes via attribute protocol

PDUs. ATT introduces the following roles: server, client.

Janesko, Jennifer Ann – SRN: 120232774

- 20-

Layer Description

GATT GATT stands for generic attribute profile. GATT defines how

attributes are organized into primary and secondary services. It

also specifies core attributes. Further it specifies features that

facilitate attribute communication and their relationships to ATT

attribute protocol PDUs.

As seen in the diagram above, the stack is split up into host and controller.

The controller normally supports operations that have real-time requirements.

The host supports the application and its supporting data. It is the layer of the

stack that is closest to the user. Operations in the host are often implemented

in software, rather than hardware.

There are several places in the specification where the host sends control data

to the controller. This allows the controller to make decisions about control

communications. This strategy is used because controllers are implemented to

generally perform more efficiently than the host. This strategy helps to reduce

the energy consumption requirements involved in communication.

According to Townsend, et. al., there are three primary physical relationships

that can be set up between host and controller: system on chip (SOC), dual IC

over HCI and dual IC connectivity device. These are logically represented in

Figure 4.

Janesko, Jennifer Ann – SRN: 120232774

Figure 4: Physical host-controller configurations [Townsend]

- 21-

In sytem on chip configurations the entire Bluetooth stack and the application

are located on one chip. This type of configuration is inexpensive, and

normally built on low-powered hardware. This type of configuration is

common in devices such as sensors.

Dual IC over HCI is a configuration where the host and the controller are

separated on two different integrated circuits, and communication takes place

over the standard HCI interface. HCI is defined as part of the Bluetooth

specification and decouples the communication between host and controller so

that different controllers can be paired with different hosts without

modification. This provides flexibility in component selection and allows the

host to be tied a more resource-intensive CPU. This is a configuration

common in mobile phones and tablets.

Dual IC connectivity device is a configuration where the application

communicates with the host over a proprietary protocol. This tends to be used

in cases where BLE needs to be added to a device, but the designers want to

do this without disrupting the architecture of the device.

2.3 Application Data Storage

BLE is a protocol that is primarily concerned with the exchange of application

data. This data resides in the host and is either shared via a BLE channel, over

a user interface or transferred via some other network connection to another

process interface. This chapter describes how data is stored in the host.

BLE data are stored as “attributes” on a BLE device. Attributes are defined in

the ATT layer, and they are comprised of four different components: an

attribute handle, an attribute UUID, the attribute value and a set of attribute

permissions.

• Attribute handle: This is a two octet, unique ID for an attribute on a

BLE device.

Janesko, Jennifer Ann – SRN: 120232774

- 22-

• Attribute type: This is a 2 or 16 octet (unique universal identifier)

UUID that is specified by a definition of the attribute by a higher level

protocol or, in special cases, by the BLE specification itself.

• Value: This is the value of the attribute.

• Permissions: Specifies the permissions for the attribute: broadcast,

read, write without response, write, notify, indicate, authenticated

signed writes and extended properties.

Attributes may contain the values that are communicated over-the-air with

peer devices. They may also contain values that are useful only for the local

application.

The GATT layer provides more meaning behind the different kin,ds of

attributes that reside on a device that contains attributes, i.e. a server. There

three major types of attributes: services and characteristics. GATT services

can have three major components.

• Service declaration- an attribute that indicates the kind of service.

• Includes (optional): an attribute with a UUID that references other

supporting services on the server.

• Characteristics

Characteristics are defined by a variety of attributes: characteristic

declarations, characteristic values and, optionally, characteristic descriptors.

• Characteristic declaration – attribute that indicates the type of the

characteristic. A characteristic declaration contains:

◦ the handle of the characteristic value,

◦ the UUID that describes the characteristic value,

◦ charactertistic permissions flags that indicate how the characteristic

may be used: broadcast, read, write without response, write, notify,

indicate, authenticated signed writes, extended properties.

Janesko, Jennifer Ann – SRN: 120232774

- 23-

• Characteristic value – attribute that contains the value of the

characteristic.

• Characteristic descriptors (optional) – attribute that specifies further

permissions and/or formatting requirements for the characteristic

value.

In figure 5 there is an example of an instance of the generic access service and

its associated characteristics enumerated with a script based on the pygattlib

Python library.

In the left column are the handles which provide an index for looking up the

different attributes, and in the right column the contents of the attributes are

represented in little endian format. The following list provides some examples

of the service contents.

• Handle 0x1 – This attribute contains a UUID of 1800. This indicates

the start of a generic access service.

• Handle 0x6 – This attribute is a characteristic declaration (or

descriptor) and contains 3 parts.

◦ 022a – At the end of the characteristic declaration is a UUID of

2a02. This UUID represents the peripheral privacy value attribute.

Janesko, Jennifer Ann – SRN: 120232774

Figure 5: Example of a BLE service

enumerated using a pygatt script

- 24-

◦ 0700 – In the middle of the characteristic declaration is the value

0007. This value represents the handle value of the characteristic

being defined by the declaration.

◦ 0a – At the beginning of the hex value is 0a. This value represents

the permissions for the value stored at the handle 0x7. In this case

there are read and write permissions.

• Handle 0x7 – This is the actual value of the characteristic.

There are two types of services: primary and secondary. Primary services are

services that are exposed to peer devices. Secondary services are typically

services that are used by other other services.

GATT services are typically specified outside of the BLE specification. For

compatibility between devices, there are publicly available service definitions

maintained under https://www.bluetooth.com/specifications/adopted-

specifications.

The Phone Alert Status Service (PASS), for example, specifies a primary

service for the exchange of data concerning the ringer state of a mobile phone

and allows the update of the ringer. It contains no included services, but it

specifies three characteristics as represented in figure 6.

Janesko, Jennifer Ann – SRN: 120232774

Figure 6: PASS Characteristics [KOY15]

- 25-

As can be seen in figure 6, two of the characteristics, alert status and ringer

setting, are required. Ringer control point is optional. For each characteristic,

the PASS specification also defines the characteristic property and the

characteristic descriptor attributes.

To gather the permissions for this service and its accompanying

characteristics, it is necessary to review the PASS specification and its

accompanying document, the “Phone Alert Status Profile” (PASP). In the

PASS specification, the alert status and ringer setting are defined as read only.

Ringer control point is defined as writable. In the PASP document,

authentication is required to access service and its characteristics.

Authorization is not specified.

The service specifications stop just short of providing all of the information

needed for implementing the attributes that make up the service and its

characteristics. As specified above, attributes must have a type which is a

UUID. For standardized service and characteristic specifications, the UUIDs

are fixed. An up-to-date listing can be found under the following web

addresses.

• Services: https://www.bluetooth.com/specifications/gatt/services

• Characteristics:

https://www.bluetooth.com/specifications/gatt/characteristics

Appendix 7.1 provides a list of common service and characteristic UUIDs and

a description of each.

For companies that define their own, proprietary services, they can define their

own UUIDs for their services and their characteristics. These new UUIDs

must be requested from the ITU [ITU16].

2.4 BLE Communication

One of the key functionalities of BLE is the definition of how data is

communicated over-the-air. This requires the collaboration of all layers of the

stack.

Janesko, Jennifer Ann – SRN: 120232774

- 26-

Data transmission and reception occurs at the physical layer. BLE operates in

the 2.4000 GHz-2.4835GHz frequency ranges. BLE uses Gaussian shift

keying modulation (GFSK) at a 1MBit/second data rate. To withstand

interference, BLE supports frequency hopping over 40 physical channels.

Information is exchanged between two devices in the form of “air interface

packets”. The link layer defines the air interface packet structure which is

represented in figure 7.

These packets are exchanged over two type of channels: advertising or data.

Each type of channel has its own dedicated RF channels. Advertising

channels are RF channels 0, 12 and 39. The data channels are RF channels 1-

11 and 13-38. These channels have “channel indexes” which often show up in

literature. The data channel index range goes from 0-37. The advertising

channel range is from 37-39.

The air interface packet contains four components. These components are

populated based on which channel they are being sent on.

• Preamble – This is a fixed series of 1s and 0s that indicates to a BLE

device that a message is starting.

• Access Address – This is a field that can take two types of values.

◦ On the advertising channels, the address is a fixed value of

0x8E89BED6.

◦ On data channels the address represents a connection identifier and

is generated at the point that a connection is established.

Janesko, Jennifer Ann – SRN: 120232774

Figure 7: Link Layer Packet Format [BLE-LL,38]

- 27-

• PDU – This is a protocol data unit. This is the payload of the packet.

There are two types of PDUs supported by the linked layer: LL data

PDUs and LL control PDUs.

◦ LL data PDUs contain data from attributes stored in GATT

services.

◦ LL control PDUs contain data to control the data flow between two

peer devices.

• CRC – This is a cyclical redundancy check value. The CRC

polynomial is x²4+x +x +x +x³+x+1. ⁹ ⁶ ⁴

◦ The CRC’s shift register is 0x555555 when a device is

communicating on advertising channels.

◦ This value is set to a different value during a CONNECT_REQ LL

control PDU when two devices enter into a connection and

communicate over data channels.

The characteristics and communication exchanges that occur over the

advertising and data channels are quite different. The next two major sections

will outline the kinds of communication that can occur over these channels.

2.4.1 Advertising Channel Communication

Advertising channels support three different kinds of activities: advertising,

scanning and initiating.

• Advertising is where a peer device called an “advertiser” transmits an

air interface packet without an established connection to another peer.

These packets can either be broadcast messages meant for any listener,

or they can be directed advertisements meant for specific peer devices.

This packet will possibly contain one or two different types of data:

◦ data that can be received and processed by another peer, and/or

◦ an indication that a connection and/or a scan can be initiated.

Janesko, Jennifer Ann – SRN: 120232774

- 28-

• Scanning is where a peer device, called a scanner, listens for

advertisement information. A scanner can scan actively or passively.

◦ Passive scanning is when the device listens for advertising packets,

but it does not respond to those packets in any way.

◦ Active scanning is when the device listens for advertising packets,

and when it receives advertising packets, it returns a scan request

for more information. An advertiser can only respond to one scan

request.

• Initiating is where a peer device has received an advertisement that

indicates a connection can be established, and it sends a request to the

advertiser to establish a connection. The device that initiates a

connection is called the “initiator”.

The remainder of this subsection will focus on describing the different formats

of advertising channel air interface packets and the related BLE device

configurations required to support these activities.

As outlined in section 2.4, the air interface packet is composed of four fields:

preamble, access address, PDU and CRC. The access address of all air

interface packets on the advertising channel for all activities is 0x8E89BED6.

All advertising PDUs of air interface packets have the same general structure

which is represented in figure 8. The activity that is being executed over the

advertising channel is determined by the advertising PDU itself.

The advertising PDU has a header and a payload. The header has a fixed

format as represented in Figure 9.

Janesko, Jennifer Ann – SRN: 120232774

Figure 8: Advertising PDU Structure [BLE-LL, 39]

- 29-

As can be seen in the figure above, the header has six discrete sections. These

are described in the table below.

PDU

Component

Description

PDU Type This a bit description that indicates what sort of advertising

PDU is being transmitted.

RFU Reserved for future use.

TxAdd This value of TxAdd is relative to the PDU type. It usually

refers to an address field payload and differentiates between

a public or a random address.

• 0=public

• 1=random

RxAdd This value of RxAdd is relative to the PDU type. It usually

refers to an address field payload and differentiates between

a public or a random address.

• 0=public

• 1=random

Length This is the number of octets contained in the payload.

RFU Reserved for future use.
[BLE-LL, 40]

There are only a handful of PDU types. These are summarized in the next

table. Appendix 7.2.6 provides more detail for the specific contents of the

each PDU type payload.

Janesko, Jennifer Ann – SRN: 120232774

Figure 9: Advertising PDU Header Structure [BLE-LL, 40]

- 30-

PDU

Type

PDU Name Description

0000 ADV_IND • Advertiser allows connections.

• Payload contains advertiser’s device

address and advertising data.

0001 ADV_DIRECT

_IND

• Advertiser allows connection connections

from a specific peer.

• Payload contains advertiser’s device

address and the desired initiator’s device

address.

0010 ADV_NONCO

NN_IND

• Advertiser does not allow connections.

• Payload contains the advertiser’s device

address and advertising data.

0101 CONNECT_RE

Q

• This is an initiator’s request to establish a

connection with the advertising device.

• Payload contains initiator’s device address,

the advertiser’s device address and logical

link connection information.

0110 ADV_SCAN_I

ND

• Advertiser allows scans.

• Payload contains advertiser’s device

address and advertising data.

0011 SCAN_REQ • This is a scanner’s request to get more

information after receiving an

advertisement.

• Payload contains scanner’s device address

and the advertiser’s device address.

0100 SCAN_RSP • This is an advertiser’s response to a

SCAN_REQ.

• Payload contains advertiser’s device

address and advertising data (the scan

response data).
[BLE-LL, 41-45]

Janesko, Jennifer Ann – SRN: 120232774

- 31-

As can be seen in each payload description, there is at least one device address

that is specified. The device addresses, as discussed earlier, can be either

public or private. These addresses serve four different purposes:

• to allow two peer devices to identify each other for connection

purposes

• to allow a peer to direct advertising events to specific peer devices

• to allow a scanner to request scan data from a specific peer

• to and to allow whitelist filtering in the link layer.

Whitelists are lists are lists of target device addresses that are stored in the link

layer of the BLE device. They are populated by the host, and they provide a

way for the device to identify which devices can perform certain events over

the advertising channel. Whitelists are used in conjunction with policies.

Policies specify the events that the peer devices in the whitelist may perform.

There are three possible whitelist policies:

• Advertiser policy: relevant to advertiser role. This specifies which

devices may initiate a connection with the advertiser.

• Scanner policy: relevant to the scanner role. This specifies which

advertisers’ packets may be processed by the scanner.

• Initiator policy: relevant to the the initiate role. This specifies which

advertisers’ connectible advertisements can be processed to establish a

connection.

In addition to the devices addresses contained in the payload, there can also be

advertising data present in the ADV_IND, ADV_DIRECT_IND,

ADV_NONCONN_IND and the ADV_SCAN_IND PDUs. Advertising data

comes from the host, and it is defined by the GAP layer. A payload can

contain more than one piece of information in the advertising data, although it

is limited to a total number of 31 octets of total data. An advertising data field

is represented in figure 10.

Janesko, Jennifer Ann – SRN: 120232774

- 32-

As show in figure 10, there are two major parts to advertising data: a

significant part and an insignificant part. Advertising data is a fixed length of

31 octets. The significant part of advertising data is the part that is populated

with actual data. The insignificant part is populated with zeros.

The significant part contains “AD structures”. These are simply length and

data field pairs. The length field specifies how many octets the data in the

next bits take up, and the data follows the length declaration directly. The data

is then broken down into an AD Type field and an AD Data field pair. The AD

Type field indicates the type of data that is contained in the field. The AD

Data is the actual data value.

Advertising data has a core set of possible values defined in a supplement to

the Bluetooth specification. Additional types can be defined outside of the

specification in a different profile. The AD Type field is a hex ID of one octet

in length. An up-to-date list of these values can be found under the following

web address:

• https://www.bluetooth.com/specifications/assigned-numbers/generic-

access-profile

A list of the core advertising data types can be found in appendix 7.2.8 .

Janesko, Jennifer Ann – SRN: 120232774

Figure 10: Structure of Advertising Data [BLE-GAP, 389]

- 33-

In addition to providing the format of the advertising data, the GAP layer also

introduces new vocabulary to represent the roles played by devices in the link

layer advertising, scanning and initiating states. These new roles are

broadcaster and observer. Broadcaster roughly corresponds to advertiser and

observer corresponds to scanner. A device that advertises information is said

to be in “broadcast mode” and a device that actively or passively scans for

data is said to be performing the “observation procedure”.

In addition to the broadcast mode and observation procedure, there are also

“discovery” modes and procedures. These modes and procedures have to do

with the visibility of one peer device to other peer devices. A BLE device

normally only supports a subset of these modes and procedures.

To describe these modes and procedures, the specification introduces two

additional roles: “peripheral” and “central”. On the advertising channel,

peripherals are devices that can accept connections, and they typically

correspond to the advertiser in the link layer. On the advertising channel,

centrals are devices that scan for peer device advertisements, issue scan

requests or initiate connections.

The following table summarizes the discovery modes and procedures that are

available on the advertising channel.

Mode /

Procedure

Description

Non-

discoverable-

mode

• Peripheral sends: non-connectible advertising events,

scannable undirected advertising events or no

advertising events.

Limited-

discoverable-

mode

• Peripheral sends: non-connectible advertising events,

scannable undirected advertising events or

connectible undirected advertising events.

• Peripheral is only available for a limited time.

• Receives requests from central performing: limited-

discovery-procedure or general discovery procedure.

General- • Peripheral sends: non-connectible advertising events,

Janesko, Jennifer Ann – SRN: 120232774

- 34-

discoverable-

mode

scannable undirected advertising events or

connectible undirected advertising events.

• Peripheral generally available for an extended period

of time.

• Receives requests from central performing: general

discovery procedure.

Limited-

discovery-

procedure

• Central can receive advertising and scan response

data only from peripherals in the limited-

discoverable-mode.

General-

discovery-

procedure

• Centrals can receive advertising and scan response

data from peripherals in either limited-discoverable-

mode or general-discoverable-mode.
 [BLE-GAP, 350]

Once an peripheral has been discovered by a central, the central must make the

decision whether or not to initiate a connection. As with discovery, there are

set of “connection” modes and procedures defined in the GAP layer to support

connection initiation. The following table provides a summary of the

connection modes and procedures.

Mode /

Procedure

Description

Non-

Connectible

Mode

• A peripheral in this mode will not accept

connections from peer devices. Peripheral in this

mode may send non-connectible undirected

advertising events or scannable undirected

advertising events.

Directed

Connectible

Mode

• A peripheral in this mode accepts connection

requests from a known central.

• To initiate a connection, a central will perform

either the auto connection establishment procedure

or the general connection establishment procedure.

Undirected

Connectible

• A peripheral in this mode accepts connection

requests from any central.

Janesko, Jennifer Ann – SRN: 120232774

- 35-

Mode /

Procedure

Description

Mode • To initiate a connection, a central will perform

either the auto connection establishment procedure

or the general connection establishment procedure.

Auto

connection

Establishment

Procedure

• The host of the central configures the link layer to

automatically establish a connection to a specific

set of peripherals specified in the link layer

whitelist which are matched with the initiator

policy.

General

Connection

Establishment

Procedure

• The central establishes a connection to a specific set

of peripherals specified in the link layer whitelist.

In this case, the initiation of the connection

originates in the host.

Selective

Connection

Establishment

Procedure

• The central establishes a connection with a specific

set of peripherals specified in the link layer white

list. In this case, the initiation of the connection

originates in the host, and the host specifies the

connection settings.

Direct

Connection

Establishment

Procedure

• The central establishes a connection to a specific

peripheral. The host determines the peripheral

address and ignores the whitelist.

[BLE-GAP, 357]

Connection procedures are relatively simple, and as can be seen in the table

above, vary in only minimal ways. Figure 11 shows an example

communication flow where a connection procedure is initiated, and a

connection is established.

Janesko, Jennifer Ann – SRN: 120232774

- 36-

The connection procedure components are highlighted yellow. They consist of

the host’s interaction with the link layer to prepare for the appropriate type of

connections, the central link layer’s processing of an advertisement with

connection parameters and the transmission of an air interface packet with a

CONNECT_REQ PDU.

Once this air interface packet has been issued, the central goes from the

initiated state to the the connected state. Upon receipt of the air interface

packet, the peripheral processes the connection parameters contained in the

PDU, and moves from the advertising state to the connected state. All

communication between the two peers then occurs over the data channels.

2.4.2 Data Channel Communication

Once a connection has been established between two peer devices, all

communication follows over the data channels. The conditions for this

communication are established by the CONN_REQ PDU on the advertising

channel. Once a connection has been established, the two devices move to the

link layer state “connected”. On the link layer, the device that initiated the

connection is called the “master” and the device that accepted the connection

is called the “slave”.

Janesko, Jennifer Ann – SRN: 120232774

Figure 11: Example of a connection procedure [BLE-LL, 144]

- 37-

Ten values are sent via the CONN_REQ PDU that define the connection

parameters. These values define timing for communication and the channels

that will be used. Six of those values bear mentioning at this point to help

with the understanding of how the data channel functions and are described in

the table below.

Para-meter Description

AA Access address. This is the address that the slave will use

to identify the master on the link.

CRCinit This is the new initialization value that will be used to

calculate the CRC of the air interface packet.

Timeout This is the length of time that the master will wait for

communication from the slave before the connection is

considered to be terminated.

Channel map This provides a list of the valid data channels for the

master on that link.

Hop The link layer uses frequency hopping to help prevent

communication interference. Once a packet has been sent

over a data channel, the communicating device will move

to the next channel to send the next packet. The hop, or

hopIncrement value provides the slave with a value

needed to calculate the next data channel that will be used

for communication. To calculate the value, the following

formula is used:

nextChannelIndex =

(usedChannelIndex + hopIncrement) % 37

If there are fewer than the full 37 channels mapped in the

channel map, then an extra piece of logic is needed to

determine the next channel index.

Janesko, Jennifer Ann – SRN: 120232774

- 38-

Para-meter Description

remappedNextChannelIndex = nextChannelIndex %

countOfMappedChannels

[BLE-LL, 82]2

Connection

Interval

This value helps determines the timing of how often the

two devices should check the next channel for

communication.
[BLE-LL, 44-45]

On the data channel there are two types of communication that can occur: link

layer control communication and data communication. Link layer control

communication allows the exchange of requests and commands concerning

the connection itself. Over the air packets that perform these activities contain

PDUs called “LL control PDUs”. Data communication describes the manner

in which information in exchanged between two peers. Over the air packets

that provide data exchange contain PDUs called “LL data PDUs”.

The specification represents a PDU on the data channel as represented in

figure 12. The PDU is made up of three fields: a header, the payload and a

message integrity check (MIC). The following table provides an overview of

these fields.

2 The variable names in the specification differ from the variable names used in this

document. The names have been changed here to provide more transparency about their

roles in the calculations. The variables names can be mapped in the following way:

 nextChannelIndex = unmappedChannel

 usedChannelIndex = lastUnmappedChannel

 hopIncrement = hopIncrement

 remappedNextChannelIndex = remappingIndex

 countOfMappedChannels = numUsedChannels

Janesko, Jennifer Ann – SRN: 120232774

Figure 12: Logical representation of a data channel PDU [BLE-LL, 46]

- 39-

Field Description

Header The header contains five fields:

• LLID (2 bits) :

◦ 01= Continuation of an LL data PDU

◦ 10= Start of an LL data PDU

◦ 11= LL control PDU

• NESN (1 bit): Next expected sequence number

• SN (1 bit): Sequence number

• MD (1 bit): More data flag

• RFU (3 bits): Reserved for future use

• Length (8 bits): Length of the payload and MIC in octets.

Payload Varies in length and is dependent on the type of PDU.

MIC Message integrity check: The message integrity check is optional

and dependent on whether or not integrity is a security requirement

of the application.

[BLE-LL, 46]

2.4.2.1 LL Control PDUs

An LL control PD contains two main fields. These fields are represented in

figure 13. In total there are twenty-eight separate LL control PDUs defined.

Each one has an opcode of one octet in length. The data contained is specific

to the functionality being requested or commanded in the PDU.

The following table provides a summary of the LL control PDUs defined in

the specification. See appendix 7.3.1.2 for additional technical detail about

the PDUs.

Janesko, Jennifer Ann – SRN: 120232774

Figure 13: Logical representation of LL

control PDU [BLE-LL, 48]

- 40-

OP

Code

LL Control

PDU Name

Description Sender

00 LL_CONNECT

ION_UPDATE_

REQ

Requests update of WinSize, WinOffset,

Interval, latency, timeout and instant

values of connection.

master

0F LL_CONNECT

ION_PARAM_

REQ

This is a request to change connection

parameters. Information is contained in

the PDU: interval_min, interval_max,

latency, timeout, preferredPeriodicity,

referencConnEventCount, Offset0,

Offset1, Offset2, Offset3, Offset4 and

Offset5.

master

10 LL_CONNECT

ION_PARAM_

RSP

This response to the preceding PDU and

defines the connection parameters.

slave

01 LL_CHANNEL

_MAP_REQ

Requests an update to the list of data

channels to be used for a connection.

master

02 LL_TERMINA

TE_IND

This is an indicator that the connection

is about to be ended, and it provides an

error code that specifies the reason.

master or

slave

03 LL_ENC_REQ This requests that encryption material be

established with the supplied Rand,

EDIV, SKDm and IVm values from the

master.

master

04 LL_ENC_RSP This is the response to the preceding

PDU from the slave with its respective

SKD and IV values.

slave

05 LL_START_EN

C_REQ

This is a request that further

communication be encrypted with

established cryptographic material.

master

06 LL_START_EN

C_RSP

This is a response to the preceding PDU. slave

07 LL_UNKNOW This is a response that indicates the master or

Janesko, Jennifer Ann – SRN: 120232774

- 41-

OP

Code

LL Control

PDU Name

Description Sender

N_RSP device received a PDU type that it did

not support. The unknown type OP code

is returned.

slave

08 LL_FEATURE_

REQ

This provides the set of features

supported by the master.

master

0E LL_SLAVE_FE

ATURE_REQ

Contains the set of supported features in

the slave’s link layer.

slave

09 LL_FEATURE_

RSP

This is the slave’s response with its list

of supported features.

master or

slave

0A LL_PAUSE_EN

C_REQ

This is a request to pause encrypted

communication. This is usually to

reestablish cryptographic material.

master

0B LL_PAUSE_EN

C_RSP

This is the response to the preceding

PDU.

slave and

master

0C LL_VERSION_

IND

This message contains the version of the

Bluetooth controller, the company

identifier of the manufacturer and the

revision number of the controller.

master or

slave

0D LL_REJECT_I

ND

In the case that a request must be

rejected, this PDU will be returned with

an error code that indicates the reason

for rejection.

master or

slave

11 LL_REJECT_I

ND_EXT

This is a PDU that is sent when an

operation is rejected. The OP code of

the PDU being rejected and an error

code indicating the reason are returned.

master or

slave

12 LL_PING_REQ This is a PDU that is sent to check the

presence of a communicating peer.

master or

slave

13 LL_PING_RSP This is the response to the preceding

PDU.

master or

slave

14 LL_LENGTH_ This requests a change in the length of master or

Janesko, Jennifer Ann – SRN: 120232774

- 42-

OP

Code

LL Control

PDU Name

Description Sender

REQ transmission and reception time and/or

the length of an air to interface packet.

slave

15 LL_LENGTH_

RSP

This is a response to the preceding

packet with the values for the

connection.

master or

slave

[BLE-LL, 48-50]

These operations are the building blocks for a series of link layer procedures.

The procedures describe how the LL control PDUs are used. There are 12

total procedures:

• Connection update procedure / Connection parameters request

procedure:

◦ Allows a peer device to request updates to connection parameters.

◦ PDUs used: LL_CONNECTION_UPDATE_REQ or

LL_CONNECTION_PARAM_REQ /

LL_CONNECTION_PARAM_RSP

• Channel map update procedure:

◦ Updates the channel map.

◦ PDU used: LL_CHANNEL_MAP_REQ

• Encryption procedure:

◦ Supports the exchange of cryptographic material and the initiation

of encryption on the link.

◦ PDUs used: LL_ENC_REQ / LL_ENC_RSP and

LL_START_ENC_REQ / LL_START_ENC_RSP

• Encryption pause procedure:

Janesko, Jennifer Ann – SRN: 120232774

- 43-

◦ Allows encryption to pause for the update of key material. During

this time, no data should be exchanged between the two

communicating devices.

◦ PDUs used: LL_PAUSE_ENC_REQ (sent encrypted by master) /

LL_PAUSE_ENC_RSP (sent encrypted by slave) /

LL_PAUSE_ENC_RSP (sent unencrypted by master)

• Features exchange procedure:

◦ Allows link layers to provide information about supported features.

◦ PDUs used: LL_FEATURE_REQ (from master) /

LL_FEATURE_RSP or LL_SLAVE_FEATURE_REQ (from slave)

/ LL_FEATURE_RSP

• Version exchange procedure:

◦ Allows a link layer to provide information about device version

information.

◦ PDUs used: LL_VERSION_IND

• Termination procedure:

◦ Facilitates the communication that a link is being terminated.

◦ PDUs used: LL_TERMINATION_IND

• LE ping procedure:

◦ Allows one peer device to check to see if the link layer of its peer

device is still present.

◦ PDUs used: LL_PING_REQ / LL_PING_RSP

• Data length update:

◦ Allows the length of time that transmission of a signal can occur

and/or the length of the transmitted signal to be updated.

◦ PDUs used: LL_LENGTH_REQ / LL_LENGTH_RSP

Janesko, Jennifer Ann – SRN: 120232774

- 44-

2.4.2.2 LL Data PDUs

Data exchange is defined in the ATT, GATT specifications and mentioned in

the link layer specification. ATT and GATT specifications outline the

operations that can be performed on the data. At these layers, two new roles

are introduced: client and server. The client is the device that makes requests

of data. These requests can be read or write requests. The server is the device

the provides the data store.

Unlike other PDUs, the the LL Data PDU structure is not defined in the link

layer specification. It is instead defined in the ATT specification. The LL data

PDU is called the “attribute PDU” at the ATT layer, and it is broken down into

three fields. Figure 14 defines its characteristics.

 Figure 14: Attribute PDU Format [BLE-ATT, 478]

As can be seen in the PDU, there is an Opcode with a set of values. Bits 0-5

correspond to the different attribute PDU types supported by Bluetooth LE.

Bit 6 indicates that the PDU is a command, and bit seven indicates whether or

not the authentication signature is required. The data PDU types specified in

the ATT layer are summarized in the following table.

Opcode Attribute

PDU Name

Parameters Description

0x01 Error

Response

Erroneous opcode,

erroneous attribute

handle, error code

Response to a request that

cannot be performed.

Includes a reason.

0x02 Exchange Client Rx MTU Informs the server of the

Janesko, Jennifer Ann – SRN: 120232774

- 45-

Opcode Attribute

PDU Name

Parameters Description

MTU

Request

client's maximum

transmission unit size.

0x03 Exchange

MTU

Response

Server Rx MTU Response to Exchange MTU

request and informs client of

MTU that will be used.

0x04 Find

Information

Request

Starting handle,

ending handle, UUID

Request from client to server

to gain mapping of attribute

handles for specified attribute

types.

0x05 Find

Information

Response

Format, information

data

Response to find information

request with handle-UUID

pairs.

0x06 Find by

Type Value

Request

Starting handle,

ending handle,

attribute type,

attribute value

Request to the server from the

client for handles that have

specified attribute types with

16-bit UUIDs.

0x07 Find by

Type Value

Response

Handles of

information list

Response to Find by Type

Value Request and contains a

list of corresponding handles.

0x08 Read by

Type

Request

Starting handle,

ending handle, UUID

Request to the server from the

client for handles that have

specified attribute types.

0x09 Read by

Type

Response

Length, attribute data

list

Response to Read by Type

Request and contains handle-

value pairs.

0x0A Read

Request

Attribute handle Request from client to server

for the value of an attribute

for a specific handle.

0x0B Read

Response

Attribute value Response to Read Request

and contains the value of the

associated handle.

Janesko, Jennifer Ann – SRN: 120232774

- 46-

Opcode Attribute

PDU Name

Parameters Description

0x0C Read Blob

Request

Attribute handle,

value offset

Request from client to server

for part of a value specified by

the handle and the octet offset.

0x0D Read Blob

Response

Part attribute value Response to the Read Blob

Request with the value

associated with the requested

handle starting from the

provided offset.

0x0E Read

Multiple

Request

Set of handles Request from client to server

for the values of more than

one handle.

0x0F Read

Multiple

Response

Set of values Response to Read Multiple

Request. Values are

concatenated in the order

requested.

0x10 Read by

Group Type

Request

Start handle, ending

handle, UUID

Request from client to server

where values are request for a

range of handles where for a

specified type.

0x11 Read by

Group Type

Response

Length, attribute data

list

Response to Read by Group

Type Request. Returns a list

of values in the order of the

handles. Values will be

contained in their own octets.

0x12 Write

Request

Attribute handle,

attribute value

This is a request from a client

to the server to update a value

based on the provided handle.

0x13 Write

response

-- This is a response to the Write

Request indicating that the

write was successful.

0x52 Write Attribute handle, This is a command from a

Janesko, Jennifer Ann – SRN: 120232774

- 47-

Opcode Attribute

PDU Name

Parameters Description

Command attribute value client to a server to update a

value based on the attribute

handle. No response from

server needed.

0x16 Prepare

Write

Request

Attribute handle,

value offset, part

attribute value

This is a request from the

client to the server to queue a

value to be written on the

server at the specified handle.

0x17 Prepare

Write

Response

Attribute handle,

value offset, part

attribute value

This is a response to the

Prepare Write Request

indicating that the submitted

value has been queued for the

provided handle.

0x18 Execute

Write

Request

flags This is a request from the

client to the server to perform

one of two actions with

queued values: 00-cancel all

queued writes or 01- write all

pending values.

0x19 Execute

Write

Response

- This is a response to the

Execute Write Request

signifying the successful

completion of the request by

the server.

0x1B Handle

Value

Notification

Attribute handle,

attribute value

The server transmits a value

(unsolicited) to the client. If

the value exceeds MTU-3

octets in length, the client will

need to send a Read Blob

Request to get the whole

value.

Janesko, Jennifer Ann – SRN: 120232774

- 48-

Opcode Attribute

PDU Name

Parameters Description

0x1D Handle

Value

Indication

Attribute opcode,

attribute handle,

attribute value

The server transmits a value

(unsolicited) to the client. If

the value exceeds MTU-3

octets in length, the client will

need to send a Read Blob

Request to get the whole

value.

0x1E Handle

value

confirmation

-- This is a confirmation of

receipt of the Handle Value

Indication.

0xD2 Signed write

command

Attribute handle,

attribute value,

authentication

signature

This is a command from the

client to the server to write a

value to the server based on

the attribute handle only after

verifying the provided

signature. No response from

server is required.
[BLE-ATT, 481-482]

The PDU types can be categorized into one of 6 types. These are:

• Requests and responses

◦ Client sends a request for some operation.

◦ Server responds.

• Commands

◦ One-way communication where client sends unsolicited command

to server.

• Notifications

Janesko, Jennifer Ann – SRN: 120232774

- 49-

◦ One-way communication where the server sends an unsolicited

message to the client.

• Indications and confirmations

◦ Server sends an unsolicited message to the client with the

expectation of confirmation.

◦ The client sends a confirmation to the server.

As can be seen in the list, there are two types of PDUs that are paired together:

request / response and indications / confirmations. These types of PDUs must

be executed as transactions. This means, when a server issues a request or an

indication, it must wait for the answer from the client. A server may have only

one request and one indication active at any one time. It must wait for the

answering attribute PDU or wait for a timeout before it can issue another one

of the same type. For example, if a client sends a request to a server, it must

wait for the server’s response before it can issue any further requests.

Likewise, if a server issues an indication to a client, it must wait for the

client’s confirmation before it can issue any further notifications.

Exactly how these PDUs are used is defined at the GATT layer. The GATT

layer provides a set of 11 data communication “features” that are dependent on

the attribute PDUs from the ATT layer. Each of these GATT features are

comprised of a set of sub-procedures that define how the ATT PDUs are

utilized during data exchange between client and a server. The following table

provides a summary of the GATT features, their sub-procedures, and the

attribute PDUs related to those sub-procedures.

Feature Sub-Procedure Attribute PDUs

Server

Configuration

Exchange MTU:

Two-way exchange to identify

the largest attribute PDU

supported by both client and

server.

Exchange MTU Request

Exchange MTU Response

Error Response

Primary Discover All Primary Services: Read by Group Type

Janesko, Jennifer Ann – SRN: 120232774

- 50-

Feature Sub-Procedure Attribute PDUs

Service

Discovery

Used by client to request primary

services available in a handle

range.

Request

Read by Group Type

Response

Error Response

Discover Primary Services by

Service UUID: Used by client to

find a primary service on the

server when only the UUID

(type) is known.

Find by Type Value

Request

Find by Type Value

Response

Error Response

Relationship

Discovery

Find Included Services:

Used by client to find included

services inside of a service

declaration within a handle

range.

Read by Type Request

Read by Type Response

Error Response

Characteristic

Discovery

Discover All Characteristics of a

Service:

Used by client to find all

characteristic declarations of a

service within a handle range.

Read by TypeRequest

Read by Type Response

Error Response

Discover Characteristic by

UUID:

Used by client to look up

characteristics of a service when

only the service hande range is

known and the characteristic

UUID.

Read by TypeRequest

Read by Type Response

Error Response

Characteristic

Descriptor

Discovery

Discover All Characteristic

Descriptors:

Used by client to find all of the

characteristic descriptor's

handles and types (UUID) within

a given handle range.

Find Information Request

Find Information

Response

Error Response

Janesko, Jennifer Ann – SRN: 120232774

- 51-

Feature Sub-Procedure Attribute PDUs

Characteristic

Value Read

Read Characteristic Value:

Used by client to read a

characteristic value from a

service by the handle.

Read Request

Read Response

Error Response

Read Using Characteristic

UUID:

Used by client to read a

characteristic value from a

service when only the UUID is

known.

Read by TypeRequest

Read by Type Response

Error Response

Read Long Characteristic Value:

Used by client to request a value

by handle, and the length of the

value will be longer than what

can be returned in the

Read_Response PDU.

Read Blob Request

Read Blob Response

Error Response

Read Multiple Characteristic

Values:

Used by client to request

multiple characteristic values.

The client provides a set of

handles.

Read Multiple Request

Read Multiple Response

Error Response

Characteristic

Value Write

Write Without Response:

Used by client to update

characteristic value by handle.

Write Command

Signed Write Without Response:

Used by client to update a

characteristic value by handle

where the link is not encrypted.

Signed Write Command

Write Characteristic Value:

Used by client to update a

characteristic value by handle.

Write Request

Write Response

Error Response

Janesko, Jennifer Ann – SRN: 120232774

- 52-

Feature Sub-Procedure Attribute PDUs

Server must provide a response.

Write Long Characteristic

Values:

Used by client to update a

characteristic value to by handle

where the value to be updated is

longer than what can be

contained in the Write Request

PDU. Server must provide

responses.

Prepare Write Request

Prepare Write Response

Execute Write Request

Execute Write Response

Error Response

Characteristic Value Reliable

Writes:

Used by client to update several

characteristic values for a service

at one time. Values are queued

by handle on the server until

Execute Write Request is issued..

Server must provide responses.

Prepare Write Request

Prepare Write Response

Execute Write Request

Execute Write Response

Error Response

Characteristic

Value

Notification

Notifications:

Server sends a notification of a

characteristic value to a client

without the client requesting it.

Handle Value Notification

Characteristic

Value

Indication

Indications:

Server sends a characteristic

value to a client without a

request from the client. The

client must confirm receipt of the

indication.

Handle Value Indication

Handle Value

Confirmation

Characteristic

Descriptor

Value Read

Read Characteristic Descriptors:

Used by client to read a

characteristic descriptor by

handle.

Read Request

Read Response

Error Response

Janesko, Jennifer Ann – SRN: 120232774

- 53-

Feature Sub-Procedure Attribute PDUs

Read Long Characteristic

Descriptors:

Used by client to read a

characteristic descriptor by

handle where the value of the

characteristic descriptor is longer

than what can be contained in the

Read Response PDU.

Read Blob Request

Read Blob Response

Error Response

Characteristic

Value Write

Write Characteristic Descriptors:

Used by client to update a

characteristic descriptor based on

the characteristic descriptor's

handle. Server must provide a

response.

Write Request

Write Response

Error Response

Write Long Characteristic

Descriptors:

Used by client to update a

characteristic descriptor based on

the characteristic descriptor's

handle where the value to be

updated is longer than what can

be contained in the Write

Request PDU. Server must

provide responses.

Prepare Write Request

Prepare Write Response

Execute Write Request

Execute Write Response

Error Response

[BLE-GATT, 544-571]

These data exposed via operations and features at the BLE ATT and GATT

layers are the same data that are processed by the BLE applications that sit on

top of the BLE host. In some systems, this data can be forwarded to upstream

processes by the BLE application. Access and modification of these data is an

ideal attack vector and will be discussed later in chapters 3 and 4.

Janesko, Jennifer Ann – SRN: 120232774

- 54-

2.5 Bluetooth LE Security Features

The Bluetooth LE specification explicitly addresses security with the

introduction of features such as private address and security modes and

procedures. These features provide a foundation for addressing security

requirements of over-the-air communication. Only a high level overview of

these features will be provided here, and more detail will be provided in later

chapters 4 and 5 where the topic of security is more thoroughly analyzed.

2.5.1 Device address privacy

The way that one peer device recognizes another is via the device address in

the air interface packet or the AdvA, ScanA or InitA addresses in advertising

packet payloads. The addresses can either be public, random static or private

(resolvable or non-resolvable) and are broadcast in plaintext in advertisement

packets. The Bluetooth LE specification includes mechanisms to mask device

addresses for the provision of the security goal of privacy. There are four

different forms that an device address can take:

• public (Bluetooth device ID)

• random static

• random private non-resolvable

• random private resolvable

The first two types are not designed to provide privacy, whereas the second

two are.

An device address has different formats based on whether is a Bluetooth

device ID, a random static address, a random private non-resolvable address or

a random private resolvable address. These different formats are represented

in the following figure 15.

Janesko, Jennifer Ann – SRN: 120232774

- 55-

Privacy is addressed primarily in the GAP, SMP and link layer specifications.

GAP introduces the concept of private addresses, the link layer specifies the

format of private device addresses, and the SMP specification describes the

algorithms for the generation of pseudorandom values and the creation of the

private device addresses.

The following table provides a summary of the four different types of device

addresses.

Address

Type

Description

public This is the device’s Bluetooth device address. This type of

address is trackable because it persists over time across

controller resets. This address provides no privacy. Further,

the manufacturer of the device can be determined because the

first half of the Bluetooth device address indicates the

manufacturing company.

random static When the controller of a device is reset, it pseudorandomly

generates a 46 bit number. This number is concatenated to a

Janesko, Jennifer Ann – SRN: 120232774

Figure 15: Device Address Formats [BLE-LL, 43-

46]

- 56-

Address

Type

Description

two bit value “11”, and this is the device’s address. The

device uses this address rather than the public device address

for communication identification over a link. This type of

address is trackable and not private.

random

private non-

resolvable

The last 46 bits of this type of access address are

pseudorandomly generated either each time that a packet is

sent or in accordance with a timer that indicates when the

address should be renewed. The 46 bit value is appended to a

two bit value of “00”, and this is the full address. This type of

address can only be used on the advertising channel because it

cannot be resolved for two-way communication purposes.

The pseudorandomness of this type of address makes the

value untrackable by peers.

random

private

resolvable

This type of access address contains a 22 bit pseudorandomly

generated number (PRAND). This number is “hashed” with

the assistance of an identity resolution key (IRK). A 24 bit

value is extracted from the hash. This value is appended to

the PRAND value. These two values together are appended

to a two bit value, “01”. The address’s persistence is tied to a

timer. When the timer runs out, a new address is generated.

This type of address can be used for connection purposes

because two peers have the correct information to resolve the

generated addresses (PRAND and a previously shared IRK).

Assuming the timer for address renewal is set appropriately,

the pseudorandomness makes the access address value

untrackable because peers that do not have the corresponding

IRK cannot determine which address belongs to which device.

Janesko, Jennifer Ann – SRN: 120232774

- 57-

2.5.2 Pairing and bonding

Pairing and bonding are functions that attempt to satisfy or support security

requirements such as confidentiality, integrity, authenticity and/or privacy

security requirements in the over-the-air communication between two peers.

The communication path between two devices is often referred to as the

“link”.

Pairing is the act of peers exchanging information to establish a set of shared

cryptographic keys with the goals to encrypt the link to preserve

confidentiality of exchanged data. Pairing is not permanent, and if two

devices simply pair with one another, the shared keys are not persisted after

the connection is lost.

Bonding takes pairing one step further and allows the exchange of

cryptographic key material to provide a means by which the integrity and

authenticity of the data exchanged over the link can be verified at a later time.

Bonding, unlike pairing, is permanent. When two devices are bonded, the

relevant necessary key material for confidentiality, integrity and privacy are

stored.

Devices may have different security requirements. For example, some devices

may require encryption and no verification of authenticity and integrity. Some

may require verification of authenticity and integrity.

Further, there may also be differing demands on the strength of assurance of

confidentiality, integrity and authenticity. These varying levels of

requirements are supported in the types of pairing that are available. In the 4.2

specification, there are four types of pairing which are partially dependent on

the available input and output capabilities of the communicating devices.

• Just works: This is a pairing approach where a known, fixed value is

used to generate cryptographic material to secure the link. For this

type of pairing, no input or output devices are needed.

• PIN/Passkey entry: This is a type of pairing where a number with six

positions (PIN/passkey) is displayed by the peripheral. A user must

Janesko, Jennifer Ann – SRN: 120232774

- 58-

then enter the value on the central. Once the value has been entered

into the central, a handshake procedure takes place over the air

interface. It is important to note that the handshake does not exchange

the PIN at any time.

• Numeric comparison (LE secure): This is a type of pairing where the

two BLE devices use a Diffie-Hellman exchange to establish a

connection and to generate a set of values. The generated values are

displayed on both devices. If the displayed values on the devices

match, the user can indicate that the values do match via the user

interface, and the pairing can finish.

• OOB: This is a type of pairing where values are exchanged via other

channels other than over LE channels (NFC, for example). The values

that are exchanged over the non-LE channels are then used to generate

cryptographic materials to secure the link. This does not require input

and output devices for use by a user, however it requires some other

way of exchanging the OOB values other that BLE itself.

Pairing and bonding are introduced in the GAP specification, and the details

surrounding the cryptographic material exchange are explicitly outlined in the

SMP specification.

How pairing occurs and which values are stored at bonding are dependent on

the specification being used for development. Starting from the Bluetooth 4.2

specification, the recommendation is to use a pairing method called “LE

Secure”. Pairing according to methods prior to the Bluetooth 4.2 specification

are referred to as “LE Legacy Pairing”.

Legacy pairing uses a proprietary key exchange protocol to establish keys to

secure the link. Key material is generated using a 128 bit AES block cipher.

LE secure uses an asymmetric Diffie-Hellman protocol based on ECC with a

NIST P-256 curve to ensure confidentiality when establishing cryptographic

material. AES-MAC is used to generate some key material. The controller is

required to support, at the minimum, AES encryption.

Janesko, Jennifer Ann – SRN: 120232774

- 59-

Prior to 4.2 cryptographic processing was expected to take place in the

controller. As of 4.2, cryptographic processing may take place in the host.

This was done to support the need for devices to be upgradeable.

Cryptography at the controller level is normally implemented in hardware

rather than software. Cryptographic processing in the host tends to be

implemented in software, so it makes it simpler to be able to upgrade

cryptographic routines as needed.

2.5.3 Security Modes and Procedures

The GAP specification specifies a set of security modes and procedures for

Bluetooth LE. The following table provides a summary of each mode and

procedure.

Mode / Procedure Description

Security mode 1 Security mode 1 refers to the strength of pairing that a

device supports. There are four levels identified:

• No security: no authentication and no encryption

• Unauthenticated pairing with encryption:

◦ No MITM protection

◦ Provided by just works pairing.

• Authenticated pairing with encryption:

◦ Assumption of MITM protection

◦ Provided by LE legacy passkey entry and

OOB pairing.

• Authenticated LE secure connections pairing

with encryption

◦ Assumption of MITM protection

◦ Provided by LE secure passkey, numeric

comparison and OOB pairing.

Security mode 2 Security mode 2 refers to the authenticity strength of a

message integrity check.

• Unauthenticated pairing with data signing

Janesko, Jennifer Ann – SRN: 120232774

- 60-

Mode / Procedure Description

• Authenticated pairing with data signing

Authorization

procedure

An authorization procedure usually requires some action

on the part of the user through the user interface. The

device will ask the user if it is acceptable for some

activity to take place based on information exchanged

between two peer devices. The user must indicate yes or

no (provide authorization) before the activity is allowed

to take place.

Authentication

procedure

This procedure provides a decision matrix for two

devices negotiating security mode 1.

Connection data

signing procedure

This procedure specifies that a signature key and

signature counter must be established to support security

mode 2 in the case that data signature is required by a

peer during communication.

Authenticate signed

data procedure

This procedure describes how to handle signatures for

devices that have already exchanged signature material.

Encryption

procedure

This procedures describes that a central is responsible

for initiating encryption on a link, while the peripheral

may make a request to the central to start encryption

initiation.
[BLE-GAP, 348-370]

2.6 Chapter Summary

This chapter attempts to provide a compact summary of the vocabulary and

the components that are essential to understand the Bluetooth low energy

specification. This type of overview is necessary because, as highlighted in

section 2.1, an analyst will need to be able to make sense of data being

captured by sniffing devices such as the Texas Instruments CC2540 Dongle.

This device sniffs both advertising channels and data channels, and produces

output similar to that in figure 16.

Janesko, Jennifer Ann – SRN: 120232774

- 61-

From this capture, the following aspects should be clear from the information

provided in this chapter.

 1. From the access address, 0x50657BE9 and from the channel values, it

is clear that the communicating devices are communicating over a link

(or a connection).

 2. The devices first communicated on channel 0x0C and then hopped to

0x18.

 3. Based on the master-slave, master-slave pattern of communication, it

can be determined that the first packet is from the master. This is

because the third packet is a LL_CONNNECTION_UPDATE_REQ

(opcode 0x00) packet, and only a master can send this type of request.

So th exchange on channel 0x0C that we have show in figure 16 is:

 a) Master → Slave: empty packet

 b) Slave → Master: empty packet

 c) Master → Slave: LL_CONNECTION_UPDATE_REQUEST

 d) Slave → Master: empty packet

 4. When the devices hop to the next channel, we can see that the master,

which is always first to send packets on a new channel, issues an

ATT_Read_By_Group_Type_Req (opcode 0x10) packet. This is a

request that allows the master to request all of the attributes of a

specific type between a start handle and an end handle from the GATT

server. In this case, the request has the following values:

Janesko, Jennifer Ann – SRN: 120232774

Figure 16: Capture of sniffed BLE packets

- 62-

 a) Start Handle: 0x0001

 b) End Handle: 0xFFFF

 c) Type of attribute being requested: 2800 which is the UUID for

primary service declarations

There is even more detail that can be derived from the packet information

represented above, but hopefully the reader can begin to understand how

having a basic understanding of the specification can be helpful for analysis.

The detail in this chapter has been supplemented with a series of more detail

which can be found in the appendix. Hopefully, the information captured here

and the appendix should provide a solid starting point for analyzing BLE

communication.

Janesko, Jennifer Ann – SRN: 120232774

- 63-

3 Generic BLE Attack Surface

This chapter maps the full attack surface of a BLE application including non-

over-the-air surfaces. The full attack surface, rather that just the over-the-air

interface, will be explored for two reasons.

The first reason is so the analyst has a full overview of the scope of the attack

surface. When a customer comes with a request for analysis, an analyst must

be able to be clear about the scope of testing. Having an overview of the

possible attack surfaces provides an important point for discussion and

clarification with the customer.

The second reason why the full attack surface will be explored is because

attacks on the air interface may not be observable until they can be observed in

a downstream process several processing steps from the over-the-air

communication exchange. For example, an attacker may forge a message and

transmit it to BLE device. This message is received by the controller,

forwarded to the host and then processed in the application. From there the

processed value can be forwarded to a cloud based service. It is only via the

cloud service’s user interface that it becomes apparent that the attacker’s value

has been processed. There are several points at which the forged value could

have been caught and handled. The analyst must understand the relationships

between the system components to be able to make useful recommendations

for remediation.

This part of the analysis will leverage the approach outlined by Burns in his

“Threat Modeling: A Process To Ensure Application Security”. Originally this

approach was developed to model threats for specific applications, so some of

the points in his approach will not be applicable to this generic analysis. The

main activities from Burns’ approach used in this analysis are:

• mapping entry and exit points

• identifying assets

• identifying external dependencies

Janesko, Jennifer Ann – SRN: 120232774

- 64-

• identifying (generic) use scenarios

• and modeling the system [BU05].

3.1 Exit and Entry Point Identification

The first step in developing mapping the attack surface for a Bluetooth low

energy application is to identify data entry and exit points. These are the

pathways by which data flows in an out of the application. Figure 17 shows a

set of exits and entry points that could be present in an BLE application3.

3 The components listed here are common in Bluetooth low energy applications. It can be

the case that there other possibilities for exit and entry points at the application level. If

this is the case for a target of evaluation, then those components should be considered

when performing a security evaluation of that specific application.

Janesko, Jennifer Ann – SRN: 120232774

Figure 17: BLE Exit and Entry Points

- 65-

Each exit and entry point in the figure above has a unique label in the format

EE-<ID>. Data that can be entered through these points can have an influence

on BLE communication. Data that is sent out from the application have an

influence of upstream processes. The table below provides a summary of the

entry and exit points.

ID Label Description

EE-3 Application

→ Display

Data that is transferred from the application to some

sort of output for display purposes must travel over

some medium over a certain distance to the point of

display. There is a difference, for example, between a

mobile phone display and a monitor that is connected to

a device via an HDMI cable. The communication

medium and distance from the application are

candidates for evaluation in a security analysis.

EE-4 User Input

Device →

Application

There are a variety of user input devices: keyboards,

mice, switches, scanners, etc. These devices

communicate over a variety of media, for example,

USB cables, wireless, Bluetooth EDR, etc. The nature

of the input device, the medium, and the extent to which

BLE communication can be controlled with these

devices are candidates for evaluation in a security

analysis.

EE-5 OOB ↔

Application

OOB communication is used for pairing two BLE

devices. This communication can take place over any

other channel aside from BLE itself. NFC, an over-the-

air radio technology, is often cited as a viable NFC

option. If OOB pairing is used, the protocol and its

communication medium must be taken into

consideration for a security analysis.

EE-6 External

(Cloud)

Services ↔

It is common for applications to communicate with

external services over TCP/IP. The communication can

be unidirectional or bidirectional. These services

Janesko, Jennifer Ann – SRN: 120232774

- 66-

ID Label Description

Application perform actions such as data processing, data storage

and system updates. The medium of communication,

the protocols used and the extent to which Bluetooth

low energy communication can be influenced by the

interaction with the external service are candidates for

evaluation in a security analysis.

EE-7 Sensor →

Application

Sensors collect data that can be transferred over BLE

channels to other upstream processes. They can be

connected physically or wirelessly to a BLE device.

The sensor, its communication medium and its

communication protocol are candidates for evaluation

in a security analysis.

EE-8 Application

→ Actuator

Actuators perform process-regulating actions based on

commands from a BLE device. The commands may be

generated from the device itself or they may be

generated on a further upstream system and

communicated to the BLE device over a BLE channel.

As with sensors, actuators can be physically or

wirelessly to the BLE device. The actuator, its

communication medium and its communication

protocol are candidates for evaluation in a security

analysis.

EE-A BLE App ↔

Host

As discussed in section 2.2, Bluetooth low energy

applications are two possibilities of how the application

is physically connected to the host. In some cases, the

host and the application reside on the same chipset. In

other cases, the application is run on a different chipset.

In this case the communication medium can vary, and

the protocol by which the communication occurs is

proprietary. If the application is separated from the

host, the communication medium and the

communication protocol between the application and

Janesko, Jennifer Ann – SRN: 120232774

- 67-

ID Label Description

the host are candidates for evaluation in a security

analysis.

EE-B BLE HCI

(Host ↔

Controller)

As discussed in chapter 2, Bluetooth low energy devices

can have both the host and the controller on the same

chip as in ISOCs. There are cases, though, when the

host and the controller are physically separated. The

BLE specification outlines standard HCI definitions for

communications between the host and the controller. If

the BLE device utilizes communication via HCI, then

the communication medium and HCI communication

are candidates for evaluation in a security analysis.

EE-C BLE Over-

The-Air

Over-the-air communication is the core of Bluetooth

low energy. Communication takes place over two

different types of channels and can come in the form of

advertisements, scan requests and responses, connection

initiations, connection configuration, control messages

and data exchange. This communication must be part

of the security analysis.

EE-D On-Board

Update

Interface

This is an interface, such as JTAG, that allows an

individual to connect directly to the board and flash the

firmware on the device. If this type of functionality is

present, it is a candidate for consideration in a security

analysis.

3.2 Asset Identification

An attacker will attempt to exploit exit and entry points with the goal of

attacking the assets of the system. Assets are the tangible and intangible items

that the system should protect. In general, assets should be defined within the

context of a specific application. This section will identify the types of assets

that are common in Bluetooth low energy applications. The following table

Janesko, Jennifer Ann – SRN: 120232774

- 68-

lists these assets and provides a description of the security requirement

considerations for each asset.

ID Name Description Security Requirement Considerations

A1 Bluetooth low

energy device

Includes the

host, controller

and HCI

interface (if

present)

• Physical availability of device.

• Confidentiality, integrity,

authenticity of data stored and

processed in host and controller.

• Authenticity of host and

controller firmware

• Availability of device

functionality.

• Privacy and trackability of

device.

A2 Application Includes the

software that

interfaces

between BLE

device and

other

components

• Confidentiality, integrity,

authenticity of data stored and

processed in the application.

• Authenticity of application

software.

• Availability of application.

A3 Downstream

process(es)

Processes that

are performed

based on data

collected via

exchanges

over BLE

channels.

• Protect integrity and authenticity

of information used in these

processes with considerations

made based on:

◦ human safety

◦ environmental impacts

◦ financial impact from process

breakdown

◦ availability of service.

• Confidentiality of data involved

in downstream processes.

Janesko, Jennifer Ann – SRN: 120232774

- 69-

ID Name Description Security Requirement Considerations

A4 Display Display tied

with

application.

Information in

display may

have impact

on decision

making in

downstream

processes.

• Confidentiality of displayed data.

• Integrity and authenticity of

displayed data.

• Availability of displayed data.

• Availability of display device.

A5 Actuator Mechanism

that physically

regulates a

process.

• Availability of actuator.

• Integrity and authenticity of data

that provides instructions to

actuator.

• Confidentiality of data that is

transferred to actuator may also

be a consideration.

• Authenticity of actuator

firmware.

A6 External

(cloud)

service

Service that

gathers data

from

application

over time for

purposes of

process

control or

decision

making

• Confidentiality of data stored in

service.

• Integrity and authenticity of data

stored and processed in service.

• Availability of service.

• Authenticity of service software.

A7 User Input

Device

Device that

allows the

• Physical availability to user input

device.

Janesko, Jennifer Ann – SRN: 120232774

- 70-

ID Name Description Security Requirement Considerations

input of data

into the

application

directly by the

user.

• Integrity and authenticity of

inputted data.

• Authenticity of device firmware.

A8 Sensor Mechanism

that

(automatically

) collects data

from an

environment

for use in a

downstream

process.

• Physical availability of sensor.

• Integrity and authenticity of

collected data.

• Authenticity of sensor firmware.

A9 OOB Data

Source

Data source

that provides

key material

in OOB

pairing.

• Confidentiality of key material

values.

• Integrity and authenticity of

transmitted key material values.

3.3 Identification of External Dependencies

A target of evaluation’s external dependencies are components or conditions

that have an influence on the overall system, even though they may not have

direct inputs to the data flow of the systems. In the case of Bluetooth low

energy, there are three generic external dependencies that can be identified that

could be points of exploitation by an attacker. These are identified in table

below.

ID Name Description

D1 Battery BLE devices are dependent on a source of power. BLE

is specifically designed to consume as little power as

possible, but if the battery could be attacked, the

Janesko, Jennifer Ann – SRN: 120232774

- 71-

ID Name Description

availability of the device could be compromised.

D2 Physical

Operating

Conditions

The manufacturer of a target of interest may have

specific assumptions about the environmental

conditions surrounding the use of the device. Factors

such as heat, moisture or the presence of dust could

impact a device’s availability or the integrity of the data

that is processed in the device.

D3 BLE

Channel

Availability

A BLE target of evaluation assumes the availability of

the BLE advertising and data channels. The

specification allows for flexibility if some channels are

not available due to interference. This being said,

strong electromagnetic interference and/or intentional

signal jamming could lead to a loss of availability of

data communication on BLE over-the-air channels.

3.4 Use Scenario Definition

Use scenarios primarily provide discrete descriptions how the system will be

used and will not be used. Defining use scenarios is an essential part of threat

modeling for a target of evaluation. This helps build later data flows for a

specific security analysis and provides the foundation of scope for a security

analysis.

Use scenarios are strongly tied to the actual target of evaluation, however three

use scenarios are likely to be common across many BLE targets of evaluation.

They are defined in table below.

ID Name Description

US1 System Startup In order for a BLE device to be used, it must go

through an initialization process. This establishes

the BLE functionalities supported by the host and

the controller. Data that is needed by the controller

is moved from the host to the controller.

US2 BLE Application This is the software update process for the BLE

Janesko, Jennifer Ann – SRN: 120232774

- 72-

Software Update application which can include things like bug

fixes, patches for security flaws and new

functionality.

US3 BLE Firmware

Update

This is the firmware update process which can

include things like bug fixes, patches for security

flaws and new functionalities.

US4 BLE Pairing &

Bonding

Pairing and bonding is the process of two devices

exchanging cryptographic key material to support

security functions such as providing confidentiality

over a connection, providing authenticity of

exchanged data and protecting the trackability of a

device over an extended period of time.

3.5 System-Specific Points for Analysis

In Burn’s threat modeling process, there are three system-specific points of

analysis that are applicable for specific targets of evaluation, but do not

provide any value to analyze at a generic BLE security level. These are:

developing external security notes, determining internal security notes and

identifying implementation assumptions.

External and internal security notes deal respectively with risk deference and

risk acceptance. External security notes specify the terms of use that a

manufacturer expects from a user when employing the target of evaluation.

Internal security notes explicitly list the security concessions that have been

made in the development of the product. Implementation assumptions identify

the further development paths for the target of evaluation. These plans may

have an impact on security decisions that are made for the current version of

the product under evaluation.

Because these points of analysis are tightly coupled with the context of actual

applications, these points will not be further analyzed here.

Janesko, Jennifer Ann – SRN: 120232774

- 73-

3.6 Modeling the System

The next step to developing a threat model is to identify the process flows of

the application. This identifies process components such as inputs, outputs,

data stores, and processing. This allows the security analyst to analyze points

of attack more concretely. Normally this would be performed for a specific

target of interest.

For the purposes of this generic analysis, common data flows found in BLE

communication will be abstracted and presented to support the identification

of possible attack vectors. The examples analyzed in this section will not

cover every single, possible BLE data flow. For efficiency’s sake, eleven

categories of data flows will be introduced, and representative examples of

those data flows will be examined.

3.6.1 Process Flow Type #1: System Initialization

At the reset of a BLE device, data storage on the controller is cleared. The

host and the controller send several messages back and forth specifying which

functionalities are supported by the link layer in the controller and which

commands are supported by the host. In addition to this, the host has the

chance to set a random device address, add entries to the whitelist and add

IRKs to the resolving list. Figures 18-20 shows examples of the data flow

between the host and the link layer to perform these actions.

Janesko, Jennifer Ann – SRN: 120232774

Figure 18: Initialization: Setting a random address [BLE-LL,134]

- 74-

3.6.2 Process Flow Type #2: Advertising

Advertising is the act of a device sending out broadcast messages on one of

three advertising channels. This may have the purpose of broadcasting data

for consumption by target devices. It may have the purpose of letting other

devices know that the advertiser is accepting scan requests or connection

requests. Important to know in this flow is that the data being broadcast is

accessible to all devices scanning on the advertising channels as illustrated in

figure 21.

Janesko, Jennifer Ann – SRN: 120232774

Figure 19: Initialization: Adding entries to whitelist [BLE-LL,134]

Figure 20: Initialization: Configuration of a resolving list [BLE-LL,135]

- 75-

In order to prepare an advertisement, multiple exchanges are made between

the host and controller to establish the way that values will be broadcast. An

example of an undirected advertisement can bee seen in figure 22.

Janesko, Jennifer Ann – SRN: 120232774

Figure 21: Advertising: One to Many Communication

- 76-

3.6.3 Process Flow Type #3: Scanning

In Figure 19, in addition to the advertiser, there are multiple scanners.

Scanners listen for advertisement and decide what to do, if anything, with

them. A scanner has ultimately four options: ignore th advertisement, receive

the data and pass it to the host for further processing, issue a scan request for

additional data or initiate a connection. It is important to note, that scan

requests are also broadcast on advertising channels and can be observed by

devices listening on those channels.

Janesko, Jennifer Ann – SRN: 120232774

Figure 22: Advertising: Internal Flows in Advertiser for Undirected Advertisements

[BLE-LL, 137]

- 77-

Figure 23 shows the process flow for a scanner listening for advertisements

and issuing scan requests.

3.6.4 Process Flow #4: Initiating Connection

As mentioned above, one of the actions that a scanner can take is to respond to

an advertisement that indicates the advertiser is accepting connection requests.

The scanner responds by moving from a scanning state to an initiator state and

sending an initiate connection request as shown in figure 24.

Janesko, Jennifer Ann – SRN: 120232774

Figure 23: Scanning: Scanner Issues Scan Requests in Response to Advertisements

[BLE-LL, 140]

- 78-

This initiate connection request is broadcast over the advertisement channel

and can be heard by any device listening on the advertising channels. The

original advertiser can choose not to accept the connection request. Figure 25

shows a more detailed process flow of connection initiation.

Janesko, Jennifer Ann – SRN: 120232774

Figure 24: Initiating Connection: Scanner Moves to Initiator State

Figure 25: Initiating Connection: Connection Request and Data Channel

Establishment [BLE-LL, 144]

- 79-

After connection establishment, the initiator becomes the master and

advertiser becomes the slave. It is important to note that devices are either

masters or slaves. They cannot be both at the same time. And, further,

masters may be connected to many slaves, but a slave may only have one

master as show in figure 26.

3.6.5 Process Flow #5: Exchanging Data over Data

Channels

After the establishment of a connection between a master and slave, data can

be exchanged in a client-server format between the two peripherals. The client

makes requests of the server for data. The server responds with either the data

or an error message. In this scenario, a master can be either a client or a

server. The same holds true for the slave. Client and server are completely

separate from the master and slave roles. Figure 27 shows the data flow for the

exchange of data over a connection between two BLE peripherals. Read

requests and their responses are issued over LL Data Packets.

Janesko, Jennifer Ann – SRN: 120232774

Figure 26: Initiating Connection: Master with Multiple Slaves

- 80-

3.6.6 Process Flow #6: Control Messages

There are a number of control messages that can be sent between two

peripherals that are communicating in a connection on data channels. These

control messages have the potential to reset the parameters of communication

such as the selection of channels, redefining the MTU or reseting the timing

parameters for communication. Figure 28 shows an example of the master

specifying new connection parameters for a peripheral.

Janesko, Jennifer Ann – SRN: 120232774

Figure 27: Data Exchange: Both Peripherals Act as Client and Server [BLE-LL,

148]

Figure 28: Control Messages: Master Resets Connection Parameters [BLE-LL, 149]

- 81-

An important control message that can be issued by both the master or the

slave is the command to disconnect a connection. This flow is represented in

figure 29.

3.6.7 Process Flow #7: LE Legacy Pairing/Bonding

As discussed in chapter 2, there are two types of pairing/bonding in Bluetooth

Low Energy: LE Legacy and LE Secure. Both have the aim to provide

mechanisms for the provision of confidentiality and authenticity for the

exchange of key material, but they accomplish the key material exchange for

this in extremely different ways. LE Legacy pairing will be addressed in this

section, and LE Secure pairing will be addressed in section 3.6.8.

In general, the specification breaks down pairing/bonding for both LE Legacy

into three phases:

1. Phase 1: Pairing Feature Exchanges

This is the phase where the master sends a pairing request to the slave.

The master may be doing this autonomously, or it may be responding

to a security request from the slave. In response, the slave responds

with a pairing response or an error. The type of data that is exchanged

includes:

a. user input/output capabilities

Janesko, Jennifer Ann – SRN: 120232774

Figure 29: Example of a Disconnect Flow (Initiated by Either Master or Slave)

[BLE-LL, 157]

- 82-

b. whether or not OOB data are available

c. whether or not LE secure is required

d. which cryptographic keys are requested (options: LTK, CSRK, IRK)

e. whether or not bonding is required

f. maximum encryption key size (58 bits – 128 bits)

The exchanged data allows the two devices to select the appropriate

pairing method based on user input/output and the presence of OOB

data.

2. Phase 2: Establish keys to set up encryption

During this phase, the two devices exchange values to establish a set of

common keys to encrypt the connection for key exchange in phase 3.

3. Phase3: Encrypt link and exchange key material

In Phase 3 connection, otherwise referred to as “link”, encryption is set

up between the master and the slave devices. The keys that were

specified in phase 1 are subsequently generated/distributed along with

other key material over the encrypted link.

[BLE-SMP, 593]

3.6.7.1 LE Legacy Pairing Phase 1

The goal of phase 1 is to share information needed to start pairing. Figure 30

shows the message flow between the master and the slave to start pairing.

In this exchange, there are at a minimum two messages and an optional third

message. The essential two messages are the pairing request and pairing

Janesko, Jennifer Ann – SRN: 120232774

Figure 30: Phase 1 pairing message exchange [BLE-SMP,661]

- 83-

response messages. The master always initiates pairing. The slave may

request that pairing be started with the security request message.

3.6.7.2 LE Legacy Pairing Phase 2

The goal of phase 2 of LE Legacy pairing and key exchange is to establish

short term keys (STK) for both the master and the slave. The STK is

calculated using three values: a temporary key (TK), a random value

generated by the master (MRand) and a random value generated by the slave

(SRand). Figure 31 shows how these values are shared and distributed.

Janesko, Jennifer Ann – SRN: 120232774

Figure 31: LE Legacy Phase 2 Pairing Process Flow [BLE-SMP, 661-663]

- 84-

In legacy pairing, the TK value is derived from the type of pairing. There are

three types of pairing available in legacy.

1. Just works: In this case, the TK value is

0x00000000000000000000000000000000.

2. Passkey entry: In this case, the TK value is the hexadecimal value of

the entered 6 digit PIN prepended by enough zeros to make it a 128 bit

number. The value can range from:

0x00000000000000000000000000000000 to

0x000000000000000000000000000F423F.

3. OOB: In this case, this is the value that is transmitted to the BLE

device via an OOB channel. This value is 128 bits. The value can

range from

0x00000000000000000000000000000000 to

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.

It is important to note that the TK is not exchanged over a BLE data channel.

This value is either fixed (as in just works), generated in one device and

manually entered on the other (passkey entry) or sent over a different

communication (OOB).

After the TK has been established, the devices each generate a RAND value,

and they use a variety of shared values to calculate confirm values (Mconfirm

and Sconfirm) using a function called “C1”. After this, the master and the

slave each exchange their confirm values.

The master then sends its MRand value to the slave. The slave uses the same

C1 function along with the same inputs and the MRand value to see if the

result matches the Mconfirm value sent from the master. If this is successful,

the slave sends the SRand value to the master. The master performs the same

type of calculation using SRand and checks the result against the Sconfirm

value received from the slave.

If both the Mconfirm values and the Sconfirm values are verified, both the

master and the slave use the original TK value along with the exchanged

Janesko, Jennifer Ann – SRN: 120232774

- 85-

MRand and SRand values to generate the STK using the key generating

function “S1”. As an input to this process, the TK is entered as the key to the

function, and the least significant 64 bits of both the SRand and MRand values

concatenated together are entered as the value to the function.

At this point, encryption is established on the link using the STK (see chapter

3.6.9.2 for the link encryption process flow), and cryptographic material can

be exchanged.

3.6.7.3 LE Legacy Pairing Phase 3

Figure 32 shows all of the possible cryptographic material that can be

exchanged in LE Legacy pairing. For both the master and the slave, the long

term key, or the LTK, is a key that will be stored long-term for the encryption

of future links. The EDIV and Rand values are stored with the LTK in the

recipient device for the later identification of the correct LTK. LTKs can be

generated pseudorandomly or they can be derived from another key (ER)

using the key diversifying function, d11. The IRK is used to resolve random

Janesko, Jennifer Ann – SRN: 120232774

Figure 32: Phase 4 LE Legacy Pairing - Exchange of Cryptographic Material [BLE-SMP,678]

- 86-

resolvable addresses on the advertising channel. And, the signature key, or

CSRK, is used to generate MIC (message integrity codes) in an attempt to

provide assurance of authenticity of the contents of a transmitted PDU.

3.6.8 Process Flow #8: LE Secure Pairing/Bonding

The only similarity between LE Legacy pairing/bonding and LE Security

pairing/bonding is that it provides a means to exchange an LTK, IRK and

CSRK. The mechanism used by which confidentiality and authenticity are

ensured in LE Secure is via elliptic curve cryptography using the NIST P-256

curve.

Unlike LE Legacy, the first part of the LE Secure process flows for

pairing/bonding differ based on the pairing method chosen; just works and

numeric comparison, passkey entry and OOB pairing. The pairing methods

will be addressed separately in the next subsections. In the final subsection,

the establishment of the LTK and the exchange of the IRK and CSRK will be

addressed.

3.6.8.1 Process Flow #8.1: LE Secure Just Works and

Numeric Comparison

The two methods in LE Secure, just works and numeric comparison, share

similar process flows. Figure 33 provides an overview of the exchanges that

take place to establish key material to generate the LTK and to prepare for the

exchange of the IRK and/or CSRK.

Janesko, Jennifer Ann – SRN: 120232774

- 87-

The steps below explain the figure in more detail.

1. Steps 1-4 represents the exchange of public keys and the generation of

a shared Diffie-Hellman key.

2. Each device has its own r variable which is set to 0 as seen in step 5.

3. After this, each device generates its own 128 bit nonce.

4. In step 7, the slave device calculates a confirmation value using the

exchanged public keys, the nonce it has generated, and the slave’s r

value. It then sends the confirmation value to the master.

Janesko, Jennifer Ann – SRN: 120232774

Figure 33: LE Secure Just Works and Numeric Comparison [BLE-

SMP,666]

- 88-

5. The master then sends its nonce value to the slave, and the slave

follows by sending its nonce value to the master.

6. The master than proceeds to calculate a second confirmation value

using the nonce forwarded from the slave. If this confirm value

matches that previously sent by the slave, then it moves on to the next

step.

7. If the pairing method is numeric comparison, each device calculates a

value based on the over-the-air exchanged nonces and public key

values via a function “g2”. This value is displayed on each device, and

the users have the chance to compare values and verify that they match

through a user interface.

3.6.8.2 Process Flow #8.2: LE Secure Passkey Entry

The passkey pairing method is similar to just works and numeric key entry,

although the difference is significant enough such that it warrants its own

process flow. Figure 34 provides an overview of the exchanges that take place

between master and slave to e establish key material to generate the LTK and

to prepare for the exchange of the IRK and/or CSRK.

Janesko, Jennifer Ann – SRN: 120232774

- 89-

The steps below explain figure 34 in more detail.

1. Steps 1-4 represents the exchange of public keys and the generation of

a shared Diffie-Hellman key.

2. The passkey is displayed on one device, and it is entered via user

interface on the other device. The passkey value is never exchanged

over-the air.

3. Both devices store the entered values in an r variable. Then, for each

bit in the passkey value, a series of steps are undertaken:

Janesko, Jennifer Ann – SRN: 120232774

Figure 34: LE Secure Passkey Entry [BLE-SMP, 670]

- 90-

1. A nonce is generated in each device and passed along with the two

public key values and the bit value from the passkey to the f4

function to calculate a confirm value.

2. The confirm values are exchanged.

3. The master sends its nonce.

4. The slave calculates the confirm value based on the the exchanged

public keys, the bit value from the passkey and the nonce sent

from the master. If the confirm value matches the confirm value

from the master, then it forwards its nonce to the master.

5. The master calculates the confirm value in a similar manner using

the nonce sent from the slave. If it calculates the same confirm

value as was sent by the slave, then the process moves to the next

step.

6. If end of the passkey has been reached, then the next step is to

calculate the LTK and prepare for the exchange of the CSRK and

IRK. Otherwise, the next bit is selected from the passkey, and the

process goes back to step 8.

3.6.8.3 Process Flow #8.3: LE Secure OOB

The out of band communication method of pairing is similar to the other LE

Secure process flows. Interestingly, it provides more structure about which

data is exchanged for the purposes of pairing than in LE Legacy pairing.

Janesko, Jennifer Ann – SRN: 120232774

- 91-

 Figure 35 provides an overview of the exchanges that take place between

master and slave to e establish key material to generate the LTK and to prepare

for the exchange of the IRK and/or CSRK.

The steps below explain figure 35 in more detail.

1. Steps 1-4 represents the exchange of public keys and the generation of

a shared Diffie-Hellman key.

2. Both devices generate random r values. These are used to calculate

confirm values on both devices.

3. Each device sends its device address, its r value and is confirm value to

the other device. This exchange does not take place over a BLE

Janesko, Jennifer Ann – SRN: 120232774

Figure 35: LE Secure OOB [BLE-SMP, 674]

- 92-

channel. It instead is transferred over some alternate channel and is

managed by the security manager.

4. Each device calculates the confirm values with the received r values

and validate that the match the transferred confirm values. If this is the

case, the devices then exchange nonces for later use in generating the

LTK and the exchange of the IRK and CSRK.

3.6.8.4 Process Flow #8.4: LE Secure LTK, CSRK and IRK

The LTK, just as in LE Legacy pairing, is the key that is used to generate the

session keys used to encrypt the link to ensure confidentiality in

communication. The generation of the key is represented in figure 36.

The steps below provide more detail about flow represented in figure 36.

Janesko, Jennifer Ann – SRN: 120232774

Figure 36: LE Secure LTK establishment [BLE-SMP, 676-677]

- 93-

1. The two devices calculate a MAC key and the LTK using the shared

Diffie-Hellman key and data exchanged during the previous steps of

the pairing process. The LTK is stored with the device address

(BD_ADDR). The MAC and LTK values are 128 bit values that can

be used as keys for use with AES.

2. Each device calculates a confirmation value using the f6 function.

3. The master sends its confirmation value, Ea to the slave.

4. The slave validates the calculation of Ea. If its value matches the value

calculated by the master, it sends its confirmation value, Eb, to the

master.

5. The master then validates the sent Eb value. If it, too, matches the

value it calculates, then the LTK value has been established.

Once the LTK value has been established, link encryption can begin. The

EDIV, Rand and, if required, the CSRK and/or IRK can be exchanged over the

encrypted channel. A session key can be established, and the encrypted data

exchange can begin.

3.6.9 Process Flow #9: Link Encryption Process Flow

(Encryption and Authentication)

Encryption only takes place on the data channel and is not part of the

specification for advertising, scanning and initiating packets. In other words,

encryption can only take place on an established BLE connection. Figure 37

shows how link encryption is started on a BLE link.

Janesko, Jennifer Ann – SRN: 120232774

- 94-

Connection, otherwise known as “link”, encryption starts in the host of the

master. The host sends the EDIV and the Rand value that belong to the LTK

exchanged previously with the slave to the master’s link layer. This is the flag

to the link layer that the link encryption process has started. The following

steps then occur:

1. The master link layer generates 2 random values: the master’s part of

the session key diversifier (SKDm) which is 64 bits long and the

master’s portion of the initialization vector (IVm) which is 32 bits

long. If the original pairing when the LTK was established was an LE

Secure pairing, the EDIV and Rand values are set to 0.

Janesko, Jennifer Ann – SRN: 120232774

Figure 37: Link session encryption establishment [BLE-LL, 95-98]

- 95-

2. The master sends an LL_ENC_REQ packet to the slave which includes

the Rand and EDIV values from the master’s host along with the

SKDm and the IVm.

3. The link layer of the slave receives this request and the sends a

message to its host with the EDIV and Rand value to look up and

validate the LTK.

4. The link layer of the slave then generates 2 random values: the slave’s

part of the session key diversifier (SKDs) which is 64 bits long and the

slave’s part of the initialization vector (IVs) which is 32 bits long.

5. The slave then sends an LL_ENC_RSP packet to the master which

includes the SKDs and the IVs.

6. Both the master and the slave then calculate the initialization vector

and the session key diversifier.

A. The initialization vector is the concatenation of the IVm and IVs

values.

B. The session key diversifier is the concatentation of the SKDm and

SKDs values.

7. At this point, the LTK is requested from the hosts of both the slave and

the master.

8. The master and the slave then calculate the session key. The

calculation of the session key is performed using AES-128, the LTK as

the key and the SKD as the plaintext value.

9. Once the session key has been established, the slave sends an

unencrypted LL_START_ENC_REQ packet. This packet has an

empty data channel payload.

10. The link layer of the slave then immediately starts preparing itself for

encryption. It creates a 5 byte packet counter value and sets it to 0.

11. Upon receipt of the LL_START_ENC_REQ packet, the master’s link

layer prepares itself for encryption. It, too, creates a 5 byte packet

counter and sets the value to 0.

Janesko, Jennifer Ann – SRN: 120232774

- 96-

12. The master then sends an encrypted LL_START_ENC_RSP value to

the slave.

13. The slave returns an encrypted LL_START_ENC_RSP value to the

master.

After this all packets that have a non-zero length data channel PDU that are

exchanged will have two cryptographic operations performed on them. First, a

MIC (CMAC) will be generated based on the first eight bits of the data

channel PDU header and the data channel PDU payload. This MIC will be

appended to the data channel PDU. After this, the data channel PDU value

and the MIC will be encrypted. The next two sections will address the

mechanics of these two cryptographic operations.

3.6.9.1 MIC (message integrity check)

A MIC is a cryptographic, 4 byte MAC based on the AES-128 CBC-MAC

algorithm. The MAC is calculated with the following values:

• The current session key established at encryption setup.

• A nonce that is made out of 39 bits of the packetCounter, 1 directional

bit which corresponds to the device sending the packet, specifically

master (1) or slave (0), and an 8 byte IV.

• The payload of the data PDU and the first byte of the PDU header

where the NESN, SN and MD fields are set to 0.

Figure 38 shows the organization of a non-encrypted BLE packet and the

components that are included in the MIC.

Janesko, Jennifer Ann – SRN: 120232774

Figure 38: Fields used to calculate the MIC [BLE-SMP,167]

- 97-

The MIC is the affixed to the end of the data channel PDU. This means that if

the PDU payload is not empty, it goes directly after the payload. If the PDU

payload is empty, it is appended to the header.

3.6.9.2 Link Encryption

Encryption takes place with the AES 128 CBC-MAC. The encryption is

performed using the following values:

• The current session key exchanged during encryption setup.

• The nonce used to generate the MIC. Each time a new encryption

occurs, the packetCounter part of the nonce is incremented by 1.

• The data channel PDU payload value and the MIC.

Figure 39 shows the organization of the a non-encrypted BLE packet and the

components that are encrypted.

3.6.10 Process Flow #10 Authenticating Packets without

Encryption

According to the specification, unencrypted packets can be exchanged, and

authenticity can still be assured through the use of a MAC. The MAC is

generated through the use AES-128 CBC-MAC and takes in three values:

• CSRK: This is a key that was exchanged via an earlier

pairing/bonding exchange.

• M: This is a concatenation of the data PDU that needs to be signed and

the SignCounter. The SignCounter is a 4 byte counter value that is set

to 0 when the CSRK is received. For each message that is “signed”,

the SignCounter is incremented by one.

Janesko, Jennifer Ann – SRN: 120232774

Figure 39: Fields to be encrypted [BLE-LL, 167]

- 98-

• Tlen: This value is fixed at 64 and represents the size in bits that the

resulting MAC should be.

The MAC is then appended to the data PDU. Figure 40 shows a logical

representation of the data PDU to the signature.

3.6.11 Process Flow #11: Private Address Generation

and Resolution

To make a device less trackable when in the advertising state, BLE provides

the opportunity to randomize the AdvA address in an advertising packet. As

highlighted in chapter 2, this address can be completely random and not

resolvable by a receiving device, and it can appear to be random but still

resolvable by a receiving device that has the correct key, IRK. Exchange of

the key IRK can be found in section 3.8.6.4.

Resolvable private addresses have the following format:

Janesko, Jennifer Ann – SRN: 120232774

Figure 40: Relationship of SignCounter and PDU Payload [BLE-GAP,

381]

Figure 41: Resolvable private address

AdvA format [BLE-SMP, 45]

- 99-

To generate a private, resolvable address, a 24 bit pseudorandom number

PRAND is generated by the link layer. The most significant values of this

number will be binary 01. The PRAND value is hashed using AES-128 CCM

with the CSRK as the key and the PRAND as the value to be hashed. The

hash is divided by 2^24, and the remainder of that division is the HASH value.

The PRAND value and the HASH value are concatenated and become the

resolvable private address for AdvA. This set of operations is called “ah” in

the documentation.

A device will use this private resolvable for only a limited time. There are two

conditions that prompt the change of a resolvable private address. First, the

device keeps an internal timer that specifies the lifetime of the resolvable

private address. If the timer reaches 0, a new resolvable, private address is

generated with the same procedure and is broadcast in the AdvA address on

the advertising channels. The other way that a new resolvable, private address

is generated is if the device is reset, and the host resets the IRK and prompts

for the use of a resolvable, private address.

A device that receives the resolvable, private address takes the 24 most

significant bits and uses the ah function and the IRK value exchanged during

pairing to generate the HASH value. If the generated HASH value matches

the 24 least significant bits of the sent AdvA value, the address is accepted as

valid, and the packet can be processed further. Interestingly, the IRK is not

associated with a specific device. If a receiving device has more than one IRK

stored, it will test each IRK with the sent PRAND value until it finds a match

to the HASH value.

Janesko, Jennifer Ann – SRN: 120232774

- 100-

4 Over-the-Air Threat Model

Taking into consideration all of the different characteristics identified in the

attack surface in chapter 3, the next step is to define the generic threats to a

BLE application from the over-the-air interface. For this part of the analysis,

Burns recommends the use of STRIDE. STRIDE is an acronym for a set of

threat modeling categories first published by LeBlanc and Howard in 2002.

The categories include:

• Spoofing identity: Spoofing an identity is when an attacker is able to

provide credentials of a different user.

• Tampering data: Tampering with data is the act of modifying the

data of the application or modifying the data as it is in transit over a

network.

• Repudiation: Repudiation refers to attacks where the application is

not able to verify that the origin of received data comes from a

trusted source.

• Information disclosure: Information disclosure is a type of attack

where an attacker has access to application information.

• Denial of service: Denial of service is where an attacker is able to

disrupt a service so as to prevent a user from utilizing that service.

• Elevation of privileges: Elevation of privileges is where an attacker

is able to access the application and then gain further, unauthorized

access to additional parts of the application.

In the next chapter there will be a section dedicated to each of these threat

model categories. The order by which they are presented will device from the

S-T-R-I-D-E order. The most relevant categories will be presented first.

Relevant threats in these categories will be introduced and briefly described.

It may be the case that some threats will belong in more than one category, but

Janesko, Jennifer Ann – SRN: 120232774

- 101-

to conserve space, if a threat is introduced in an earlier threat category, it will

not be repeated in a later category.

4.1 Spoofing

The act of spoofing BLE communication would mean that an attacker is able

to pose falsely as another device. There are multiple opportunities for

spoofing because BLE devices identify themselves in a variety of ways. These

include:

• via device addresses on the advertising channel, including:

◦ AdvA (for advertising devices)

◦ ScanA (for scanning devices)

◦ InitA (for initializing devices)

• via the access address on the data channel

• via the signature on the data channel

• via service selection offerings which can be communicated on both the

advertising channels and the data channels

• via an application-specific mechanism

Each subsection below will describe each of the spoofing opportunities in

more detail.

4.1.1.1 Spoofing Device Addresses on Advertising Channel

Device addresses on the advertising channel provide a way for other BLE

devices to identify which devices are active on the channel.

• The AdvA address tells scanners which devices are broadcasting. BLE

scanners can make decisions on whether or not to send a scan request

or connection initiation requests based on an AdvA address.

• The ScanA address can be used by an advertiser to determine whether

or not to respond to a scan request.

Janesko, Jennifer Ann – SRN: 120232774

- 102-

• The InitA address can be used to evaluate whether or not an advertiser

should establish a connection with the initiating device.

As highlighted in chapter 2, there are four different methods of establishing

these addresses on the advertising channel. Address are either: assigned

Bluetooth device IDs, random static addresses, random private unresolvable

addresses or random private resolvable addresses.

In the first two cases, spoofing the addresses is trivial because the addresses

are static. A sniffer can be used to eavesdrop the advertising channels and

observe these addresses. These addresses can then be programmed into a

Bluetooth device and messages can be broadcast on behalf of the device which

has the fixed address. In classic Bluetooth, this is known as “MAC spoofing”

[MIN12]

This can be achieved at low cost with a normal BLE dongle and the Bluez

stack. It can also be accomplished by installing an app on a mobile device like

Nordic’s nRF Connect or iOS’s LightBlue Explorer.

In the third case where the address is random private non-resolvable, the

randomness of the address does not detract from its vulnerability to spoofing.

This type of address, however, is not meant to be resolved, so it is unlikely that

another device will use this type of address to identify uniquely another

communicating device.

In the last case, the case of the address’ being a private resolvable address,

spoofing is a little trickier but not insurmountable. Private resolvable

addresses are temporary addresses that are generated with a nonce and an IRK.

New addresses are generated when an internal timer runs out or when the

device is reset. In the case of AdvA addresses, this means that if an attacker is

able to eavesdrop on the advertising channel and learn one of its resolvable

AdvAs, it will be able to spoof that AdvA and continue to use it even if the

original device’s timer runs out and it changes its AdvA. There is no replay

protection built into the generation or validation of a private, resolvable

address.

Janesko, Jennifer Ann – SRN: 120232774

- 103-

Both the ScanA and InitA addresses are a bit more difficult to spoof due to the

infrequency of their broadcasts. A ScanA address is only present in scan

requests. An InitA address is only present in initiating requests. This means

that an eavesdropper must be present at the time of these requests to be able to

sniff these values and use them. To facilitate this, an active attacker could use

a previously sniffed AdvA address to spoof an advertisement that indicates that

it can be scanned or connected to. This would prompt a scanning device to

either send a scan request or a connection request and reveals its ScanA or

InitA addresses respectively.

Another way that an attacker could spoof a resolvable private address is to

gain access to the target device’s IRK used to generate these resolve these

addresses. There are a handful of ways to gain access to the IRK, and they are

discussed in section 4.3.1.2 below.

4.1.1.2 Spoofing Access Addresses on the Data Channel

Checking the access address in packets on the data channel is one of the

methods used to identify a peer device in a connection on a data channel. This

value is exchanged in plaintext at connection establishment, and it continues to

be sent in the clear even if the data PDU is encrypted. An attacker can sniff

this address either by eavesdropping during connection establishment or by

listening for the address on one of the data channels after the connection has

been established.

There are a few challenges that an attacker must overcome in order to be able

to use the access address consistently in a connection. The access address can

only be utilized if the attacker knows the connection configuration of the

communicating devices and can follow the connection. This information

includes connection values like:

• the channel map (which channels will be used),

• the hop interval (how long a connection event will last),

• and the hop increment (which determines the order of channel

hopping).

Janesko, Jennifer Ann – SRN: 120232774

- 104-

These types of values are established at one of two possible times. They can

be established at connection initiation where all values are exchanged in

plaintext. They can also be updated at any time during a connection via a

connection update request from either the master or slave. Connection

information can be updated either in plaintext or over an encrypted link.

The reason why it is essential for the attacker to know the connection

parameters to be able to spoof on the data channels is due to BLE’s channel

hopping strategy and the limitations of sniffing hardware. It is challenging to

intercept data channel messages because the messages can be sent over 37

different channels. There are devices that have the capability to scan all

channels at one time such as the Ellisys Bluetooth Explorer. In academic

research, Spill and Bittau showed that two USRP boards could be used to

eavesdropped over 5 classic Bluetooth channels at a time [SPI07]. These

solutions are cost prohibitive. Ellisys devices cost upwards of $10,000. The

USRP solution proposed in the academic paper would require multiple USRPs

which would also push costs upwards of $2000 These options will not be

further discussed in this project.

In the lower-cost, ~$100 or less, more practical range are sniffers such as the

Texas Instruments CC2540 Dongle, the Nordic nRF51-Dongle, the Adafruit

Bluefruit LE Sniffer and Ubertooth. These devices only have the capability to

listen to one channel at at time. These sniffers listen for connection

establishment, gather the information exchanged at connection initiation to

follow one single connection. This allows a sniffer to follow data

transmissions over the different channels and eavesdrop on one single

connection between two BLE devices. No other advertisements or connections

can be overheard by the device at the time that a connection is being sniffed.

If a connection is already established and the initiating phase was missed, a

sniffer would need to sample transmissions on a select set of channels and then

rebuild the connection information from observed activity. The Ubertooth

sniffer, for example, has the ability to rebuild connection information in the

case that the original connection initiating phase has been missed [RYA13].

Janesko, Jennifer Ann – SRN: 120232774

- 105-

To summarize the process:

1. The BLE sniffer selects a data channel and sniffs packets only on that

channel.

2. Once it receives packets, it reverses the CRC init value.

3. It then sniffs the same channel and measures the time gap between

CRC-validated, captured packets.

4. From there the hop interval is determined where it is assumed that all

37 channels are being used. This is completed by solving the equation:

5. Once the hop interval is determined, a second channel is selected. The

sniffer will listen to the first channel, when it detects a packet on the

first channel it will hop to the second channel and wait for a packet. It

then determines the amount of time that has passed between receiving

the packets on the first and second channels.

6. From there the number of channels that were hopped between the first

and second channel can be calculated with the following equation:

7. From there a lookup table can be used to determine find the hop

increment used, and all of the variables needed now to follow the

connection are known.

The weakness in the procedure above is that the Ubertooth only supports

connections that use all 37 of the available data channels. According to Ryan,

Janesko, Jennifer Ann – SRN: 120232774

Figure 42: hopInterval

Calculation[RYA13b]

Figure 43: channelsHopped

Calculation[RYA13b]

- 106-

all the devices that had been tested prior to his paper in 2013 had utilized all

data channels in spite of the fact that the specification allows for fewer. A

possible extension to the Ubertooth sniffer would be to assume the 37

channels by default, and after getting the communication parameters, follow

the connection to validate that the parameters have been calculated correctly.

If the Ubertooth is unable to sniff successfully and consistently over the

mapped channels, then perform the calculation again with a modulus of 36

channels, and do the same type of verification as with the the 37 channels.

The complicating factor about doing this type of verification is that any of the

37 data channels can be the channel that is not used. This means that for a

connection that uses 36 channels, in the worst case scenario it would take 37

attempts to calculate and verify a connection.

Once the connection parameters have been identified, an attacker could

theoretically send messages on behalf of either the master or the slave by

spoofing the access address. Given the limitations of current BLE

sniffing/transmission technology and the timing requirements of this type of

attack (see section 4.2.1.2), this type of attack would require a significant

amount of effort to develop.

4.1.1.3 Spoofing the Signature on the Data Channel

During pairing, two devices can agree to exchange connection signature

resolving keys (CSRKs). The CSRKs are used to generate MACs over a

counter and a data PDU to ensure authenticity of messages transferred from

one device to the other. The receiving device verifies the MAC, and if

validation is successful, it continues to process the message and stores the

latest counter value.

According to the NIST publication, “Guide to Bluetooth Security”, there are

two ways that the CSRK can be established. It can be established by the

generation of 128 bit random numbers which are then stored in a database on

the device or derived from a 16 bit key diversifier and a stored ER key

[SOU13]. According to the documentation, however, the CSRK can be

assigned at time of manufacturing [BLE-SMP, 40], or it can be generated

Janesko, Jennifer Ann – SRN: 120232774

- 107-

from a key diversifier function, d1, that takes a stored, ER value and a key

diversifier value [BLE-SMP, 71]. The difference between the NIST

description and the BLE specification description is that in the first case of key

assignment, NIST assumes that there will be multiple possible CSRKs

assigned whereas the BLE specification only specifies one key. Assuming the

specification is correct, the two different methods of establishing the CSRK

provides at least two different methods of acquiring the CSRK for spoofing

purposes.

• In the case that the CSRK was established at time of manufacturing,

and it is a fixed, single value, an attacker could conceivably pair with

the target device, request the exchange of the CSRK and then have the

CSRK at his or her disposal. Then the attacker would be able to use

that CSRK to create and sign messages.

• In the case that the device generates a new CSRK from the ER and a

key diversifier value, the procedure that generates the CSRK could be

poorly managed. For example, the device could mistakenly use the

same diversifier for each, new CSRK exchange. In this case, the

attacker would use the same method as above where the CSRK was

fixed at the time of manufacturing. Pair, request CSRK, collect and

use key.

• If each CSRK is generated with a new diversifier, however, this makes

the task of an attacker much harder. Unless there were an obvious way

to predict the key from the device, the attacker would need to be able

to eavesdrop on the key exchange at the time of pairing. There is

limited opportunity to do this, and it will be addressed in the section on

confidentiality.

4.1.1.4 Spoofing via Service Offerings

When an advertiser broadcasts that it is accepting connection requests, a

scanner device can determine if it wants to establish a connection by

reviewing service offerings being broadcasted by the advertiser. There is the

Janesko, Jennifer Ann – SRN: 120232774

- 108-

possibility of an advertiser to specif which services it desires from the master,

and which services it can offer a master. Based on this information, a scanner

can make a decision as to whether or not it will initiate a connection with the

advertiser [TOW14].

A way that an initiator can determine the service offerings prior to establishing

a full pairing session to a slave is to establish a non-paired connection. In this

respect the initiator becomes the master and the advertiser becomes the slave.

Then, the master can request a list of the available GATT services of the target

slave. If the slave does not offer the services the master is interested in, then

the master can opt not to pursue further communication with the slave. To

spoof the slave, then, it may be necessary to also clone the slave’s services.

4.1.1.5 Spoofing via Application-Specific Mechanisms

Specific applications may add additional mechanisms for the provision of

authenticity that go beyond the specification of Bluetooth low energy. These

will need to be evaluated on a case-by-case basis to ensure that they provide

appropriate protections against spoofing.

4.2 Tampering

 Tampering with data over-the-air by manipulating the signal directly is not

feasible with the equipment available to a standard security analyst. Instead,

to tamper with data, an attacker would need to spoof the identifying

characteristics of the target device’s communicating partner and overcome the

data integrity mechanisms in use. The data integrity on BLE channels is

protected by four different mechanisms:

• via the BLE packet exchange protocol itself

• via a BLE packet CRC

• via a BLE data channel PDU signature

• via BLE data channel PDU encryption/MIC

Janesko, Jennifer Ann – SRN: 120232774

- 109-

Each of these mechanisms require an attacker to use different strategies to be

able to tamper with communication.

4.2.1 Tampering and BLE Packet Exchange Protocol

The packet exchange protocol can facilitate and also inhibit message

tampering depending on whether data is being exchanged over the advertising

channel or the data channel.

4.2.1.1 Advertising Channel

Over the advertising channel, if a device spoofs the AdvA address of a device,

it could:

• broadcast false data values for consumption by a scanner,

• broadcast connection availability and trick an initiator into establishing

a connection with the wrong advertiser.

In general, if two devices broadcast on a channel at the same time, their

broadcasts will most likely cancel each other out. This, however, is not a huge

problem on the advertising channels. This is because there are no timing

requirements that inhibit communication over the advertising channels. There

is a certain degree of coincidence that an advertiser will be transmitting and

scanner or an initiator will be listening at just the right times [TOW14].

Further, Bluetooth devices, especially advertisers, are created to conserve

energy. Hence, advertising devices will limit the rate of broadcasting to save

battery power. An attacker can take advantage of the unused air time to spoof

the advertiser and broadcast packets more frequently on its behalf thereby

increasing chances that it will be heard by scanners and potential initiators

[JAS16].

4.2.1.2 Data Channel

The packet exchange protocol on the data channel is more challenging because

of the timing requirements for packet exchange. The exchange of packets is

organized by “connection intervals”. A connection interval is the amount of

Janesko, Jennifer Ann – SRN: 120232774

- 110-

time that communication will take place on one channel before the hop to the

next channel. At the beginning of a connection interval, there is what is called

a “connection event”. This is a point of synchronization between the master

and the slave. The master sends the first packet on a new data channel, and

before it can send any further packets on that channel, the slave must respond.

A slave has the opportunity to respond or ignore the packet sent at the

connection event. A value called “slave latency” defines the number of

connection events that a slave can skip before the connection times out. If an

exchange of data does occur on a channel, it does so in a master-slave, master-

slave fashion. Between two packets being sent between master and slave,

there is a short wait time called “interframe space” or “T_IFS”. This is a 150

microsecond window of time.

A connection interval ends, and the master and slave hop to the next channel

when one of the following conditions hold true.

• Time has run out on the connection interval, and a new connection

event must be started.

• Both the master and the slave have set the MD field in the data channel

PDU header to 0 which indicates that there are no further messages for

this channel.

To be able to tamper with the data on the channel, an attacker would spoof one

of the devices in the connection by using the connection’s access address,

determine the connection parameters, follow the connection hops and then

transmit data during a connection interval. Because the timing of the

messages and the back-and-forth nature of packet exchange, an attacker needs

to find a slot for transmission that is empty. Otherwise it runs the risk of

transmitting concurrently with the master or slave and creating a denial of

service condition.

To compromise the integrity of communication over the data channel, an

attacker would need to utilize the space between packet transmissions. Figure

44 shows a logical representation of master and slave packet exchanges over

two channels.

Janesko, Jennifer Ann – SRN: 120232774

- 111-

As can be observed in the figure, there can be some empty space after the

master and/or slave packet transmissions. This can be due to a variety of

factors:

• The slave may be in a mode to ignore the master on the connection

interval. In that case, the slave would not respond to the master’s

connection event transmission.

• A transmitted packet may not leave enough space on the connection

interval for the next device in the communication to be able to fit the

next packet in the space, so it must wait to the next interval.

• The master and the slave may have been finished communicating on a

particular connection interval, but they mistakenly did not transmit

packets with the MD header bit set to 0.

An attacker can spoof the connection access address, and then send messages

in these spaces. These messages would need to fit the context of messages

being exchanged at that point and time or run the risk of being rejected.

There are a couple of strategies that an attacker could use to take over the

connection context so that it would not have to compete with the device that it

has spoofed.

• An attacker could spoof a slave device, sniff the connection, and then

forge a connection change request. The master would then update the

connection parameters and start communication directly with the

spoofed slave device instead of the original slave. The attacker would

then be the slave and send data packets to the master.

Janesko, Jennifer Ann – SRN: 120232774

Figure 44: Example of Packet Exchanges on a Connection [BLE-LL, 100]

- 112-

• An attacker could spoof a slave packet by eavesdropping the access

address, and then forge an end connection request on behalf of the

slave. The master packet would then end the connection. The attacker

could then do one of two things:

◦ He or she could spoof the slave’s AdvA address, and flood the

advertising channel with advertisements that support connections.

The master could then establish a connection to the attacker’s slave

device, and the attacker could communicate exclusively with the

master.

◦ He or she could spoof the master’s AdvA address and listen for

advertisements from the original advertiser. The attacker could

then establish a connection with the advertiser on behalf of the

original master and send packets to the original slave.

4.2.2 Tampering and BLE Packet CRC

BLE packets have a cyclical redundancy check value that is appended to

provide some assurance that packets are not modified during transmission.

The equation and input values are generally know with one exception, namely

the CRCInit value. On the advertising channel, the CRCInit is 0x555555. On

the data channel, the CRCInit value is negotiated via the

CONNECT_REQUEST PDU.

The CRCInit value that is used on the data channel can be ascertained in one

of two ways. The first is to sniff the value at connection establishment. This

value is transmitted at this time in plaintext. The second way to do this is to

brute force the the CRCInit value. This can be performed quickly with CRC

reverse engineering software such as reveng. reveng has, in fact, a Bluetooth

low energy configuration [COO17].

Janesko, Jennifer Ann – SRN: 120232774

- 113-

4.2.3 Tampering and the Data Channel PDU BLE

Signature

The BLE signature is used to provide assurance of authenticity on a

connection that is not encrypted. As highlighted in the spoofing section, the

signature is created with a combination of the contents of a data PDU, a

signature counter and the CSRK. The signature counter is set to 0 when the

CSRK is established, and it is incremented each time that a message is signed.

The counter is employed to provide a level of assurance of freshness to sent

messages. There are two ways that the signature can be compromised so that

an attacker can tamper with messages sent.

The first tampering method is to gain access to the CSRK. These options are

addressed the spoofing section. Once an attacker has access to the CSRK, all

that the attacker must do is eavesdrop on the last packet exchange where the

CSRK was in use to gain access to the latest counter value. Once the attacker

has access to both the CSRK and the correct counter value, then the attacker

would be able to tamper with message transmission on a connection.

The second potential tampering threat involves three devices. Suppose device

A and device B have paired, during which time device B had sent its CSRK to

device A. An attacker then uses device C to spoof device A and to establish a

connection with device B. Device C then engages in packet exchange with

device B where device B sends a series of signed messages that are recorded

by device C. Device C then disconnects from device B, spoofs the identity of

device B and establishes a connection with device A at a later time. Device C

can then replay the recorded messages from device B.

The first threat is the more dangerous and practical threat of the two. An

attacker that has access to a CSRK can create desired messages and the

receiving device will accept them without the knowledge that they have been

forged. The second threat is more theoretical, and its success is dependent on

the application logic and the kinds of signed messages that could be elicited

and recorded by an attacker.

Janesko, Jennifer Ann – SRN: 120232774

- 114-

4.2.4 Tampering and Data Channel PDU Encryption/MIC

As discussed in chapter 2 and 3, an encrypted session can be established on

over a BLE connection. This link’s encryption and MIC are employed to

provide confidentiality and authenticity of communication. If an attacker can

compromise the cryptographic mechanisms as described in section 4.3.1.2,

then it is possible to tamper with transmitted data. There are three attacks

feasible on an encrypted channel.

The first attack that is feasible is for an attacker to gain access to the LTK

established during pairing. This key is used to derive the session key that is

used to encrypt the data channel PDU and to create a MIC over the PDU.

With this key an attacker has two possibilities. First and foremost, if the

attacker is able to spoof the access address of the device and use the LTK, the

attacker would be able to establish a connection with a target device and send

forged messages to the device. The other possibility for an attacker would be

to listen during connection initiation and eavesdrop during session key

establishment for the initialization vector and key diversification value

exchange, and then inject packets on the connection as described in section

4.2.1.2. Methods of gaining access to the LTK are discussed in sections 4.2.5

and 4.3.1.3.

4.2.5 Tampering and Man-in-the-Middle

The final threat under the category of tampering is the threat of a man-in-the-

middle attack. In a man-in-the-middle attack, the attacker must have a

computing device and two BLE dongles. Figure 45 shows the basic anatomy

of the attack.

Janesko, Jennifer Ann – SRN: 120232774

- 115-

The setup of the attack is partially dictated by the packet exchange protocol on

the data channel. The following steps describe the execution of the attack in

more detail:

1. First, the attacker must be able to identify two communicating devices

and clone those devices.

2. Second, the attacker must wait for the connection between the devices

to be broken, instigate the end of a connection as discussed in section

4.1.1.3, or inject interference on the data channels and thereby cause

the connection to break down.. In the example above, if the PC were

powered down, the connection would be broken.

3. Once the connection is broken, the slave device will periodically send

advertisements with connection information. The attacker will then

establish a connection with the slave using the cloned information from

the master. Since slave devices can only be connected to one device at

a time, there is no way that the slave can pair with the original master

once it is connected to the attacker’s device.

Janesko, Jennifer Ann – SRN: 120232774

Figure 45: Logical Representation of a BLE Man-in-the-Middle Attack

- 116-

4. Once the attacker has connected to the slave device on its first BLE

interface, it will begin sending out advertisements using the cloned

data from the slave on its other BLE interface.

5. Once the master device is started again, it will receive the

advertisements from the attacker’s clone and initiate a connection.

Once the connection is established, the attacker will have to forward the

communication between the two BLE attack interfaces. In doing this, the

attacker is able to eavesdrop on all of the communication between the master

and the slave. The attacker will also be able to manipulate the data being

passed back and forth. There are a handful of notable researchers who have

demonstrated this is possible. Ryan demonstrated this type of Man-in-the-

Middle attack in his talk, “NSA Playset: Bluetooth Smart”. In this talk he

demonstrated how a man-in-the-middle attack could be performed on a BLE

mouse (the slave) and a laptop (the master) [RYA14]. Jasek has introduced a

tool called GATTACK which supports man-in-the-middle attacks by

facilitating communication between the attacker’s BLE interfaces via

websockets and node.js [JAS16]. Cauquil has also introduced the Btlejuice

tool that also leverages node.js for BLE man-in-the-middle manipulation

[CAU16].

4.3 Information Disclosure

Confidentiality for Bluetooth low energy is ensured via the use of encryption

and private, resolvable addresses. There has been a significant amount of

work in the field concerning confidentiality and privacy issues in the area of

BLE. Information disclosure, a breach of confidentiality and privacy, can be

broken up neatly into two main categories:

• data exposure: This has to do with the exposure of confidential data

during transmission.

• trackability: This has to do with the how easily a device in use can be

used to track individuals over time.

Janesko, Jennifer Ann – SRN: 120232774

- 117-

Underneath each of these two categories are a number of options for attack.

4.3.1 Data Exposure

4.3.1.1 Unencrypted Transmissions

The BLE specification allows for the transmission of data in plaintext. The

specification does not natively support encryption on the advertising channel.

If the data is encrypted, the encryption is being performed at the application

layer.

One type of related attack that is common in classic Bluetooth is called

“Blueprinting”. This is where information such as manufacturer, device

version and firmware versions can be collected from a Bluetooth device

without any authentication [MIN12]. This type of information can be used by

an attacker to determine whether a device is susceptible to known, published

attacks. And, while this type of attack was developed classic Bluetooth, the

attack is also available, at least in part, for BLE. During advertising, there is

an optional field defined for manufacturer-specific data in the advertising data

payload. This, along with the listing of services advertised, could be used to

determine the manufacturer and other implementation-specific details about

the device. These features are largely available in the RaMBLE app for

Android [LES16].

On the data channel, data can also be exchanged also in plaintext. If an

attacker is able to sniff a connection as described in section 4.1.1.2, then the

attacker will have full access to the data exchanged.

4.3.1.2 Pairing BLE Legacy

The purpose of pairing is the establishment of an LTK and the possible

exchange of an IRK and CSRK. In his paper, “With Low Energy Comes Low

Security”, Mike Ryan provides an analysis of the pairing exchange for all of

the different type LE Legacy pairing, ie. just works, passkey entry and OOB

[RYA 13b]. His analysis points out that almost all of the key material for the

establishment of the LTK is exchanged in plaintext between two devices.

Janesko, Jennifer Ann – SRN: 120232774

- 118-

There is one value that is unknown to an attacker, and this value’s

characteristics is dependent on the pairing method.

In the case of just works and passkey entry, the unknown value is a six digit

value. In the case of OOB paring, the value is up to a 128 bit value. The six

digit value is easily brute forced, and it is therefore trivial to be able to gain

access to an LTK that has been established using passkey entry or just works.

If during OOB pairing, an unpredictable, 128 bit value is used, then the LTK is

safe because it would take too long to brute force 2^128 values. If the value is

weak, predictable or the transmission channel is compromised, then the

attacker would then be able to establish the LTK value.

If an attacker is successful gaining access to the LTK at the time of pairing,

then it is possible to also be able to decrypt the data exchange when the IRK

and CSRK are also exchanged. This has implications for tampering as

discussed above in sections 4.2.2-4, and it also has implications for privacy

which is discussed in section 4.3.2.3.

Access to an LTK is not sufficient to be able to sniff further, new sessions on

the BLE link. This is due to the fact that when a new session is established, a

new IV and new key diversifiers are exchanged to establish a session key. If

an attacker misses the values at session establishment, then the attacker will

not be have access to the session key. The attacker can get by this by

interfering with communication and forcing the connection to drop and restart.

On reconnection a new session will be established, and the attacker will be

able to sniff the new session key values.

4.3.1.3 Pairing and Bonding BLE Secure

Accessing the LTK over-the-air with LE Secure is more challenging than in

LE Legacy. In LE Secure, an ECC Diffie-Hellman exchange based on a NIST

P-256 curve is used to establish the shared secret used in the generation of the

LTK. Due to the size of the shared secret, 2^256 bits in length, it cannot be

reasonably brute forced. That being said, the NSA dropped its support of the

NIST P-256, although the reasoning behind its move away from the standard

is not wholly clear at this time [KOB16].

Janesko, Jennifer Ann – SRN: 120232774

- 119-

Although ECC is used, there are two weaknesses to which BLE Secure pairing

and bonding are subjected. The first weakness has to do with a debugging

feature of BLE. BLE has a debug mode, and in this mode, both devices use a

predefined set of Diffie-Hellman values for pairing (see figure 46).

If these values are used, the LTK can be recovered by eavesdropping on the

rest of the publicly-exchanged values at the time of pairing.

The second weakness can be found in just-works, passkey and numeric

comparison pairing. This type of pairing does not protect against man-in-the-

middle attacks. The values in these authentication protocols are exchanged in

plaintext. An attacker could potentially capture these values and calculate the

correct confirmation values. Using this technique, any keys exchanged during

pairing can be eavesdropped.

4.3.1.4 Side Channel Attacks

Even if the data PDUs are encrypted, an attacker can gain information about

the information being exchanged by looking at the characteristics of the

packets that are exchanged. The headers of the packets and the control data

are never encrypted. This information can provide a great deal of information

about what is contained in the BLE packets. In addition to this, there is packet

length, rate of packet exchange and patterns of packet exchange that could

provide information for an attacker. For example, Das et.al. performed a study

that looked at various BLE devices and the data that could be discerned via

these side-channel methods. In one experiment, they sniffed the packets

transmitted by a fitness tracker. The size of the packets were enough for the

Janesko, Jennifer Ann – SRN: 120232774

Figure 46: Debug Diffie-Hellman Values for LE Secure [BLE-SMP,

615]

- 120-

researchers to determine which activity was being reported to the connected

application [DAS16].

4.3.1.5 Poor Key Management

The NIST guide provides list of common weaknesses in key management with

respect to BLE. The first is that link keys can be stored improperly. If they

are easily reachable via an app interface or via request over-the-air, then they

are susceptible to theft and use. Another weakness in key management is that

a BLE device’s pseudorandom number generator may not provide a sufficient

amount of entropy. This is likely due to the fact that many BLE devices are

working with resource-constrained hardware. If the randomness can be

predicted or is periodic, then the the keys can be compromised.

And, last but not least, the STK key lengths themselves are negotiable. The

length of the key that is used in cryptographic calculations will always be 128

bits. But, the negotiated key value can be as small as 7 bytes (56 bits). If a 7

byte value is negotiated between two devices, then at the point of encryption it

is prepended with 0 values until it is 128 bits long to satisfy the required 128

bits for AES. Naturally, the smaller the key length, the easier it is to crack the

key value [PAD13].

4.3.2 Privacy

Privacy is one of the most scrutinized points of Bluetooth low energy. This is

most likely due to the fact that privacy is the easiest aspect of BLE to analyze.

There are four aspects of privacy that need to be explored with respect to data

exposure [ALB16][DAS16][FAW16][HIL16][LIN16][WOO15][ZIE14].

4.3.2.1 Data on the Advertising Channel

As people move around with their headphones, beacons and smart watches,

these devices are often in broadcast mode on the advertising channel. When a

device is not connected to its master device, it advertises from time to time

with a message indicating that connection is possible. In addition to this, other

data can be transmitted such as the name of the device, the manufacturer, the

Janesko, Jennifer Ann – SRN: 120232774

- 121-

name of the user, services offered etc. If the transmitted information is unique

in nature, it can be tracked for up to 100 meters with only a BLE dongle. A

device does not have to be in eyesight to be able to be tracked or located.

4.3.2.2 Public and Random Static Device Addresses

The most common way of tracking a device, however is via the public device

address or the static device address on the advertising channel. This address is

fixed and unique to the device, and it is broadcast with every packet on the

advertising channel. The Android app, RaMBLE, was developed to provide

an inventory of the BLE devices broadcasting on the advertising channel. For

tracking purposes the app is useful in that it keeps a history of the times that a

device has been detected, and a map of where devices have been detected

[LES16].

4.3.2.3 Private, Resolvable Addresses

Resolvable, private addresses, introduced in chapter 2, are used to reduce the

trackability of a device. And, although privacy has been a key point of

criticism of BLE and Bluetooth use, not all manufacturers have implemented

it. For example, manufacturers Fitbit and Basis have indicated that they would

like to implement LE privacy, but due to the “fragmented Android ecosystem”

they could not implement it because of lack of systematic LE Privacy support

[HIL16].

Resolvable, trackable addresses are used by a device for a limited time period,

and then a new one is generated. The variables that are used to generate the

address are the IRK and a 24 bit PRAND which always begins with 01. The

algorithm that generates the resolvable private address generates a 24 bit

MAC, and then it concatenates the RAND and the MAC together and sends it

as the device’s address. Resolvable private addresses can be used for AdvAs,

ScanAs and InitAs.

The private, resolvable address can be attacked in a variety of ways. The first

way is to exploit the weaknesses identified in both LE Legacy and LE Secure

Janesko, Jennifer Ann – SRN: 120232774

- 122-

pairing to gain access to the IRK. If an attacker has the IRK, then it can be

used to identify a device from all others.

The second way to attack the resolvable address is to take advantage of the

poor key management in the specification. The IRK can be established in one

of two ways. It can be hard-coded at the time of manufacturing, or it can be

derived from a hard-coded IR value and a pseudorandomly generated key

diversifier. If the key is fixed, then any device that engages in pairing and

exchanges IRKs will have access to the IRK value.

The third way to attack attack a private, resolvable address is due to poor

implementation of the address itself. The device should keep an internal timer

that tracks the amount of time that a device has used its current address. If an

attacker could find a way to attack the timer, or if the the timer is set for a

longer period of time, an attacker would be able to track the fixed address.

4.3.2.4 Long Range Surveillance

The maximum transmission range of BLE in the 4.2 specification is 100

meters. The information that is broadcasted can be used to track a target.

Tracking a target by BLE may not seem too advantageous in comparison to

visually tracking. That is, if the target is in eyesight. If the target is behind a

wall or in a building, then confirmation of presence via the detection of a

person’s BLE device could provide an attacker key information.

To extend the range a standard Bluetooth signal, Cheung and his team built a

device called the “Bluesniper” [CHE 05]. His team was successful in

establishing communication over a .5 mile distance by modifying a Bluetooth

dongle and adding a long-range directional antenna. This allowed signals to

be received over extended distances, but active transmission of signals was

tricky because of timing. In order to be able to get known, active Bluetooth

exploits to work, the exploit software had to be modified to take into

consideration the timing limitations introduced by the long distances [CHE04].

At this point and time, no one has made any devices that are tailor-made for

BLE public that perform the same type of amplification and range. But, it is

Janesko, Jennifer Ann – SRN: 120232774

- 123-

conceivable that such a device could be developed. This device could then be

used to passively scan for target devices advertising either identifying address

or unique information in an attempt to locate an individual.

4.4 Elevation of Privileges

Elevation of privileges is the act of gaining access to an application and then

exploiting vulnerabilities to gain further unauthorized access to the

application, the underlying system or resources provided by the system. There

is a variety of approaches that an attacker can use to find and exploit these

vulnerabilities.

4.4.1 Exploitation of Exposed Attributes

Each attribute that is stored on a BLE device and is accessible via the GATT

layer can require a specific level of security: encryption, encryption and

authentication, authentication with MITM protection and authentication

without MITM protection. Each attribute can have read and/or write

characteristics. An attacker can establish a basic connection to another BLE

device and the iterate through all of the handles or UUID values that are

available on the connected device to determine actions that can be performed

on the discovered attributes. This can be accomplished via a simple python

script or the gatttool and a BLE dongle. If an attribute is not properly assigned

the appropriate security level, an attacker could access and even modify values

that should not otherwise be available.

4.4.2 Fuzzing Attacks

A second way that attackers often find ways to escalate privileges is through

the process of fuzzing. Fuzzing is the act of sending messages to an interface

with unexpected values in an attempt to see how the application behind that

interface reacts. Fuzzing can result in unexpected application behavior, buffer

overflows and the discovery of application backdoors. BLE fuzzing can be

broken down into two levels: GATT/ATT profile fuzzing and BLE protocol

fuzzing.

Janesko, Jennifer Ann – SRN: 120232774

- 124-

4.4.2.1 GATT/ATT Profile Fuzzing

At the GATT/ATT level of the BLE stack, data is defined and organized into

services as described in chapter 2. As with all services, the applications expect

that the data exchanged at the service level have a certain type, length, range

of values, etc, and these values can be fuzzed.

4.4.2.2 BLE Protocol Fuzzing

Theoretically, the BLE protocol layer could be fuzzed. In the specification

several value ranges are defined for different control bits in a packet.

Sometimes the value ranges do not cover the entire set of possible numeric

values that could be represented by the defined bit range. Values outside of

these ranges could be submitted to see how the controller or the host react.

Relatedly, there are several points in the specification where there are bit

values which are designed as “reserved for future use” (RFU) fields and

should contain 0 values. Non-zero values could also be submitted in the RFU

fields to see how the controller or host responds.

Fuzzing at this level is complicated by the fact that a standard BLE dongle

should only be able to communicate using well formed packets. For this type

of attack at lower level layers, special hardware and firmware would be

needed so that more control over the implemented protocol stack would be

available. At the GATT an ATT levels, the PyBT python library has been

developed to provide the opportunity to send packets that do not conform to

the specification [RYA17].

4.4.3 Injection Attacks

Another way to escalate privileges is through typical injection attacks such as

SQL injection, code injection, LDAP injection, etc. In this case, the attacker

would transmit injection values over-the-air to a master device with the intent

that this value would be passed further to upstream processes where the input

would be interpreted by the application at that stage of the process. Example

goals of this type of activity would be to execute commands in an application

Janesko, Jennifer Ann – SRN: 120232774

- 125-

further upstream or to cause the application to reveal information system

details such as configuration information or login information.

4.4.4 Brute Force Attacks and Whitelists

On the advertising channel, a device has the possibility to set up a whitelist.

The whitelist contains either the AdvA, InitA or ScanA addresses that are

allowed to communicate with the device on the advertising channel. If an

attacker wants to be able to communicate with a target device with a whitelist,

then the attacker would need to acquire the device address saved in the

whitelist so that it can be spoofed. This can be accomplished in one of two

ways. This could be accomplished by sniffing traffic on the access channel

and tracking the addresses exchanged there. Or, alternatively, if a device in

the whitelist is a standard Bluetooth device ID, and the attacker knows the

manufacturer of the device, the attacker might be able to brute force the

address [MIN12]. The first 3 octets of a Bluetooth device ID are fixed for a

manufacturer. The attacker would simply need to iterate through the second 3

octets until the Bluetooth device ID could be determined.

4.4.5 Replay Attack

In a replay attack, the attacker records communication between two devices.

If the values exchanged are fixed each time, such as a password being passed

in plaintext or even being passed in an encrypted form without replay

protection, then the attacker can spoof one of the target devices and replay the

information that has been captured during the exchanges. The NCC group has

developed a set of Python scripts to facilitate this type of testing for mobile-

app-based BLE systems. These scripts are dependent on a modified version of

the pygatt python library and apps that can run in an Android device in

developer mode.

4.4.6 Reflection/Relay Attack

In a reflection attack, an attacker simply relays signals from one BLE device

to another without any knowledge of the application values that are being

Janesko, Jennifer Ann – SRN: 120232774

- 126-

exchanged [MIN12]. To clarify how the attack works, a theoretical scenario

will be presented. Consider, for instance, a theoretical BLE-controlled lock.

The lock has been paired using LE Secure with a mobile phone. The lock has

two actions that can be performed upon it.

• Lock

It can be locked via a button press from an app on the mobile phone.

• Unlock

The lock automatically unlocks when the owner (with the mobile

phone) gets within a 10 meter range of the lock. The lock recognizes

the mobile phone via a cryptographically sound challenge-response

protocol that is protected over an encrypted BLE link. The exchange

takes place “hands free”, i.e. without intervention from the user.

An attacker could use reflection to open the lock without the owner of the lock

being within the 10 meter range. In this scenario, the lock is the slave, and the

mobile phone is the master device.

To mount a reflection attack, an attacker needs to be able to extend the

transmission of the BLE signal in some way beyond the 10 meter range of the

unlock functionality. Figure 47 shows a logical representation of the

communication configuration of a reflection attack.

Janesko, Jennifer Ann – SRN: 120232774

Figure 47: Logical Organization of a Reflection Attack

- 127-

In this setup, the attacker will place an attack BLE interface near the target

device (the lock) and an attack BLE interface near the victim (the mobile

phone). A reflection attack can occur in the following way.

1. When the mobile phone is no longer in range of the lock, the

connection is broken. The lock will begin to broadcast advertisements

with invitations for connection.

2. The attack BLE interface in range of the lock (BLE interface 2)

intercepts these advertisements.

3. This BLE interface then forwards the unmodified packets to the other

attack BLE interface in the proximity of the the mobile phone (BLE

interface 1).

4. BLE interface 1 broadcasts the advertisement unchanged.

5. The mobile phone in this case periodically listens for advertising

packets from the lock. When it receives an advertisement from the lock

that has been reflected by the attacker’s BLE interfaces, it moves into

the state initiating and transmits a connection request.

6. BLE interface 1 intercepts the request, collects the connection

information and prepares to follow the channel hopping on the data

channel.

7. After this, BLE interface 1 forwards the request over the longer-range

network connection to BLE interface 2.

8. BLE interface 2 collects the connection information as well so it, too,

can follow the channel hopping during the communication.

9. BLE interface 2 then forwards the connection request to the lock.

These types of exchanges will be successful for completing connection setup,

establishing encryption and performing the challenge-response protocol. The

attacker does not need to know any of the content of the messages. The

attacker only needs to be able to follow the connection so that no message

exchanges are missed. Eventually, once the challenge-response protocol has

Janesko, Jennifer Ann – SRN: 120232774

- 128-

been completed, the lock opens, and the attacker has gained access to

whatever the lock was protecting.

In this type of attack timing will be a critical factor. Communication delays

because of the time it takes to relay signals from one attacker BLE interface to

the other may introduce too much lag for a successful attack.

4.4.7 Application Logic Exploitation

Elevation of privilege is most likely achieved through exploitation of

application logic. Functionality that was supposed to be used for one purpose

is then used for another.

An example of application logic exploitation can be found in a BLE

application that manages customer “loyalty points”. To get loyalty points,

customer of certain establishments installed an app on their BLE-enabled

mobile phones. Then, when a customer would come into those target

establishments, the mobile phone app would receive a message from a BLE

iBeacon in the store, and it would increment the customer’s loyalty point

counter. After a customer’s loyalty points reached a certain level, the

customer would be eligible for special services, free of charge.

In this case, an attack was performed by recording the data that was being

transmitted from the iBeacon. The device ID was then spoofed, and the same

data was broadcast by the iBeacon was broadcast by an attack device. This

was sufficient to increment the loyalty point counter and thereby gaining

unauthorized access to services for free [JAS16].

Elevation of privileges through the exploitation of business logic is wholly

dependent on the implementation of the application. And, while there are few

examples of this type of exploitation that have been publicized for BLE

applications, as the types of BLE application features expand, so will the

attack surface of BLE applications.

Janesko, Jennifer Ann – SRN: 120232774

- 129-

4.5 Denial of Service

There are essentially three ways of creating a denial of service condition for a

BLE application. An attacker could:

• cause electrical interference on a channel where BLE devices are

broadcasting

• connect to a device with the intent to drain the battery

• user application/protocol logic to cause a connection to be interrupted.

4.5.1 Electrical Interference

Availability on the over the air interface can be impacted by electrical

interference. To combat interference under general conditions, BLE employs

frequency hopping and provides rules for retransmission in the case that a

received packet’s CRC check fails. This being said, an attacker can

strategically create a denial of service condition. This, as with confidentiality

and integrity, can be broken down into the two different types of channels:

advertising and data.

On the advertising channels, an advertiser broadcasts a packet on one of three

advertising channels, then moves to the next advertising channel and

broadcasts again. It continues like this until it internally signals that

broadcasting should stop, or until it receives a connection request. The rate at

which the advertiser broadcasts will vary depending on the device. For a

scanner to receive a packet, it must be coincidentally on the same channel at

the same time as the advertising packet is broadcast.

An attacker can reduce the possibility of connections being established or

advertising data being sent by simply transmitting a signal on one of the

channels. If an attacker had three devices, then all three channels could be

blocked.

On the data channels, as with confidentiality and integrity, the challenge to

deny availability on the airwaves is greater. Once again, an attacker would

need to capture the initiate connection request to gain knowledge of which

Janesko, Jennifer Ann – SRN: 120232774

- 130-

channels will be used and when for communication. When the devices with

the connection move from one channel to the next, the attacking device will

also need to move to the same channels and broadcast a signal on those

channels to disturb any data communication.

4.5.2 Battery Drain

In classic Bluetooth, there is an attack called the “L2CAP guaranteed service

attack” [MIN12]. This is an attack where during connection setup either the

highest data rate is established or the lowest latency is established. This is to

force the target device to actively communicate as much as possible to drain

the battery. In theory, this attack is feasible for BLE as well. There are two

fields in BLE connection establishment that correspond to classic Bluetooth

and could have a negative impact on battery-life: interval and latency.

Interval is a value that specifies how frequently channel hopping occurs. A

high value would force a master to broadcast at every new connection event at

the highest rate possible. And, if the slave latency is set to the lowest possible,

then a slave would not be able to ignore the connection events at each

connection event and would have to broadcast a response. This high rate of

required communication could cause battery drain.

In addition to this, battery drain may be instigated by misuse of an application.

If an attacker is able to create a set of communications to prompt at BLE

application to execute a resource-intensive operation, it, too, will result in

battery drain.

4.5.3 DoS via BLE Protocol/Application Logic

Either through the BLE protocol itself or through a BLE application’s logic,

there is the risk that an attacker can exploit a vulnerability and create a DoS

condition. This can occur, for instance, when two values are incompatibly set.

For instance, there are two values that can be set at connection establishment:

(master) timeout and (slave) latency. The master timeout specifies how long a

master will wait for a response from a slave before considering the connection

to be lost. The slave latency specifies how long a slave does not have to

Janesko, Jennifer Ann – SRN: 120232774

- 131-

respond to a master after the first message of a connection event. The

specification states that the slave’s latency period cannot exceed the master’s

timeout period. If, however, the BLE specification has not been implemented

completely, and a check has not been built in to validate these values at

connection establishment or renegotiation are not incompatible, then an

attacker could inject an LL_CONNECTION_UPDATE request, and thereby

create the conditions for a loss of connection.

4.6 Repudiation

Repudiation is the ability of one device to ensure that a communication

originated from another device at a specific time and that the message was not

tampered with in any way during transmission. Repudiation is usually

initiated as a legal requirement rather than a technical requirement. The

mechanisms that provide this type of assurance are usually digital signatures.

Within the BLE protocol, there is the provision for a “signature” for

authentication which provides some assurance against tampering. In an

encrypted link there is also the MIC that provides a cryptographic level of

assurance that a message has not been tampered with during transmission.

But, as identified in the tampering subsection above, each of these

mechanisms leaves room for replay, man-in-the-middle attacks and key theft.

If an attacker is able to gain access to the cryptographic keys using the

methods identified in the information disclosure sections and the tampering

sections above, then repudiation is not guaranteed.

What about, then, instances where an attacker is unable to access or guess the

keys over the air link? Repudiation is not only about the protection of

tampering over the air link, it is also a question of key management. If the

keys involved in signing messages are not protected from external access,

modification and loss, then provision of repudiation cannot be claimed. For

example, key materials can be securely exchanged OOB without an attacker’s

gaining access to them. Messages can be signed and exchanged using keys

derived from this key material. But, if the device is reset, the key store may be

Janesko, Jennifer Ann – SRN: 120232774

- 132-

reset with it and hence any derived keys. Reset is device dependent and can

be initiated by things like a reset button, loss of power and device defect.

Unless there is some additional way of associating a key with a device or

preserving the key history of a device, the source of any message that is only

protected with BLE mechanisms can be repudiated.

If a device has a requirement for the provision of repudiation, the BLE

specification does not directly provide for it. Repudiation will have to be

designed and maintained at the application level.

4.7 Other Threat Models

There has been little work done in modeling the threats against generic BLE

devices. During research, there were three papers identified that provided a

attempted to provide a comprehensive set of threat categories for Bluetooth

and an analysis according to those categories. These threat models are

reviewed here briefly analyze the problem of threat modeling from different

angles and to identify any potential threats that did not surface in the STRIDE

model above.

In Minar and Tarique’s paper, “Bluetooth Security Threats and Solutions: A

Survey”, the researchers provide an analysis of the Bluetooth 4.0 attack

surface and mention BLE. There they introduce three types of threats

[MIN12].

• Disclosure threat

• Integrity threat

• Denial of service threat

After their analysis, they introduce a proof of concept for a BLE proxy that

attempts to make provisions for protecting against the threats identified in

their analysis. The threats that they identify are primarily known exploits for

classic Bluetooth. They do not provide a deeper analysis how the threats

could be adapted for a BLE context.

Janesko, Jennifer Ann – SRN: 120232774

- 133-

One type of threat that is introduced in the paper that was not identified in the

STRIDE model above is the threat from malware. Malware will be addressed

later in this chapter.

Jasek’s paper, “GATTACKing Bluetooth Smart Devices”, is up to this date the

most thorough analysis of the BLE attack surfaces. In his paper, Jasek

identifies seven different types of possible attack [JAS16].

• Attacks on advertisements

• Passive interception

• Active interception

• Attacks on exposed services

• Attacks on pairing

• Whitelisting bypass

• Privacy considerations

For each type of attack he goes on to provide a high level description as to

how the attacks can be perpetrated. Rather than relying on the BLE

specification primarily for his analysis, Jasek instead provides attack

possibilities based on actual experience testing BLE devices. His analysis

does not cover the full range of attack possibilities on the over-the-air

interface, however the insightful input from his practical experience testing

BLE devices has been incorporated into the STRIDE analysis above.

In John P. Dunning’s thesis, “Bluetooth Threat Taxonomy,” Dunning

systematically analyses threats to classic Bluetooth and evaluates tools that

facilitate those attacks. In his thesis, the introduces a set of threat categories

for the evaluation of classic Bluetooth. His categories include [DUN10]:

• Obfuscation

• Surveillance

• Extended range

Janesko, Jennifer Ann – SRN: 120232774

- 134-

• Sniffing

• Man-in-the-Middle

• Unauthorized direct data access

• Denial of Service

• Malware

• Fuzzer

Dunning’s threat model was considered for use in this paper. Ultimately,

though, the STRIDE model was selected because it is better known and was

the recommended approach for Burn’s threat modeling methodology. On the

one hand, the STRIDE model provided more generic categories by which the

analysis could take place. This provided a level of freedom to identify simple

threats and more complex threats under the same threat categories. But, as in

the threat analysis performed by Minar and Tarique, Dunning also introduces

malware. In the STRIDE framework, it is difficult to categorize malware.

Malware is a tricky type of threat to categorize because it is a complex type of

threat. It can target one or more threat categories and can involve many layers

of an application; from hardware to software. The examples of malware

provided by the researchers were specific to classic Bluetooth and exploited

common features of the Bluetooth stack. Examples inlcude Caribe, Skuller,

CommWarrior and Lasco. At the time of this project, no BLE-specific

malware has been publicized. However, in the case that malware were

identified and made public, then it could most assuredly be categorized and

analyzed under at least one of the STRIDE categories.

Janesko, Jennifer Ann – SRN: 120232774

- 135-

5 Performing a BLE Security Analysis

When faced with a Bluetooth low energy security analysis, an analyst must be

armed with the correct information, approach and tools to achieve the best

security testing coverage in the allotted time frame. This chapter will outline a

security methodology that relies on the Penetration Execution Standard

(PTES) for testing BLE systems.

PTES provides the backbone of a security analysis in the form of seven testing

phases [PTES17]. These include:

• pre-engagement interactions

• intelligence gathering

• threat modeling

• vulnerability analysis

• exploitation

• post exploitation

• reporting

In the PTES standard, several concrete examples of common network pentest

targets are provided as examples. In spite of the fact that the examples

provided are traditional network testing targets, the overarching testing

backbone fits to BLE testing as well.

The remainder of this chapter will address BLE testing specifics for each

phase in the PTES. The stages of this testing methodology should be reviewed

separately from this document and in their entirety because they provide very

practical recommendations on carrying out a security analysis from the

contract stage to the end report. In this chapter, only details peculiar to BLE

testing will be presented to aid an analyst in preparing for and executing an

analysis. At the end of this chapter, a review of existing tools will be provided

Janesko, Jennifer Ann – SRN: 120232774

- 136-

to aid the analyst in the practical aspects of intelligence gathering, exploitation

and post exploitation.

5.1 Pre-Engagement Interactions

During pre-engagement interactions, the practical aspects of project

management are discussed and agreed upon with the client. Among other

activities, the scope, limitations, responsibilities and time frames are

established for the security analysis.

Determining the scope and limitations in a security analysis is critical because,

as identified in this paper’s introduction and in chapter 3, BLE is often used in

systems that involve a variety of assets and process flows that could have

wide, physical distribution. At the point of planning the analysis, it is

important to identify:

• The assets that are involved in the entire application.

• The general inputs, outputs and high-level process flows between the

assets.

The knowledge of these components is essential because this information can

be used to identify which assets can be used to tell if exploits have been

successful or not. This information can also be used to identify which of the

interfaces in the entire system should be tested and which are out of scope.

For those items in scope, the customer must provide assurance of ownership of

those items and the rights to allow security testing of those items. System

components that are hosted on infrastructures external to the customer, such as

in the Amazon Cloud, should also be identified. Appropriate permission needs

to be attained from external service providers before any tests begin.

Further, the following information should be gathered or requested.

 1 Bluetooth Version

Which version of Bluetooth is being used in the system? The answer

to this question determines the testing equipment needed for testing.

Currently, most off-the-shelf Bluetooth dongles support version 4.0.

Janesko, Jennifer Ann – SRN: 120232774

- 137-

Mobile phones at the time of this writing support at best 4.1. For

applications that rely on 4.1 or 4.2, a tester will need to have

equipment that can support these versions. This restricts the tools that

can be used for testing.

 2 Master-Central-Scanner vs. Slave-Peripheral-Advertiser

Which BLE device(s) is/are being tested? Is it the master device, the

slave device or both? This will have an influence on the tools and the

methods that can be used for testing.

 3 BLE Pairing

If BLE pairing is being used, additional information needs to be

gathered. This will determine, in part, the tools needed for testing.

 3.1 What sort of pairing is used: LE legacy or LE secure? What is the

expected security level in pairing?

 3.2 How can the device be reset after pairing has been established so

that it can be re-paired with another device for testing?

 3.3 If out of band pairing is being used, how can it be simulated for

testing purposes? This will have implications of which hardware

and software is necessary for testing.

 3.4 If the device is reliant upon LE secure, it would be helpful to have

test devices set in debug mode and test devices not set in debug

mode. The devices set in debug mode, due to the default Diffie-

Hellman keys used, will make it easier to perform certain types of

testing.

 4 Proprietary Security Mechanisms

Are any proprietary security mechanisms being used? This could

include things such as authentication between the devices, proprietary

encryption at the application level, integrity measures such as

additional CRCs or MACs. It could be argued that this information

should be identified in the course of the security analysis. Knowing

this information ahead of time will assist in the selection of testing

Janesko, Jennifer Ann – SRN: 120232774

- 138-

tools, and it will save the tester (and the customer) time and money in

the end.

 5 BLE Configuration

Which chipset(s) is/are being used at the controller and, if applicable,

the host level? How are the Bluetooth components, host, HCI and

controller distributed? This information could be useful for research

into known issues and practical test planning.

 6 Functional Specification, User Documentation, Functional

Demonstration

Documentation and/or a demonstration should be requested to give the

analyst a jump start into understanding how the whole system interacts.

Once again, it could be argued that a pentester should not have access

to this type of information because an attacker would not necessarily

have access to this type of information. The provision of the

documentation is justified for a security analysis because of the limited

time frame in which an analyst has to perform the tests. An attacker

has unlimited time to acquire documentation, reverse engineer the

communication and/or the system software. Without access to this

information, the analyst could spend the entirety of the test reverse

engineering the communication protocol rather than testing the security

of the functionality.

 7 Mobile Device Apps

Does the system rely on mobile device apps? Have the apps been

released publicly? If not, then access to the apps will need to be

organized. Additionally, it would be ideal to have access to at a

minimum the Android version of the app because it is easier to gain

access at a developer level to the Android device for application and

Bluetooth log monitoring.

 8 Monitoring Tools

Do the developers have a way to monitor the internal state of the parts

of the system in use? This could include log files, debug traces, etc. If

Janesko, Jennifer Ann – SRN: 120232774

- 139-

this type of functionality is available in a production-ready device, this

is a security finding unto itself. And, in addition to this, it would be

one more tool for the security analyst to use to determine if his or her

attacks are having effects or not.

 9 Operating Context

If the application is dependent on a specific operating context, such as

in a manufacturing control context, then a mechanism will need to be

provided to simulate the operating context. Further, support for the

simulated environment will need to be provided so that the least

amount of time is lost in getting the simulation up and running stably

for testing.

 10 Number of Test Systems

It could be advantageous to have at least two sets of test systems so

that certain aspects of testing can be parallelized to save time.

5.2 Intelligence Gathering

During the intelligence gathering phase, the analyst collects and analyses

information that will be helpful for an analysis. The PTES identifies three

different types of intelligence gathering: passive, semi-passive and active.

• Passive information gathering is where information is gathered about

the target of interest without accessing the device/application or any of

the vendors related to the target of interest.

• Semi-passive information gathering is where information is collected

by interrogating resources of the vendors related to the target of

interest. An example of this would be visiting a vendor’s website. This

activity should not raise any suspicion on the part of the vendors.

• Active intelligence gathering is where information is gathered without

regard to covering the tester’s tracks.

Janesko, Jennifer Ann – SRN: 120232774

- 140-

Once the scope has been clarified and the components of the target of interest

are identified, intelligence gathering can begin. The following intelligence

gathering activities should be considered during this phase.

5.2.1 Passive Information Gathering

1. Review Provided Documentation

The documentation provided by the customer should be reviewed to

gain a solid understanding of how the target of interest works. Any

backdoor support functionalities discovered in the documentation

should be noted for further investigation.

2. Review Publicly Available Information

If the services provided by the devices are based on standardly

supported services from the Bluetooth SIG, the service definitions

should be acquired and reviewed from the customer or from:

https://www.bluetooth.com/specifications/adopted-specifications.

3. Chipset/Infrastructure Research

For the components used in the target of interest, research should be

done to determine if any of the known components’ software or

hardware have existing security flaws.

4. Security Mechanisms

If the customer has chosen to implement security measures outside of

the BLE specification, then research should be performed to gather any

information about these mechanisms. For example, if a

login/password is used for authentication, check to see if default logins

and passwords have been posted for this vendor in other products.

5. OWASP IoT Project [OWA16]

Review the current state of the OWASP Internet of Things Project.

OWASP is an organization that is best know for putting together

comprehensive testing guidelines for web applications and web

services. As of 2015, they started developing a set of guidelines for

Janesko, Jennifer Ann – SRN: 120232774

- 141-

IoT, and the information here could provide further insight into testing

possibilities.

5.2.2 Semi-Passive Information Gathering

 1 Monitor BLE Advertising Channels

A sniffer will be needed to monitor the advertising channels to

determine what information is broadcast by the advertiser. Special

care should be taken to ensure that all three channels are sniffed. While

monitoring the advertising channel, the target of interest’s behavior

should be observed to determine the role of the advertisements and, if

present, scan requests in system operation.

 2 Monitoring Data Channels

While monitoring the advertising channels may be trivial, monitoring

the data channels, as discussed in chapter 4 is not. Communication

traffic should be captured for all identified data flows and notations on

the impacts of the data flows in the system should be made. Successful

monitoring is partially dependent on whether or not the exchanged

information can be evaluated in plaintext.

 2.1 If there is no encryption protection on the data channel, then a

Bluetooth sniffer is sufficient to observe and map the

communication exchanges on the data channels.

 2.2 If LE legacy pairing is used with just works or pin entry, then the

encryption can be broken by capturing and analyzing the pairing

exchange. After this, the data traffic can be sniffed.

 2.3 If LE secure pairing in developer mode is available, then a sniffer

that has the LE secure debug mode keys enabled would be needed

to sniff the traffic. (See section 4.3.1.3).

 2.4 If other forms of pairing are used, or if proprietary encryption is

used, then more active forms of information gathering are

necessary.

Janesko, Jennifer Ann – SRN: 120232774

- 142-

5.2.3 Active Information Gathering

1. Service Discovery

Establish a connection to a peripheral device and perform a service

discovery request. Capture all of the identified services, characteristic

descriptors, values, extended characteristics and permissions for the

various characteristics.

2. Extended Handle Investigation

During service discovery of a BLE device, there is a remote chance

that not all services and characteristics will be returned. To ensure that

this is not the case, a scan of the full range of BLE handles (0x01-

0xFFFF) should be made.

3. Man-in-the-Middle (MITM)

In the case that LE pairing is used, then a man-in-the-middle attack can

be used to observe the data being exchanged on the data channel.

4. MITM-Resistant Encryption

If proprietary encryption or man-in-the-middle-resistant LE secure

pairing is used at the application level, and no workaround can be

found to gain access to the raw data exchanged on the data channel,

then the patterns of data exchanged should be observed and noted.

Lengths of packets and the rate of packet exchange could provide some

insight into what data is being exchanged. Additionally, if proprietary

encryption is being used, this data could be captured for future replay

testing. Further to this, it should be discussed with the customer

whether or not the provision of key material would be beneficial for

further testing.

5. Android Bluetooth Logs

If the target of interest exchanges data with an Android master, then the

Android device can be placed into developer mode, and the Bluetooth

logs can be captured. This will provide information concerning what

data is sent from and received by the host.

Janesko, Jennifer Ann – SRN: 120232774

- 143-

5.3 Threat Modeling

The PTES version of threat modeling focuses on assets and attackers. Assets

include both the assets involved in testing and the processes associated with

those assets. Attackers include the identification of attackers and the

capabilities of those attackers.

For the steps of identifying assets and processes, the analysis in chapters 3 and

4 could be used as a starting point. The relevant aspects outlined there could

be selected for the concrete analysis, and the irrelevant aspects can be left out.

In addition to this, the target of interest’s specific assets and identified process

flows from the intelligence gathering phase should be taken into consideration.

In addition to the identification of assets and processes, an identification of the

types of attackers who would have motivation to attack the target of interest

should be performed. For example, the set of attackers against a smartwatch is

likely to be different than the set of attackers against a building’s climate

control system. Further, the type of access that potential attackers would have

should also be identified. Identifying the types of parties who would be

interested in attacking the targets of interest can help later in the prioritization

of vulnerability resolution.

5.4 Vulnerability Analysis

Vulnerability analysis is the activity of identifying flaws within the target of

interest that could be leveraged by an attacker. This will take into

consideration the identified assets, process flows, the attackers and the access

to a target of interest. One of the goals in this phase for a BLE device is to

methodically map vulnerabilities and attack vectors. This can be used to set

up a concrete testing plan to make the most of the time remaining in the

testing window.

Chapter 4 outlines a variety of attack vectors for Bluetooth low energy which

can be used as a starting point.. At a minimum, the following attack vectors

should be considered during a vulnerability analysis.

Janesko, Jennifer Ann – SRN: 120232774

- 144-

 1 Pairing

 1.1 Does the target of interest use BLE pairing?

 1.1.1 Is it LE legacy…

 1.1.1.1 with just works or PIN? If yes, then the STK can be

recovered and used to decrypt traffic and make perform

further attacks.

 1.1.1.2 with OOB? If yes, then the length of the value being

passed out of band should be investigated. Is it a length

that can be brute forced for key recovery?

 1.1.1.3 with a weak STK? The key length can be negotiated

and be as little as 7 bits. The length is negotiated in the

pairing request message in the maximum encryption key

size field [BLE-SMP, 635].

 1.1.2 Is it LE secure?

 1.1.2.1 Are the Diffe-Hellman keys used in a production

ready device the same keys used in debug mode?

 1.1.2.2 Given the pairing implementation, how realistic is it

to perform a man-in-the-middle attack?

 1.1.3 Is the same STK or LTK used repeatedly or cyclically?

 1.1.4 How much entropy does the pseudorandom number

generator provide?

 1.1.5 Is the STK or LTK easily readable from any component that

makes up the target of interest?

 2 Is proprietary encryption used? If so, information from the intelligence

gathering stage should be used to identify potential vulnerabilities.

 3 Data Disclosure

 3.1 What information is revealed on the advertising channel in either

advertisements or scan responses?

Janesko, Jennifer Ann – SRN: 120232774

- 145-

 3.2 Data Channel

 3.2.1 What information is revealed if the data channel is sniffed

in clear text?

 3.2.2 What information is revealed if the encryption on the data

channel can be broken?

 3.2.3 If encryption on the data channel cannot be broken, what

information can be gathered through side channel means such

as via packet lengths, rates at which packets are sent, etc.?

 3.2.4 If encryption on the data channel is broken, is it possible to

initiate the encryption pause procedure? If so, is it possible to

prompt devices to exchange communications in plaintext

which is contrary to the BLE specification? [BLELL-98]

 3.3 By establishing a simple connection to a slave, what services are

available and which confidential information is accessible via

scans of the characteristics?

 4 Trackability

 4.1 Can the target of interest be tracked with the device ID, values

broadcasted during advertising or via service offerings?

 4.2 Is long-range tracking of a device a concern for the system?

 4.3 Does the target of interest combine BLE functionalities with

location services such as GPS such that it is susceptible to

exploitation?

 4.4 BLE Private, Resolvable Addresses

 4.4.1 How often does the private resolvable address change? Is it

frequent enough to satisfy security requirements for the target

of interest? Can the timer be influenced somehow?

 4.4.2 Can the IRK be recovered via weaknesses in pairing?

Janesko, Jennifer Ann – SRN: 120232774

- 146-

 4.4.3 Are there weaknesses in the generation of the IRK? Is the

same IRK used each time? Is the same IRK used periodically?

How much entropy does the pseudorandom number generator

provide?

 5 Tampering and Privilege Escalation

 5.1 On the Advertising Channel

 5.1.1 How difficult is it to spoof an advertiser or a scanner? Can

this spoofing be used to send values that control the behavior

of the target of interest?

 5.1.2 Are whitelists used? What is the effort needed to overcome

the filtering?

 5.2 On the Data Channel

 5.2.1 Can the characteristic values of offered services be

manipulated to control the behavior of the target of interest

with a simple connection?

 5.2.2 Is a CSRK used on the data channel?

 5.2.2.1 Can it be recovered via weaknesses in pairing?

 5.2.2.2 Are there weaknesses in the generation of the IRK? Is

the same IRK used each time? Is the same IRK used

periodically? How much entropy does the pseudorandom

number generator provide?

 5.2.2.3 To what extent can attacker prompt either a master or

slave device to generate signed messages which can be

captured for later replay?

 5.2.3 Can the attacker spoof either a master or a slave and replay

sniffed messages to manipulate the behavior of the target of

interest?

Janesko, Jennifer Ann – SRN: 120232774

- 147-

 5.2.4 Can the attacker spoof either a master or a slave and create

and send system messages to manipulate the target of interest’s

behavior?

 5.2.5 Can an attacker establish a man-in-the-middle attack with

the goal of manipulating exchanged values?

 5.2.6 Is a relay attack a threat for the security of the device?

 5.2.7 Can the attacker send injection messages (command, SQL,

etc.) to either gain further access to the application or upstream

processes?

 5.2.8 An analysis of the application logic and process flows

should be performed. Are there any flaws in the logic that can

be exploited for manipulation or privilege escalation purposes?

 6 Denial of Service

 6.1 Can a target of interest’s connection be broken via electrical

interference or flooding the data channels where communication

takes place? Given the target of interest’s context and usage, is

this a security threat?

 6.2 Can an attacker connect to the target of interest using inefficient

connection parameters or instigate resource intensive actions that

would cause the battery to drain more rapidly? Given the target of

interest’s context and usage, is this a security threat?

 7 Repudiation

 7.1 Are there requirements for repudiation? If so, to what extent are

these requirements addressed by the application layer? Are there

weaknesses that can be exploited?

5.5 Exploitation

Exploitation is the stage of a security analysis where the analyst attempts to

bypass security restrictions to gain unauthorized access to the system or

Janesko, Jennifer Ann – SRN: 120232774

- 148-

system resources. In the exploitation phase, the vulnerabilities that were

identified in the vulnerability analysis should be tested.

In addition to this targeted testing, fuzzing should be performed. Fuzzing

should include: fuzzing at the application layer and fuzzing at the GATT/ATT

layers. If possible, fuzzing at the lower level BLE layers should also be

performed as well.

Before beginning fuzzing, it is important to identify how the system will be

monitored. Some options include, but are not limited to:

• monitoring behavior of upstream systems

• capturing logs

• watching system responsiveness (lack of response indicates either a

system interruption or restart)

• monitoring communication traffic.

5.6 Post-Exploitation

In the post-exploitation phase, the analyst identifies the next level of

exploitation possible. The access that was achieved in the exploitation phase

should be assessed to determine if further penetration into upstream processes

or systems that contain the BLE components can be gained. Before

proceeding with this next step in testing, the risks should be discussed with the

customer; especially if the upstream processes support live systems.

Often, in post-exploitation artifacts are left on servers or in systems to allow

further ingress into other parts of the system. These artifacts should be

carefully tracked, and they should be removed at the end of the testing cycle.

5.7 Reporting

In the reporting phase, the findings from the analysis are presented in written

format. The PTES breaks the report structure into two main sections: the

executive summary and the technical report. The executive summary is

Janesko, Jennifer Ann – SRN: 120232774

- 149-

geared toward higher level IT and security managers. The technical report

targets the individuals who will be implementing the changes to address the

vulnerabilities identified during testing.

The executive summary should be brief and provide an overview of the most

significant results from testing. Some method of prioritization and

recommendations for next steps should also be provided. Some sort of rating

that communicates the target of interest’s production-readiness could also be

provided.

The technical part of the report should provide detail concerning what

vulnerabilities were found, what the risk is from those vulnerabilities and what

should be done, technically or organizationally, to mitigate these

vulnerabilities. Likelihood of exploit and a mitigation time frame should also

be provided. These recommendations should be provided based on the work

in the intelligence gathering threat modeling stages and exploitation stages.

5.8 BLE Security Testing Tools

This section will provide a list of existing research tools. Each tool will be

evaluated for purpose of use, maturity and shortcomings. These tools, except

where explicitly noted, were tested during the time of this masters project.

Each tool was allotted at maximum a day for testing purposes.

5.8.1 BlueZ

BlueZ is an open source Bluetooth stack implementation for Linux. It comes

pre-installed with popular versions of Linux such as Ubuntu and Kali. The

packages can also be downloaded, compiled and installed from:

http://www.bluez.org/. BlueZ works with a computer’s built-in Bluetooth or

with common, external Bluetooth dongles.

There are a variety of other tools that have been built on top of the BlueZ

stack. This software is mature, and it is actively developed. Documentation

for the BlueZ stack is limited. There is a great deal of non-obvious

Janesko, Jennifer Ann – SRN: 120232774

- 150-

functionality available in this stack. To be able to access these functionalities,

an analyst would have to spend time going through the BlueZ source code.

5.8.2 hciconfig/gatttool

These are two programs that come with the BlueZ stack on Linux and can be

used with a standard Bluetooth dongle.

These programs allow a user to stop and start the physical Bluetooth interface,

scan for devices and take advantage ATT and GATT operations and features.

For these tools there is in-program help, although not all of the features are

well-explained. There are also a handful of tutorials online that demonstrate

how to use the software.

The kind of ATT/GATT data that are returned by these tools tend to be raw,

hex data that need to be interpreted. These tools are useful for rudimentary

scanning and manual attribute testing if there is nothing else available.

5.8.3 Pygatt

Pygatt is an open source python library that is built on top of the BlueZ Linux

Bluetooth stack. It provides the same types of functionality as hciconfig and

gatttool, except that it allows an analyst to automate testing with scripts.

Pygatt and instructions on how to install it can be found under:

https://github.com/peplin/pygatt. The library is actively updated, has example

code and documentation. It is primarily useful for the simulation of a

scanner/master/central device.

Janesko, Jennifer Ann – SRN: 120232774

Figure 48: Examples of common

Bluetooth dongles

- 151-

During the course of this project, this library was used to develop some

reconnaissance scripts which can be found under:

https://github.com/jennj/BLE-Scripts/tree/master/scripts-read.

5.8.4 NCC Group BLE Python Scripts

The NCC Group has published some open source scripts that are dependent on

a modified version of the Pygatt library and the use of Android Bluetooth logs.

These scripts have been specifically developed for BLE pentesting. Up to this

point, there have been three BLE tools published from the NCC Group:

• BLESuite - https://github.com/nccgroup/BLESuite

• BLESuite-CLI - https://github.com/nccgroup/BLESuite-CLI

• BLE-Replay - https://github.com/nccgroup/BLE-Replay

 Basic instructions can be found for these tools under:

https://www.nccgroup.trust/uk/about-us/newsroom-and-

events/blogs/2016/september/introducing-blesuite-and-ble-replay-python-

tools-for-rapid-assessment-of-bluetooth-low-energy-peripherals/. In addition

to this, the tools have documentation and examples. At the time of this

project, the scripts are up-to-date. But, the update activity for these scripts is

low, and it is unclear if these projects will be further maintained.

5.8.5 noble/bleno

noble and bleno are two cross platform, open source node.js modules that run

on Mac OSX, Linux and Windows.

• noble – simulates a BLE central:

https://github.com/sandeepmistry/noble

• bleno – simulates a BLE peripheral:

https://github.com/sandeepmistry/bleno

During this project, bleno was tested on a Linux (Ubuntu 16.04) system. To

test these modules, a bleno peripheral was created based on the pizza

peripheral example which can be found under:

Janesko, Jennifer Ann – SRN: 120232774

- 152-

https://github.com/sandeepmistry/bleno/tree/master/examples/pizza. Using

this example it was possible to advertise packets, allow a connection from a

central device and update GATT characteristic values. This would be ideal for

spoofing a peripheral device for testing a central’s application.

There is a significant amount of development activity surrounding the noble

and bleno modules. There is little documentation, but there is a sufficient

amount of example code and third-party tutorials that allows an analyst to

quickly get up to speed. bleno and noble are ideal modules for testing the

application layers and upstream processes of the centrals and peripherals of a

BLE system.

5.8.6 gattacker4

gattacker is a security analysis tool that is dependent on noble, noble, json,

web sockets and text files. The tool is advertised to run on a Raspberry Pi. It

provides the opportunity for an analyst to set up a man-in-the-middle attack

between two communicating BLE devices that do not use pairing. gattacker

can be found under: https://github.com/securing/gattacker. A fundamental

description of how it works can be found under:

https://github.com/securing/gattacker/wiki/FAQ.

This tool was released shortly before this project started and is relatively

young. There are instructions for installation, but beyond this there is very

little documentation available, and no tutorials were found on-line. This tool

could be extremely useful eavesdropping and fuzzing values that are

exchanged between two BLE devices that do not use encryption. Because it is

reliant on noble and bleno, it is only capable of testing values at the

application and upstream process levels.

4 During the project a day was spent with the attempt to install gattack on two different

Raspberry Pi devices: a Raspberry Pi B+ and a Raspberry Pi 3 using clean installations of

the Raspbian operating system. In both cases, installation was not successful. The

dependencies identified in the instructions could be installed. This was time-consuming

because the default packages for Raspbian were too old, so the latest versions needed to

be compiled. Ultimately, the final build failed and time ran out for experimentation with

this tool.

Janesko, Jennifer Ann – SRN: 120232774

- 153-

5.8.7 BtleJuice5

Btlejuice is another security analysis tool that is dependent on noble and bleno

and web sockets. The tool is also advertised to run on a Raspberry Pi. It

provides an analyst the opportunity to perform a man-in-the-middle attack

between two BLE devices and uses a web interface to help visualize

communication. Btlejuice can be found under:

https://github.com/DigitalSecurity/btlejuice.

This tool was released after the start of this project, and it is relatively young.

In its README.md file, there are installation instructions and a minimal set of

instructions on how to get the tool up and running. This tool could also be

extremely useful in eavesdropping and fuzzing values communicated between

two BLE devices. It is not clear if the tool supports man-in-the-middle attacks

for devices that use pairing and encryption.

5.8.8 PyBT / Scapy

PyBT is a python Bluetooth library that is not dependent on pygatt. It was

developed with the goal of being able to perform a security analysis at the

application, BLE GATT and BLE ATT levels [RYA14]. Scapy is a pentesting

tool that allows an analyst to quickly build communication packets using a

variety of protocols for testing purposes. Scapy is flexible enough to allow

packets that do not conform to the protocols which allows for fuzzing at

protocol layers. The PyBT library, and a link to the Scapy version that

supports PyBT can be found under: https://github.com/mikeryan/PyBT.

There is no public documentation for PyBT, and no tutorials could be found.

During this project it was possible to write a script that created a peripheral

and advertise packets (see: https://github.com/jennj/BLE-

Scripts/blob/master/scripts-peripheral/pybtTestServer.py). An attempt was

5 During the project, as with gattack, a day was spent with the attempt to install Btlejuice

one Raspberry Pi devices: a Raspberry Pi 3 using a clean installation of the Raspbian

operating system. The installation was not successful. The dependencies identified in the

instructions could be installed with some time investment, but the final build failed and

time ran out for experimentation with this tool.

Janesko, Jennifer Ann – SRN: 120232774

- 154-

made to set up a GATT database with the goal of cloning a peripheral with

writable values, but there was no success in establishing a connection to the

cloned peripheral. More time is required than was alloted in this project to

determine the source of the connection problem and to be able to leverage the

full potential of this tool.

The PyBT library is immature in that it there is no documentation provided,

and there is an assumed high-level of understanding about BLE. The project

does not appear to be actively maintained as it was last updated in 2015.

5.8.9 Nordic NRF51 dongle

The Nordic NRF51 dongle is a piece of hardware that is dedicated to BLE

development and sniffing, and it can be used on Windows, Linux and OSX. It

relies on a special set of drivers that are separate from the BLE drivers for the

different operating systems.

The software that runs on the device is broken down into two parts: a soft

device and the application. The soft device provides the BLE protocol

implementation. The application specifies the peripheral being built complete

with the definition of ATT/GATT services and characteristics.

The original development software for the dongle was targeted for Windows

systems, and there is a significant amount of documentation and information

for development on Windows available online. Since the dongle release,

developers have posted information about how to develop and flash the dongle

with new software from Linux and OSX environments. Two tutorials that

Janesko, Jennifer Ann – SRN: 120232774

Figure 49: Nordic NRF51 Dongle

- 155-

were leveraged during this project can be found under the following web

addresses.

• https://leavesified.wordpress.com/2016/03/24/setup-nrf51-

development-on-linux/

• https://www.allaboutcircuits.com/projects/ble-using-nrf51-arm-gcc-

build-environment/

Using a combination of the two tutorials listed above, it was possible to get a

peripheral device configured and advertising. The peripheral device was

configured to be a partial clone of a Gigaset Gtag (only a subset of the Gtag

services were configured for testing). It was possible to connect to the

“cloned” peripheral and modify a value that was configured to be writable.

Nordic, too, has begun offering development and analysis tools that work on

other operating systems than Windows. Some important examples include:

• Nordic’s Github account with multiple pages of BLE tools:

https://github.com/NordicSemiconductor

• Tool to scan and clone peripherals:

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF-

Connect-for-desktop

• Wireshark sniffer plugin:

https://devzone.nordicsemi.com/blogs/750/ble-sniffer-in-linux-using-

wireshark/

The Nordic platform is extremely mature. It has actively-developed

supporting software, active forums and wide variety of online tutorials. In

addition to this, the version of BLE is not limited to the availability of the

standard Bluetooth dongles on the market. To upgrade to BLE 4.2, for

example, an analyst simply has to install the correct soft device and then adapt

the application software to take advantage of this.

Janesko, Jennifer Ann – SRN: 120232774

- 156-

One question that is not entirely clear is whether or not the soft devices could

be adapted to allow fuzzing at the BLE protocol level. If this were the case, it

would make the NRF51 a powerful platform for BLE security testing.

5.8.10 Texas Instruments CC2540 Dongle

The Texas Instruments CC2540 dongle is a reliable BLE sniffing device that is

accompanied by a sniffing software that color codes and labels BLE packet

parts to reduce the complexity of interpretation and analysis of BLE traffic.

The software is simple to set up, and it runs on Windows. Examples of

screenshots from the sniffer can be seen in figure 2 in chapter 2.

Texas Instruments also offers a CC2540 & 2541 development kits (see:

http://www.ti.com/tool/cc2541dk-mini and http://www.ti.com/tool/cc2540dk).

These kits were not evaluated during the course of the project. From looking

at the documentation, though, they provide a similar functionality to the

Nordic dongle in so far as it is possible to select which version of the BLE

protocol stack to flash on these devices for testing purposes. The development

environment for BLE applications target the Windows operating system.

As with the Nordic NRF51 donge, if the BLE stack could be adapted to allow

for fuzzing at the BLE protocol level, that would make this tool also a

powerful platform for BLE security testing.

5.8.11 Ubertooth and Crackle

Ubertooth is an open source BLE sniffer. Its output can be piped into

Wireshark.

Janesko, Jennifer Ann – SRN: 120232774

Figure 50: Texas Instruments 2540

Sniffer

- 157-

• Ubertooth software and firmware:

https://github.com/greatscottgadgets/ubertooth

• Wireshark instructions: https://github.com/greatscottgadgets/ubertooth

In comparison to the TI sniffer discussed in section 5.8.10, the Ubertooth

sniffer is much less reliable. That being said, the Ubertooth has the advantage

that it can be combined with the Crackle. Crackle is a security analysis tool

that can derive an LTK from an LE legacy pairing exchange. Crackle can be

found under: https://github.com/mikeryan/crackle. These two tools are

relatively simple, and there is enough information on-line to get them up and

running quickly for testing purposes.

5.8.12 Nordic NRF Connect and NRF Toolbox

Nordic NRF Connect is a mobile app that is available for the iOS and Android

platforms. NRF Connect scans the area for BLE peripherals. If connectible

peripherals are found, a connection can be established with the app. The

details of the services and characteristics will be displayed. Using this NRF

Connect, values can be read and written (where allowed) from and to the

peripheral. This app is excellent for reconnaissance of a peripheral device and

for manual testing purposes. NRF Connect can be found under:

https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-

Connect-for-mobile-previously-called-nRF-Master-Control-Panel.

Janesko, Jennifer Ann – SRN: 120232774

Figure 51: Ubertooth sniffer

- 158-

The NRF Toolbox is an app that allows a user to turn a mobile phone into a

BLE peripheral and is available for Android and iOS. In the app itself there

are already a set of pre-programmed peripherals available. There is one

peripheral, the UART peripheral, that allows the configuration of a custom

peripheral. This app could be used to clone a peripheral and manually test an

application. NRF Toolbox can be found under:

https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-

Toolbox-App.

The usage of these mobile apps is self-explanatory from the user interface.

From a maturity perspective, the apps have been actively maintained over the

passed two years, and the source code for both of these mobile apps can be

downloaded and adapted.

5.8.13 LightBlue Explorer [iOS]

LightBlue Explorer is an iOS app that provides the same type of functionality

as NRF Connect. It can be used for reconnaissance purposes and manual

testing of BLE peripherals. LightBlue Explorer can be found under:

https://itunes.apple.com/us/app/lightblue-explorer-bluetooth-low-

energy/id557428110?mt=8.

5.8.14 RamBLE [Android]

Ramble is an mobile app for Android that scans for advertising BLE

peripherals. The goal of this app is to keep track of all of the unique

peripherals identified in the wild and to maintain information about where the

devices were seen and if they had been last seen. The mobile app allows

visual mapping of the devices and export of the data for further analysis.

Ramble can be found under: https://play.google.com/store/apps/details?

id=com.contextis.android.BLEScanner&hl=en.

Usage of the app is self-explanatory from the user interface, and it would be

ideal for a security analysis where the target of evaluation is a commonly

available device. This would allow the analyst to collect data on how the

device is actually used and the type of data that is exposed out in the field.

Janesko, Jennifer Ann – SRN: 120232774

- 159-

5.8.15 Android Bluetooth Developer Mode and the

Bluetooth HCI Snoop Log

In addition to sniffing network traffic, it is possible to reverse engineer BLE

communication for BLE systems that have an Android mobile app. This can

be achieved by turning on developer mode on an Android device and

activating the Bluetooth HCI snoop log. This will capture all Bluetooth data

that goes over the HCI interface. An example of this type of reverse

engineering can be found in this tutorial: https://medium.com/@urish/reverse-

engineering-a-bluetooth-lightbulb-56580fcb7546#.v3rh4km0h.

The log that is captured can be exported from the phone to a computer for

analysis in Wireshark. This type of analysis is advantageous in cases where

sniffing is not a possibility due to interference or encryption on at the link

layer level.

5.8.16 Testing Tool Summary

In the blog entry “Introducing BLESuite and BLE-Replay: Python Tools for

Rapid Assessment of Bluetooth Low Energy Peripherals” the NCC Group

describes the difficulties of testing Bluetooth low energy systems. There is a

dearth of mature testing tools available for BLE security analysts that provide

the level of control that is needed to perform a security review [FOR17]. After

performing a review of available BLE tools at the time of this project, the

author concurs with the NCC Group’s assessment. As can be seen from the

review of the tools above, there are obvious gaps to the BLE security tool

chain. With the increased push for BLE in context of IoT and industry 4.0

applications, the need for a reliable tool set is growing.

Janesko, Jennifer Ann – SRN: 120232774

- 160-

6 The BLE Security Testing Challenge

At the start of this project, the overarching goal was to construct a threat

model for BLE systems so that a comprehensive security testing methodology

could be developed and tool chain for over-the-air Bluetooth low energy

systems could be identified. Only part of this goal was achieved.

After both review of the BLE 4.2 specification (see chapter 2) and hands-on

experience with available BLE testing tools and BLE devices, it was possible

to define a threat model (see chapters 3 and 4) and provide a testing roadmap

for analysts (see chapter 5). This testing roadmap should serve as a starting

point for BLE testing and should be extended as new versions BLE are

developed and new threats are discovered.

During the course of this project it became apparent that the tools available for

BLE security testing do not cover the range of testing needs defined in the

testing methodology. Thus, the logical next step in this case would be to

define the requirements for a flexible, comprehensive framework for testing.

This should take into consideration factors such as differing versions of

Bluetooth, pairing and encryption. A tool or a set of tools to cover missing

testing functionality would then need to be developed.

We are at a tipping point in terms of BLE distribution. As discussed in

Chapter 1, BLE is being pushed more and more often for IoT and industry 4.0

automation applications. If BLE becomes a widespread technology for

wireless communication in these areas, then as security professionals we will

need to be better prepared to support vendors’ security testing needs. It is the

author’s hope that this analysis provides a reasonable starting point for further

BLE security testing tool development.

Janesko, Jennifer Ann – SRN: 120232774

- 161-

7 Appendix

7.1 Appendix 1: GAP & GATT Attribute

Definitions

Layer Description Type Value Read

Permissions

Write

Permissions

GAP Device name 0x

2A00

Textual

representation of

device.

Yes Optional,

optional

authenticatio

n/

authorization

GAP appearance 0x

2A01

UUID that

indicates which

icon should

represent this

device.

Yes Optional,

optional

authenticatio

n/

authorization

GAP Peripheral

preferred

connection

parameters

characteristic

(PPCP)

0x

2A04

See table

7.1.1below.

Yes,

optional

authenticati

on/

authorizatio

n

No

GAP Central

address

resolution

0x

2A06

0 – address

resolution not

supported

1 – address

resolution

supported

2-255 – Reserved.

Yes No

GATT Primary

service

0x

2800

16 or 128 bit

service UUID

Yes No

Janesko, Jennifer Ann – SRN: 120232774

- 162-

Layer Description Type Value Read

Permissions

Write

Permissions

declaration

GATT Secondary

service

declaration

0x

2801

16 or 128 bit

service UUID

Yes No

GATT Include

definition

0x

2802

-included service

attribute handle

-end group handle

-16 bit service

UUID

Yes No

GATT Characteristic

declaration

0x

2803

-Characteristic

properties (see

Table 7.1.2

below)

-Characteristic

value attribute

handle

-Characteristic

UUID

Yes No

GATT Characteristic

extended

properties

descriptor

0x

2900

Character

extended

properties bit field

(see table 7.1.3

below)

Yes No

GATT Characteristic

user

description

descriptor

0x

2901

Textual

description of

characteristic

value

Dependent

on profile

Dependent

on profile

GATT Client

characteristic

configuration

descriptor

0x

2902

Client

configuration bits

(see table 7.1.4

below)

Yes Yes, optional

authenticatio

n/

authorization

Janesko, Jennifer Ann – SRN: 120232774

- 163-

Layer Description Type Value Read

Permissions

Write

Permissions

GATT Server

characteristic

configuration

descriptor

0x

2903

Server

characteristic

configuration bits

(see table 7.1.6

below)

Yes Yes, optional

authenticatio

n/

authorization

GATT Characteristic

presentation

format

description

descriptor

0x

2904

-Format

-Exponent

-Unit

-Name space

-Description

Yes No

GATT Characteristic

aggregate

format

descriptor

0x

2905

In the case there is

more than one

characteristic

presentation

format

description, this

provides a list of

their attribute

handles

Yes No

[BLE-GAP][BLE-GATT]

7.1.1 Peripheral Preferred Connection Parameters

Name Size Description

Minimum

connection

interval

2 octets Range: 0x0006 to 0x0C80

0xFFFF indicates no specific minimum

interval = value * 1.25 ms

Maximum

connection

interval

2 octets Range: 0x0006 to 0x0C80

0xFFFF indicates no specific maximum

Janesko, Jennifer Ann – SRN: 120232774

- 164-

interval = value * 1.25

Slave latency 2 octets Range: 0x0000 - 0x01F3

Connection

supervision

timeout

multiplier

2 octets Range: 0x000A to 0x0C80

0xFFFF indicates no specific value requested

time = value * 10 msec
[BLE-GAP, 392]

7.1.2 Characteristic Properties

Name Bit Mask

Broadcast 0x01

Read 0x02

Write Without Response 0x04

Write 0x08

Notify 0x10

Indicate 0x20

Authenticated Signed Writes 0x40

Extended Properties 0x89
[BLE-GATT, 533]

7.1.3 Extended Properties Bit Field

Name Value

Reliable Write 0x0001

Writable Auxiliaries 0x0002

Reserved for Future Use 0xFFFC
[BLE-GATT, 535]

7.1.4 Client Characteristic Configuration Bit Fields

Name Value

Default 0x0000

Notification 0x0001

Janesko, Jennifer Ann – SRN: 120232774

- 165-

Indication 0x0002

Reserved for Future Use 0xFFF4
[BLE-GATT, 536]

7.1.5 Character Configuration Bits

Name Value

Broadcast 0x0001

Reserved for Future Use 0FFF2
[BLE-GATT, 537]

7.1.6 Characteristic Presentation Format Attribute Value

Fields

Name Size Description

Format 1 octet Format of the value.

Exponent 1 octet Exponent field to determine how the

value of this characteristic is further

formatted.

Unit 2 octets The unit.

Name Space 1 octet The name space.

Description 2 octets Description as defined in a higher layer

profile.
[BLE-GATT, 539]

The full description of the contents of the fields can be found on pages 539-

542 of the BLE GATT specification.

7.2 Appendix 2: Advertsing Channel Air Interface

Packet Details

7.2.1 Specification References

Further details can be found in the BLE link layer specification on pages 39-

45.

Janesko, Jennifer Ann – SRN: 120232774

- 166-

7.2.2 Access Address Value for the Advertising Channel

0x8E89BED6

7.2.3 Advertising Channels

RF Channel 0 12 39

BLE Channel Index 37 38 39

7.2.4 Advertising PDU Structure

7.2.5 Advertising PDU Header Structure

PDU

Component

Description

PDU Type This a bit description that indicates what sort of advertising

PDU is being transmitted.

RFU Reserved for future use.

TxAdd This value of TxAdd is relative to the PDU type. It usually

refers to an address field payload and differentiates between a

public or a random address.

Janesko, Jennifer Ann – SRN: 120232774

Figure 52: [BLE-LL, 39]

Figure 53: [BLE-LL, 40]

- 167-

• 0=public

• 1=random

RxAdd This value of TxAdd is relative to the PDU type. It usually

refers to an address field payload and differentiates between a

public or a random address.

• 0=public

• 1=random

Length This is the number of octets contained in the payload.

RFU Reserved for future.
[BLE-LL, 40]

7.2.6 Table Summary of Advertising PDU Type

Descriptions

PDU

Type

PDU

Name

Description TxAd

d

refers

to:

RxAd

d

refers

to:

0000 ADV_I

ND

Avertising packet for any scanner. Payload

includes advertising data from advertiser’s

host. Connection can be initiated. Fields:

• AdvA (6 octets): Advertiser’s device

address

• AdvData (0-31 octets): Advertising

data from host

AdvA --

0001 ADV_

DIREC

T_IND

Advertising packet targets specific peer

device. Connection can be initiated. Fields:

• AdvA (6 octets): Advertiser’s device

address

• InitA: (6 octets): Target peer’s device

AdvA InitA

0010 ADV_

NONC

Payload includes adverting data from the

advertiser’s host. Advertiser does not allow

AdvA --

Janesko, Jennifer Ann – SRN: 120232774

- 168-

PDU

Type

PDU

Name

Description TxAd

d

refers

to:

RxAd

d

refers

to:

ONN_I

ND

connections. Fields:

• AdvA (6 octets): Advertiser’s device

address

• AdvData (0-31 octets): Advertising

data from host

0011 CONN

ECT_R

EQ

This is an initiator’s request to establish a

connection with the advertising device. This

request contains specific connection

parameters. Fields:

• InitA (6 octets): Initiator’s device

address

• AdvA (6 octets): Advertiser’s devices

address

• LLData (22 octets): Contains

connection parameters (see table

7.2.6.1 for details)

InitA AdvA

0110 ADV_S

CAN_I

ND

Formerly known as

ADV_DISCOVER_IND. Payload includes

advertising data from the advertiser’s host.

Advertiser allows scans. Fields:

• AdvA (6 octets): Advertiser’s device

address

• AdvData (0-31 octets): Advertising

data from host.

AdvA --

0011 SCAN_

REQ

This is a scanner’s request to get more

information after receiving an

advertisement. Fields:

• ScanA (6 octets): Scanner’s device

Scan

A

AdvA

Janesko, Jennifer Ann – SRN: 120232774

- 169-

PDU

Type

PDU

Name

Description TxAd

d

refers

to:

RxAd

d

refers

to:

address

• AdvA (6 octets): Advertiser’s device

address

0100 SCAN_

RSP

Payload includes response data from the

advertising host to a SCAN_REQ. Fields:

• AdvA (6 octets): Advertiser’s device

address

• ScanRspData (0-31 octets):

Advertising data from host.

AdvA

[BLE-LL, 41-45]

7.2.6.1 LLDATA of the CONNECT_REQ Advertising PDU

The LLDATA fields of the CONNECT_REQ PDU is structured as represented

in Figure .

The values of the fields are described in the following table.

Field Description

AA Link Layer connections access address

CRCinit Initialization value for the air interface packet’s CRCs on the data

channel.

WinSiz Sets transmitWindowSize value.

Janesko, Jennifer Ann – SRN: 120232774

Figure 54: LLData Fields [BLE-LL, 44]

- 170-

Field Description

e transmitWindowSize=WinSize*1.25 ms.

WinOff

set

Sets the transmitWindowOffset value.

transmitWindowOffset=WinOffset*1.25ms.

Interval Sets the connInterval value. connInterval=Interval*1.25ms.

Latency Sets the connLatency value. connSlaveLatency=Latency

Timeout Sets the connSupervisionTimeout value. ConnSupervisionTimeout

= Timeout * 10 ms.

ChM Shall contain the channel map indicating used and unused data

channels. See the Bluetooth Specification, Volume 6, section 1.4.1

for further detail.

Hop Set to indicate the hopIncrement used in the data channel selection

algorithm. Value between 5 and 16.

SCA Sets the masterSCA which determines the worst sleep clock

accuracy of the master.
[BLE-LL, 44-45]

7.2.7 Advertising Data Payload Structure

Janesko, Jennifer Ann – SRN: 120232774

Figure 55: AD Structure [BLE-GAP, 389]

- 171-

7.2.8 AD Types and AD Data Descriptions in AD

Structure

An up-to-date listing can be found under:

• https://www.bluetooth.com/specifications/assigned-numbers/generic-

access-profile

Type AD

Type

Length

(octets)

Description

Incomplete list of

16-bit Service

UUIDs

0x02 Variabl

e

List of 16-bit service or service class

UUIDS

Complete List of

16-bit Service

UUIDs

0x03 Variabl

e

List of 16-bit service or service class

UUIDS

Incomplete List of

32-bit Service

UUIDs

0x04 Variabl

e

List of 32-bit service or service class

UUIDS

Complete List of

32-bit Service

UUIDs

0x05 Variabl

e

List of 32-bit service or service class

UUIDS

Incomplete List of

128-bit Service

UUIDs

0x06 Variabl

e

List of 128-bit service or service class

UUIDS

Complete List of

128-bit Service

UUIDs

0x07 Variabl

e

List of 128-bit service or service class

UUIDS

Shortened Local

Name

0x08 Variabl

e

Local name assigned to device or a

shortened version.

Complete Local

Name

0x09 Variabl

e

Local name assigned to the device.

Flags 0x01 0 or

more

octets

See table 7.2.8.1 below for the flag

values.

Janesko, Jennifer Ann – SRN: 120232774

- 172-

Type AD

Type

Length

(octets)

Description

Manufacturer

Specific Data

0xFF 2 or

more

octets

First two octets contain the company

identifier code and the remaining octets

contain manufacturer-specific data.

TX Power Level 0x0A 1 octet Hexadecimal value that represents a

value from -127 to +127 dBm

Slave Connection

Interval Range

0x12 4 octets First two octets contain the peripheral’s

preferred minimum interval value

(0x0006 -0x0C80). Second two octets

contain the peripheral’s maximum

interval value 0x0006 to 0x0C80.

0XFFFF means there is no maximum

interval value.

List of 16 bit

Service

Solicitation IDs

0x14 2 or

more

octets

This specifies the services that are

desired by the peripheral from the

central.

List of 32 bit

Service

Solicitation

UUIDs

0x1F 4 or

more

octets

This specifies the services that are

desired by the peripheral from the

central.

List of 128 bit

Service

Solicitation

UUIDs

0x15 16 or

more

octets

This specifies the services that are

desired by the peripheral from the

central.

Service Data – 16

bit UUID

0x14 2 or

more

octets

First two octets contain the service data

UUID. The remaining octets contain the

data.

Service Data – 32

bit UUID

0x1F 4 or

more

octets

First four octets contain the service data

UUID. The remaining octets contain

the data.

Service Data –

128 bit UUID

0x15 16 or

more

First 16 octets contain the service data

UUID. The remaining octets contain the

Janesko, Jennifer Ann – SRN: 120232774

- 173-

Type AD

Type

Length

(octets)

Description

octets data.

Appearance 0x19 Appearance.

Public Target

Address

0x17 6 octets

for

each

address

Lists the of one or more public

addresses of the intended recipient(s) of

the advertisement. Addresses come

from devices that were previously

bound with a public address to the

advertiser.

Random Target

Address

0x18 6 octets

for

each

address

Lists the of one or more public

addresses of the intended recipient(s) of

the advertisement. Addresses come

from devices that were previously

bound with a private address to the

advertiser.

Advertising

Interval

0x1A 2 octets This is the adinterval value which is

multiplied by 0.625 msec.

LE Bluetooth

Device Address

0x1B 7 octets The last bit of the first octet indicates

public/private address: 0=public,

1=private. The remaining 6 octets

contain the advertiser’s device address.

LE Role 0x1C 1 octet See table 7.2.8.2 below for the value

descriptions.
[BLE-Supp][BLE-GAP-AssignedNumbers]

7.2.8.1 Flag Values

The flags function such that if a bit in the octet is set to 1, the value for that

flag is set.

Bit Description

0 The device is in limited discoverable mode.

1 The device is in general discoverable mode.

Janesko, Jennifer Ann – SRN: 120232774

- 174-

2 BR/EDR is not supported.

3 LE & BR/EDR is supported in controller.

4 LE & BR/EDR is supported in host.

5..7 Reserved
[BLE-Supp, 11]

7.2.8.2 LE Role Values

Value Description

0x00 Only peripheral role available.

0x01 Only central role available.

0x02 Peripheral and central role available. Peripheral preferred on

connection establishment.

0x03 Peripheral and central roles available. Central role preferred on

connection establishment.

0x04-

0xFF

Reserved for future use.

[BLE-Supp, 25]

7.3 Appendix 3: Data Channel Air Interface

Packet Details

7.3.1 LL Control PDU Details

7.3.1.1 LL Control PDU Structure

Janesko, Jennifer Ann – SRN: 120232774

Figure 56: Logical representation of LL

control PDU [BLE-LL, 48]

- 175-

7.3.1.2 LL Control PDU Operations

OP

Code

LL Control PDU Name CtrData Sender

00 LL_CONNECTION_UP

DATE_REQ

WinSize: 1 octet, WinOffset:

2 octets, Interval: 2 octets,

latency: 2 octets, timeout: 2

octets, instant: 2 octets

master

0F LL_CONNECTION_PA

RAM_REQ

Interval_min: 2 octets,

Interval_max: 2 octets,

latency: 2 octets, timeout: 2

octets, preferredPeriodicity: 1

octet,

referencConnEventCount: 2

octets, Offset0: 2 octets,

Offset1: 2 octets,

Offset2: 2 octets,

Offset3: 2 octets,

Offset4: 2 octets and

Offset5: 2 octets

master

10 LL_CONNECTION_PA

RAM_RSP

Interval_min: 2 octets,

Interval_max: 2 octets,

latency: 2 octets, timeout: 2

octets, preferredPeriodicity: 1

octet,

referencConnEventCount: 2

octets, Offset0: 2 octets,

Offset1: 2 octets, Offset2: 2

octets, Offset3: 2 octets,

Offset4: 2 octets and Offset5:

2 octets

slave

01 LL_CHANNEL_MAP_R

EQ

ChM: 5 octets, Instant: 2

octets

master

Janesko, Jennifer Ann – SRN: 120232774

- 176-

OP

Code

LL Control PDU Name CtrData Sender

02 LL_TERMINATE_IND CtrData: 1 octet master or

slave

03 LL_ENC_REQ Rand: 8 octets, EDIV: 2

octets, SKDm: 8 octets, IVm

4 octets

master

04 LL_ENC_RSP SKD: 8 octets, IV 4 octets slave

05 LL_START_ENC_REQ -- master

06 LL_START_ENC_RSP -- slave

07 LL_UNKNOWN_RSP UknownType: 1 octet master or

slave

08 LL_FEATURE_REQ FeatureSet: 8 octets, see table

7.3.1.3

master

0E LL_SLAVE_FEATURE_

REQ

FeatureSet: 8 octets, see table

7.3.1.3

slave

09 LL_FEATURE_RSP FeatureSet: 8 octets, see table

7.3.1.3

master or

slave

0A LL_PAUSE_ENC_REQ -- master

0B LL_PAUSE_ENC_RSP -- slave and

master

0C LL_VERSION_IND VersNr: 1 octet, CompID: 2

octets, SubVersNr: 2 octets

master or

slave

0D LL_REJECT_IND ErrorCode: 1 octet master or

slave

11 LL_REJECT_IND_EXT RejectOpCode: 1 octet,

ErrorCode: 1 octet

master or

slave

12 LL_PING_REQ -- master or

slave

13 LL_PING_RSP -- master or

slave

14 LL_LENGTH_REQ MaxRxOctets: 2 octets,

MaxRxTime: 2 octets,

master or

slave

Janesko, Jennifer Ann – SRN: 120232774

- 177-

OP

Code

LL Control PDU Name CtrData Sender

MaxTxOctets: 2 octets,

MaxTxTime: 2 octets

15 LL_LENGTH_RSP MaxRxOctets: 2 octets,

MaxRxTime: 2 octets,

MaxTxOctets: 2 octets,

MaxTxTime: 2 octets

master or

slave

[BLE-LL]

7.3.1.3 Features Supported in the Link Layer for Over-the-

air Communication

Bit Position Link Layer Feature

0 LE encryption

1 Connection parameter request procedure

2 Extended reject indication

3 Slave-initiated features exchange

4 LE ping

5 LE data packet length extension

6 LL privacy

7 Extended scanner filter policies

8-63 RFU
[BLE-LL, 87]

Janesko, Jennifer Ann – SRN: 120232774

- 178-

7.3.2 LL Data PDU (Attribute PDU) Details

7.3.2.1 Attribute PDU Structure

Janesko, Jennifer Ann – SRN: 120232774

Figure 57: Attribute PDU Format [BLE-ATT, 478]

- 179-

7.3.2.2 Attribute PDU Details

Opcode Attribute PDU Name Parameters

0x01 Error Response Erroneous opcode: 1 octet

Erroneous attribute handle: 2 octets

Error code: 1 octet (see table 7.3.2.3)

0x02 Exchange MTU

Request

Client Rx MTU: 2 octets

0x03 Exchange MTU

Response

Server Rx MTU: 2 octets

0x04 Find Information

Request

Starting handle: 2 octets

Ending handle: 2 octets

0x05 Find Information

Response

Format: 1 octet

→ 0x01 – 16-bit Bluetooth UUIDs in

information data

→ 0x02 – 128-bit UUIDs in information

data

Information data: 4 to MTU-2 octets

0x06 Find by Type Value

Request

Starting handle: 2 octets

Ending handle: 2 octets

Attribute type: 2 octets

Attribute value: 0 to MTU-7 octets

0x07 Find by Type Value

Response

Handles information list: 4 to MTU-1

octets

0x08 Read by Type Request Starting handle: 2 octets

Ending handle: 2 octets

UUID: 2 or 16 octets

0x09 Read by Type

Response

Length: 1 octet

Attribute data list: 2 to MTU-2 octets

0x0A Read Request Attribute handle: 2 octets

0x0B Read Response Attribute value: MTU -1 octets

0x0C Read Blob Request Attribute handle: 2 octets

Value offset: 2 octets

0x0D Read Blob Response Part attribute value: 0 to MTU-1

Janesko, Jennifer Ann – SRN: 120232774

- 180-

Opcode Attribute PDU Name Parameters

0x0E Read Multiple Request Set of handles: 4 to MTU-1 octets

0x0F Read Multiple

Response

Set of values: 0 to MTU-1 octets

0x10 Read by Group Type

Request

Start handle: 2 octets

Ending handle: 2 octets

UUID: 2 or 16 octets

0x11 Read by Group Type

Response

Length: 1 octet

Attribute data list: 2 to MTU-2 octets

0x12 Write Request Attribute handle: 2 octets

Attribute value: 0 to MTU-3 octets

0x13 Write response --

0x52 Write Command Attribute handle: 2 octets

Attribute value: 0 to MTU-3 octets

0x16 Prepare Write Request Attribute handle: 2 octets

Value offset: 2 octets

Part attribute value: 0 to MTU-5 octets

0x17 Prepare Write

Response

Attribute handle: 2 octets

Value offset: 2 octets

Part attribute value: 0 to MTU-5 octets

0x18 Execute Write Request Flags: 1 octet (0x00 – cancel, 0x01 –

execute write)

0x19 Execute Write

Response

-

0x1B Handle Value

Notification

Attribute handle: 2 octets

Attribute value: 0 to MTU-3 octets

0x1D Handle Value

Indication

Attribute handle: 2 octets

Attribute value: 0 to MTU-3 octets

0x1E Handle value

confirmation

--

0xD2 Signed write command Attribute handle: 2 octets

Attribute value: 0 to MTU-15 octets

Authentication signature: 12 octets
[BLE-ATT]

Janesko, Jennifer Ann – SRN: 120232774

- 181-

7.3.2.3 Error Codes for Attribute PDU Opcode 0x01

Error

Code

Description

0x01 Invalid handle

0x02 Read not permitted

0x03 Write not permitted

0x04 Invalid PDU

0x05 Insufficient authentication

0x06 Request not supported

0x07 Invalid offset (offset out of bounds)

0x08 Insufficient authorization

0x09 Prepare queue full

0x0A Attribute not found

0x0B Attribute not long (Read Blob Request not needed)

0x0C Insufficient encryption key size

0x0D Invalid attribute value length

0x0E Unlikely error (unexpected error occurred)

0x0F Insufficient encryption

0x10 Unsupported group type (as defined by higher layer

specification, i.e. GATT)

0x11 Insufficient resources

0x80-0x9F Application errors (as defined in in higher layer specification

like GATT profile)

0xFD Client characteristic configuration descriptor improperly

configured

0xFE Procedure already in progress

0xFF Out of range
[BLE-ATT, 481-482]

Janesko, Jennifer Ann – SRN: 120232774

- 182-

8 References

Albazrqaoe, W., Huang, J., Xing, G., 2016. Practical Bluetooth Traffic

Sniffing: Systems and Privacy Implications. Presented at the

Proceedings of the 14th Annual International Conference on Mobile

Systems, Applications, and Services, ACM, pp. 333–345.

doi:10.1145/2906388.2906403

averpix, 2011. Clipart - generic-office-cpu [WWW Document]. openclipart.

URL https://openclipart.org/detail/127231/genericofficecpu (accessed

3.12.17).

Black Hat, 2016. Gattacking Bluetooth Smart Devices - Introducing a New

BLE Proxy Tool byl Slawomir Jasek.

BLE, n.d. Adopted Specifications [WWW Document]. Bluetooth Technology

Website. URL https://www.bluetooth.com/specifications/adopted-

specifications (accessed 3.12.17a).

BLE, n.d. Deprecated Specifications [WWW Document]. Bluetooth

Technology Website. URL

https://www.bluetooth.com/specifications/adopted-

specifications/deprecated-specifications (accessed 3.12.17b).

BLE-GAP-AssignedNumbers, n.d. Generic Access Profile | Bluetooth

Technology Website [WWW Document]. URL

https://www.bluetooth.com/specifications/assigned-numbers/generic-

access-profile (accessed 3.13.17).

BlueZ: Official Linux Bluetooth protocol stack [WWW Document], 2017.

BlueZ. URL http://www.bluez.org/ (accessed 3.12.17).

Burns, S.F., 2005. Threat modeling: A process to ensure application security.

GIAC Security Essentials Certification (GSEC) Practical Assignment.

Cauquil, D., 2017. DigitalSecurity/btlejuice [WWW Document]. GitHub. URL

https://github.com/DigitalSecurity/btlejuice (accessed 3.12.17).

Cheung, H., 2005. How To: Building a BlueSniper Rifle - Part 1 [WWW

Document]. tom’s guide. URL http://www.tomsguide.com/us/how-to-

bluesniper-pt1,review-408.html (accessed 3.12.17).

Janesko, Jennifer Ann – SRN: 120232774

- 183-

Choi, M., Lee, J., Kim, S., Jeong, Y.-S., Park, J.-H., 2016. Location based

authentication scheme using BLE for high performance digital content

management system. Neurocomputing 209, 25–38.

Cook, G., n.d. reveng-Catalogue of parametrised CRC algorithms [WWW

Document]. Sourceforge. URL http://reveng.sourceforge.net/crc-

catalogue/17plus.htm (accessed 3.12.17).

Cooper, 2016. Hack.lu 2016 BtleJuice: the Bluetooth Smart Man In The

Middle Framework by Damiel Cauquil.

dannya, 2006. Clipart - Bluetooth [WWW Document]. URL

https://openclipart.org/detail/197362/mono-kbluetoothd (accessed

12.4.16).

Das, A.K., Pathak, P.H., Chuah, C.-N., Mohapatra, P., 2016. Uncovering

Privacy Leakage in BLE Network Traffic of Wearable Fitness

Trackers. Presented at the Proceedings of the 17th International

Workshop on Mobile Computing Systems and Applications, ACM, pp.

99–104. doi:10.1145/2873587.2873594

Davies, A., 2016. Bluetooth 5.0 debut imminent, mesh still just-round-corner -

Rethink IoTRethink Internet of Things – IoT News and Analysis

[WWW Document]. URL http://rethink-iot.com/2016/06/14/bluetooth-

5-0-debut-imminent-mesh-still-just-round-corner/ (accessed 12.3.16).

Degeler, A., 2015. How To Overcome Security Issues In BLE [WWW

Document]. Stanfy. URL https://stanfy.com/blog/bluetooth-low-

energy-security-issues-and-how-to-overcome-them/ (accessed

11.28.16).

doctormo, 2007. Clipart - BTC6100C UK Compact Keyboard [WWW

Document]. URL https://openclipart.org/detail/4946/btc6100c-uk-

compact-keyboard (accessed 3.12.17).

dominicgs, mikeryan, diracdeltas, zbac, EMCP, 2016.

greatscottgadgets/ubertooth/Ubertooth Build Guide [WWW

Document]. GitHub. URL

https://github.com/greatscottgadgets/ubertooth (accessed 3.12.17).

Dunning, J.P., 2010. Bluetooth Threat Taxonomy. Virginia Polytechnic

Institute and State University.

Janesko, Jennifer Ann – SRN: 120232774

- 184-

Fagerness, T., 2015. BLE using nRF51: ARM-GCC Build Environment

[WWW Document]. All About Circuits. URL

https://www.allaboutcircuits.com/projects/ble-using-nrf51-arm-gcc-

build-environment/ (accessed 3.18.17).

Fawaz, K., Kim, K.-H., Shin, K.G., 2016. Protecting Privacy of BLE Device

Users. Presented at the 25th USENIX Security Symposium, USENIX

Association, Austin, TX.

Foringer, G., 2017. Introducing BLESuite and BLE-Replay: Python Tools for

Rapid Assessment of Bluetooth Low Energy Peripherals [WWW

Document]. nccgroup. URL https://www.nccgroup.trust/uk/about-

us/newsroom-and-events/blogs/2016/september/introducing-blesuite-

and-ble-replay-python-tools-for-rapid-assessment-of-bluetooth-low-

energy-peripherals/ (accessed 2.11.17).

Hilts, A., Parsons, C., Knockel, J., 2016. Every Step You Fake: A Comparative

Analysis of Fitness Tracker Privacy and Security.

Ibn Minar, N.B.N., 2012. Bluetooth Security Threats And Solutions: A Survey.

International Journal of Distributed and Parallel systems 3, 127–148.

doi:10.5121/ijdps.2012.3110

Jasek, S., 2016. Gattacking Bluetooth Smart Devices. Presented at the

Blackhat, Las Vegas.

jslawek, forte916, 2017. securing/gattacker [WWW Document]. GitHub. URL

https://github.com/securing/gattacker (accessed 3.12.17).

Koblitz, N., Menezes, A., undefined, undefined, undefined, undefined, 2016. A

Riddle Wrapped in an Enigma. IEEE Security & Privacy 14, 34–42.

Koyama, Shunsuke, Satoshi, O., Nagashima, S., Matsuoh, D., Bernsten, F.,

2011. Phone Alert Status Service.

Leavesified, n.d. Setup nRF51 Development on Linux – Leavesified [Blog]

[WWW Document]. URL

https://leavesified.wordpress.com/2016/03/24/setup-nrf51-

development-on-linux/ (accessed 3.12.17).

LeBlanc, D., Howard, M., 2002. Writing Secure Code (Developer Best

Practices), 2 edition. ed. Microsoft Press.

Janesko, Jennifer Ann – SRN: 120232774

- 185-

Lester, S., 2015. The Emergence of Bluetooth Low Energy [WWW

Document]. Context. URL

https://www.contextis.com//resources/blog/emergence-bluetooth-low-

energy/ (accessed 11.28.16).

Lester, S., Stone, P., 2016. Bluetooth LE - Increasingly popular, but still not

very private [WWW Document]. Context. URL

https://www.contextis.com/resources/blog/bluetooth-le-increasingly-

popular-still-not-very-private/ (accessed 11.28.16).

LightBlue Explorer - Bluetooth Low Energy on the App Store [WWW

Document], 2016. App Store. URL

https://itunes.apple.com/us/app/lightblue-explorer-bluetooth-low-

energy/id557428110?mt=8 (accessed 3.12.17).

Lin, H., Bergmann, N.W., 2016. IoT Privacy and Security Challenges for

Smart Home Environments. Information 7, 44.

doi:10.3390/info7030044

Lu, Y., Meier, W., Vaudenay, S., 2005. The conditional correlation attack: a

practical attack on bluetooth encryption. Presented at the Proceedings

of the 25th annual international conference on Advances in Cryptology,

Springer-Verlag, pp. 97–117. doi:10.1007/11535218_7

Lu, Y., Vaudenay, S., 2004a. Faster Correlation Attack on Bluetooth

Keystream Generator E0, in: SpringerLink. Presented at the Annual

International Cryptology Conference, Springer Berlin Heidelberg, pp.

407–425. doi:10.1007/978-3-540-28628-8_25

Lu, Y., Vaudenay, S., 2004b. Cryptanalysis of Bluetooth Keystream Generator

Two-Level E0, in: SpringerLink. Presented at the International

Conference on the Theory and Application of Cryptology and

Information Security, Springer Berlin Heidelberg, pp. 483–499.

doi:10.1007/978-3-540-30539-2_34

Luthra, G., 2015. Embedded controllers for the Internet of Things [WWW

Document]. EDN. URL

http://www.edn.com/design/sensors/4440576/Embedded-controllers-

for-the-Internet-of-Things (accessed 11.28.16).

Janesko, Jennifer Ann – SRN: 120232774

- 186-

Madaan, P., Luthra, G., 2016. IoT for the smarter home [WWW Document].

Electronics EETimes. URL http://www.electronics-

eetimes.com/design-center/iot-smarter-home (accessed 11.28.16).

Merritt, R., 2016. Open RTOS Targets Net of Things [WWW Document].

EETimes. URL http://www.eetimes.com/document.asp?

doc_id=1329158 (accessed 11.28.16).

mikeryan, pabigot, dsempsrott, jennj, jodypattison, 2017.

greatscottgadgets/ubertooth/Capturing BLE in Wireshark [WWW

Document]. GitHub. URL

https://github.com/greatscottgadgets/ubertooth (accessed 3.12.17).

Nordic Semiconductor’s Official Github Account [WWW Document], n.d.

GitHub. URL https://github.com/NordicSemiconductor (accessed

3.18.17).

nRF Connect for desktop [WWW Document], n.d. Nordic Semiconductor.

URL https://www.nordicsemi.com/eng/Products/Bluetooth-low-

energy/nRF-Connect-for-desktop (accessed 3.12.17).

nRF Connect for mobile (previously called nRF Master Control Panel)

[WWW Document], n.d. Nordic Semiconductor. URL

https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-

Connect-for-mobile-previously-called-nRF-Master-Control-Panel

(accessed 3.12.17).

nRF Toolbox App / Nordic mobile Apps / Products / Home - Ultra Low Power

Wireless Solutions from NORDIC SEMICONDUCTOR [WWW

Document], n.d. URL

https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-

Toolbox-App (accessed 3.18.17).

Ossmann, M., n.d. greatscottgadgets/ubertooth [WWW Document]. GitHub.

URL https://github.com/greatscottgadgets/ubertooth (accessed

3.12.17).

OWASP, 2016. IoT Testing Guides [WWW Document]. OWASP Internet of

Things Project. URL

https://www.owasp.org/index.php/IoT_Testing_Guides (accessed

12.27.16).

Janesko, Jennifer Ann – SRN: 120232774

- 187-

PACKET-SNIFFER SmartRF Protocol Packet Sniffer [WWW Document],

2014. Texas Instruments. URL http://www.ti.com/tool/packet-sniffer

(accessed 3.12.17).

peplin, 2017. peplin/pygatt [WWW Document]. GitHub. URL

https://github.com/peplin/pygatt (accessed 3.18.17).

PTES, 2017. High Level Organization of the Standard [WWW Document].

The Penetration Testing Execution Standard. URL http://www.pentest-

standard.org/index.php/Main_Page (accessed 3.12.17).

Quinnel, R., 2015. BLE Module Lowers IoT Development Costs [WWW

Document]. EE Times. URL http://www.eetimes.com/document.asp?

doc_id=1327916 (accessed 11.28.16).

RaMBLE - Bluetooth LE Mapper - Android Apps on Google Play [WWW

Document], 2017. Google Play. URL

https://play.google.com/store/apps/details?

id=com.contextis.android.BLEScanner&hl=en (accessed 3.12.17).

Ryan, M., 2017. mikeryan/crackle [WWW Document]. GitHub. URL

https://github.com/mikeryan/crackle (accessed 3.12.17).

Ryan, M., 2015a. mikeryan/PyBT [WWW Document]. GitHub. URL

https://github.com/mikeryan/PyBT (accessed 3.12.17).

Ryan, M., 2015b. scapy (fork with Bluetooth) [WWW Document]. Bitbucket.

URL https://bitbucket.org/mikeryan1/scapy/downloads/?tab=branches

(accessed 3.12.17).

Ryan, M., 2014. NSA Playset: Bluetooth Smart.

Ryan, M., 2013a. Bluetooth: with low energy comes low security, in:

Presented as Part of the 7th USENIX Workshop on Offensive

Technologies.

Ryan, M., 2013b. Bluetooth Smart: The Good, the Bad, the Ugly, and the Fix!

sandeepmistry, 2017a. sandeepmistry/noble: A Node.js BLE (Bluetooth Low

Energy) central module [WWW Document]. URL

https://github.com/sandeepmistry/noble (accessed 3.12.17).

sandeepmistry, 2017b. sandeepmistry/bleno [WWW Document]. GitHub. URL

https://github.com/sandeepmistry/bleno (accessed 3.12.17).

Janesko, Jennifer Ann – SRN: 120232774

- 188-

Sandhya, S., Devi, K.A.S., 2012. Analysis of Bluetooth threats and v4.0

security features. ResearchGate. doi:10.1109/ICCCA.2012.6179149

Shaked, U., 2016. Reverse Engineering a Bluetooth Lightbulb. Uri Shaked.

ShawnHymel, 2015. Bluetooth Low Energy Peripherals with JavaScript.

Shawn Hymel.

shokunin, 2008. Clipart - modern touch phone mobile [WWW Document].

URL https://openclipart.org/detail/19480/modern-touch-phone-mobile

(accessed 12.4.16).

Snapshot, n.d.

Souppaya, M., Scarfone, K., 2013. Guidelines for managing the security of

mobile devices in the enterprise. NIST special publication 800, 124.

Spill, D., Bittau, A., 2007. BlueSniff: Eve Meets Alice and Bluetooth. WOOT

7, 1–10.

Telit, 2016a. Telit acquires wireless communications assets to boost

capabilities in low-power Internet of Things market [WWW

Document]. Telit. URL http://www.telit.com/press-media/press-

releases/press-details/item/telit-acquires-wireless-communications-

assets-to-boost-capabilities-in-low-power-internet-of-things/ (accessed

11.28.16).

Telit, 2016b. Enabling End-to-End IoT Solutions - Telit [WWW Document].

Telit. URL http://www.telit.com/ (accessed 11.28.16).

Townsend, K., Cufi, C., Akiba, Davidson, R., 2014. Getting Started with

Bluetooth Low Energy. O’Reilly Media.

ttrabun, 2016a. nccgroup/BLESuite [WWW Document]. GitHub. URL

https://github.com/nccgroup/BLESuite (accessed 3.12.17).

ttrabun, 2016b. nccgroup/BLESuite-CLI [WWW Document]. GitHub. URL

https://github.com/nccgroup/BLESuite-CLI (accessed 3.12.17).

ttrabun, 2016c. nccgroup/BLE-Replay [WWW Document]. GitHub. URL

https://github.com/nccgroup/BLE-Replay (accessed 3.12.17).

Turk, V., 2014. The Internet of Things Has a Language Problem [WWW

Document]. Motherboard. URL http://motherboard.vice.com/read/the-

internet-of-things-has-a-language-problem (accessed 11.28.16).

Janesko, Jennifer Ann – SRN: 120232774

- 189-

vectorace, 2011. Clipart - Vector laptop or notebook [WWW Document].

openclipart. URL https://openclipart.org/detail/129931/vector-laptop-

or-notebook (accessed 3.12.17).

Veilleux, D., 2017. Intro to Application-level Security Using the ECB

Peripheral [WWW Document]. Blogs - Nordic Developer Zone. URL

https://devzone.nordicsemi.com/blogs/721/intro-to-application-level-

security-using-the-ecb-/ (accessed 1.14.17).

Web Bluetooth [WWW Document], 2017. webbluetoothcg. URL

https://webbluetoothcg.github.io/web-bluetooth/ (accessed 3.12.17).

Woolley, M., 2015. Bluetooth Technology – Protecting Your Privacy [WWW

Document]. Bluetooth Blog. URL http://blog.bluetooth.com/bluetooth-

technology-protecting-your-privacy/ (accessed 11.28.16).

Yoshida, J., 2016a. NXP Set to Demystify Smart Homes [WWW Document].

EETimes. URL http://www.eetimes.com/document.asp?

doc_id=1328579 (accessed 11.28.16).

Yoshida, J., 2016b. Silicon Labs’ Geckos Aim at IoT, Take on NXP [WWW

Document]. EETimes. URL http://www.eetimes.com/document.asp?

doc_id=1328988 (accessed 11.28.16).

Yoshida, J., 2016c. Bluetooth 4.2 Unveiled: No Mesh Yet, But Big on IoT | EE

Times [WWW Document]. URL

http://www.eetimes.com/document.asp?doc_id=1324835 (accessed

12.3.16).

Ziegeldorf, J.H., Morchon, O.G., Wehrle, K., 2014. Privacy in the Internet of

Things: threats and challenges: Privacy in the Internet of Things:

threats and challenges. Security and Communication Networks 7,

2728–2742. doi:10.1002/sec.795

Janesko, Jennifer Ann – SRN: 120232774

