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Executive	Summary	
	
The	payments	industry	has	evolved	from	magnetic	stripe	cards	to	smart	cards	and	eventually	to	contactless	
cards	payments.	 	Now	the	 industry	 is	making	another	step	 in	 its	evolution	by	replacing	the	card	with	a	
mobile	phone.			Initially	a	solution	based	on	a	secure	element	in	the	mobile	phone	was	proposed	but	Issuers	
did	not	like	the	reliance	on	MNOs	and	eventually	HCE	was	proposed	as	a	solution.		In	HCE,	an	App,	termed	
a	wallet	 is	responsible	 for	communication	with	a	POS	during	a	transaction	and	 for	storing	 the	payment	
credentials.	To	 limit	risk	 in	HCE,	payment	credentials	are	exchanged	 for	tokens	that	have	 limited	use,	a	
process	known	as	tokenization.	
	
In	recent	years,	a	number	of	wallet	applications	have	been	introduced	by	different	stakeholders,	including	
Android	Pay	deployed	by	Google	and	Microsoft	Wallet	deployed	by	Microsoft.		However,	Issuers	can	also	
develop	their	own	wallet	app.	Other	than	for some	minor	specifics,	such	as	exchanging	credentials	with	
tokens,	HCE	uses	the	same	infrastructure	used	by	contactless	cards.		A	transaction	executed	by	a	contactless	
card	is	nearly	identical	to	a	transaction	done	through	HCE.		Most	card	schemes	support	payments	with	HCE	
and	also	provide	services	such	as	tokenization.	
	
HCE	is	attractive	to	consumers	because	it	allows	for	quick	and	convenient	way	to	make	a	payment.		It	is	
faster	as	cardholder	verification	can	be	done	on	the	mobile	device	using	biometrics	instead	of	PINs.		It	is	
also	more	user	 interactive	 and	HCE	wallet	 can	provide	other	 services	 that	a	physical	 card	 cannot,	e.g.	
providing	 a	 history	 of	 payments.	 The	 benefits	 of	 HCE	 is	 not	 only	 limited	 to	 cardholders	 but	 also	 to	
merchants	and	 Issuers.	 	 Issuers	 can	deploy	 loyalty	programs	 through	HCE	without	possible	additional	
marketing	costs.	
	
While	convenience	is	a	necessity	in	today’s	world,	HCE	comes	with	its	own	set	of	risks.		Given	the	use	of	
mobile	devices,	HCE	could	be	exposed	to	a	number	of	threats	and	vulnerabilities	such	as	malicious	attacks	
from	malware	running	on	the	mobile	device.		Thus	the	industry	needs	to	be	more	pro-active	to	ensure	that	
the	same	level	of	security	provided	by	a	Secure	Element	is	achieved.		
	
In	this	regard,	the	aim	of	this	project	was	to	evaluate	current	implementations	from	a	security	perspective.		
To	achieve	 this,	a	 finite	state	machine	model	of	an	HCE	wallet	application,	based	on	 the	 requirements	
provided	by	VISA	and	in	line	with	EMV’s	specifications	was	developed.	 	The	model	was	then	studied	for	
security	risks	with	particular	emphasis	on	customer	verification	and	authentication	methods,	tokenization	
and	the	impact	in	operating	cryptographic	functions	and	storing	cryptographic	keys,	required	during	an	
HCE	payment	process.		Other	generic	issues	in	the	use	of	mobile	phones	for	payments	when	employed	in	
HCE	payments	were	also	outlined.		
	
As	a	result	of	the	risks	identified,	the	main	findings	of	this	project	can	be	summarized	into	the	following	
points:

 A	 safe	 storage	 for	 limited	use	keys	and	other	 sensitive	data	 is	 required	on	 the	mobile	device.		
Shifting	the	data	to	the	cloud	does	not	necessarily	eliminate	the	risk	of	theft	of	such	keys.													

 The	generation	of	tokens	(i.e.	LUKs)	should	occur	on	the	mobile	device	rather	than	on	the	cloud.		
Considering	all	the	risks	involved	between	doing	this	process	in	the	cloud	and	on	the	mobile	device,	
the	latter	is	a	safer	approach.	

 There	 is	a	strong	need	 for	a	method/technique	 that	can	be	used	 to	uniquely	 identify	a	mobile	
device.		The	technique	should	be	difficult	to	tamper	with.	

 A	supply	and	demand	synchronization	mechanism	between	token	generation	and	token	usage	is	
required.		While	tokens	are	of	limited	use,	a	better	way	of	managing	them	is	required.	
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1 Introduction	

1.1 Introduction	
	
Payment	 technologies	have	 come	a	 long	way	 since	 the	 first	payment	 cards	were	 introduced.	 	Until	 the	
introduction	of	EMV	standards,	credit	or	debit	card	transactions	used	a	magnetic	stripe	to	record	account	
data.	Whilst	mag-stripe	was	simple	and	cheap	they	were	easy	to	clone.		As	a	result,	EMV	chip	and	pin	cards	
and	EMV	contactless	technology	have	been	introduced	to	replace	the	magnetic	stripe.		Both	technologies	
allow	the	card	to	make	cryptographic	operations	making	it	possible	to	implement	countermeasures	against	
cloning,	unauthorised	use	and	many	other	possible	fraud	attacks.		
	
HCE	is	essentially	an	extension	to	the	EMV	contactless	technology.		EMV	contactless	cards	use	Near	Field	
Communication	to	communicate	with	the	payment	terminal.	HCE	is	a	technique	whereby	a	mobile	device	
with	embedded	NFC	hardware	emulates	a	contactless	card.			An	app,	normally	referred	to	as	a	‘digital	wallet’	
manages	 the	payment	 credentials	and	 emulates	 the	 card/s	when	 the	mobile	 is	 tapped	on	a	POS.	 	The	
advantages	and	disadvantages	of	using	an	emulated	card	on	a	mobile	device	instead	of	a	card	will	be	dealt	
further	in	this	study.		
	
The	launch	of	digital	wallets,	by	device/OS	vendors,	including	Apple	Pay	in	2014,	Android	Pay	and	Samsung	
Pay	in	2015,	and	Microsoft	Wallet	in	2016	have	generated	a	lot	of	interest	to	the	public	in	general	and	other	
market	players	in	the	industry	such	as	banks	and	payment	schemes.		Each	entity	is	free	to	utilize	different	
options	when	it	comes	to	implementing	the	digital	wallet	in	the	mobile	device.		Apple	have	chosen	to	deploy	
NFC	payments	using	an	embedded	secure	element	(SE),	to	store	the	credentials.	 	Samsung	Pay	chose	to	
implement	NFC	with	a	TEE	and	Android	Pay	and	Microsoft	Wallet	use	NFC	with	host	card	emulation	(HCE).	
The	difference	 in	 these	 implementation	 is	mostly	 related	 to	where	 and	how	 the	 payment	 tokens	 and	
cryptographic	keys	are	stored.	 
	
Consumers	are	also	provided	with	the	option	of	having	multiple	digital	wallets	on	the	same	mobile	device.	
Such	possibility	offers	a	fast	and	convenient	solution	to	both	the	consumer	and	the	merchant.	Cardholder	
verification	can	be	 implemented	 through	 the	 fingerprint	sensors	or	biometric	hardware	on	 the	mobile	
device	 instead	 of	 entering	 pins	 on	 payment	 terminals	 thereby	 adding	 to	user	 convenience.	 It	 reduces	
queuing	in	the	store,	cash	management	and	handling.		There	is	also	the	possibility	of	delivering	promotions	
and/or	 integrating	 loyalty	 opportunities	 in	 the	mobile	 payment	 experience,	making	HCE	 a	marketing	
platform.	There	is	little	difference	in	the	transaction	experience	at	the	POS	between	contactless	cards	and	
cards	emulated	on	the	mobile	device	from	a	usability	perspective	to	the	consumer.		
	
Despite	such	significant	opportunities	and	the	increase	of	mobile	payment	transactions,	the	perception	in	
the	marketplace	is	that	mobile	payments	are	risky.	This	is	evident	 in	the	ISACA’s	2015	Mobile	Payment	
Security	study	which	shows	that	87%	[1]	expected	to	see	an	increase	in	mobile	payment	data	breaches	
during	 2016,	 and	 only	 23%	 [1]	 of	 cybersecurity	 experts	 believe	 that	mobile	 payments	 keep	 personal	
information	safe.		
	
Given	HCE	 is	still	being	rapidly	evolving,	early	HCE	 implementations	may	not	provide	the	same	 level	of	
security	provided	by	EMV	cards.		Furthermore,	limited	number	of	specifications/recommendations	exist,	
that	are	specific	to	HCE.		These	are	issued	by	the	different	card	payment	schemes,	and	are	constantly	being	
updated.			Most	of	the	options	and	issues	exclusive	to	HCE,	are	related	to	where	sensitive	data	is	stored.		In	
HCE,	 payment	 credentials	 and	 cryptographic	 keys	 could	 become	 accessible	 in	 the	mobile’s	 operating	
system	 if	not	securely	protected.	 	Hence,	vulnerabilities	such	as	rooting	 the	mobile	device,	 introducing	
malware	to	the	mobile	device	and	lost	or	stolen	devices	can	make	it	easier	for	fraudsters	to	gain	access	to	
sensitive	information	stored	in	the	wallet	app	and	use	it	 for	fraudulent	reasons.	 	For	these	reasons	new	
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techniques,	such	as	Tokenization	have	been	 introduced	 to	combat	such	 risk.	Such	process	will	also	be	
analyzed	within	this	project.			
	
It	is	difficult	to	identify	all	risks	within	such	a	large	eco-system	and	hence	the	main	aim	of	this	project	is	to	
model	the	software	that	emulates	a	contactless	card,	known	as	the	HCE	wallet	app,	as	a	finite	state	machine.		
Such	a	model	will	be	able	to	provide	a	point	of	reference	for	the	different	states	that	exist,	in	a	payment	
transaction.	 	Security	risks,	at	each	state,	are	outlined	for	different	stakeholders	 in	the	eco-system.	 	The	
model	outlines	how	sensitive	data	is	transformed	during	the	various	stages	of	a	payment	from	the	moment	
the	mobile	is	tapped	on	a	payment	terminal	until	the	actual	payment	is	processed	by	the	Issuer.	In	the	end,	
the	 aim	 is	 to	 outline	 risks	 in	 the	 ecosystems	 and	 possibly	 come	 up	with	 countermeasures	 or	 better	
implementation	methods.	

1.2 Motivation	
	
The	reason	why	I	have	decided	to	explore	HCE	technology	comes	from	an	initiative	in	the	Bank	where	I	am	
currently	employed.		The	Bank	has	started	an	evaluation	process	to	implement	HCE	and	provide	it	as	an	
added	value	service	to	its	clientele.	 	It	would	allow	the	bank	to	diversify	in	its	digital	payments	services	
offered	and	furthermore	leveraging	the	potential	of	mobile	devices,	the	bank	can	deliver	its	own	marketing	
to	its	clients.	The	Bank	also	sees	it	as	a	viable	alternative	to	payment	cards	and	as	an	alternative	to	cash	
payments.	
	
Despite	 these	benefits,	 it	 is	 clear	 that	HCE	deployments	pose	 several	 risks	and	as	 such	my	 interest	 in	
evaluating	it	further.	HCE	opens	up	many	possibilities	for	security	threats,	data	privacy	issues	and	many	
fine	 line	 discussions	when	 dealing	with	 industry	 payment	 implementations.	 As	 part	 of	my	 roles	 and	
responsibilities	as	an	IT	auditor,	I	am	responsible	to	prove	assurance	to	management,	board	of	directors	
and	audit	committee	that	with	every	new	process,	procedure	and	initiative,	any	significant,	both	present	
and	potential	risks	that	emerge	are	identified,	monitored	and	managed	effectively.	Unmanaged	risks	can	
give	rise	to	security	breaches,	and	privacy	risks	which	can	result	in	financial	loses	and	market	reputation	
issues	for	the	Bank.		Hence,	through	this	project	I	expect	to	have	a	deeper	understanding	of	HCE,	identify	
its	risks	and	propose	countermeasures	and	improvements.		I	expect	this	topic	to	be	very	interesting	and	
challenging.			

1.3 Objectives	
	
The	Objectives	of	this	project	are	the	following:	
	
i. Review	relevant	existing	literature	on	NFC	technology	and	HCE	payment	implementations.	
ii. Model	the	HCE	payment	transaction	process	flow	as	well	as	the	tokenisation	process	using	formal	

methods.	Following	the	modelling	process,	a	set	of	threats	and	attacks	that	could	exist	during	an	
HCE	payment	transaction,	will	be	identified	and	discussed.	

iii. Analyze	 the	security	aspects	and	weaknesses	within	 the	elements	 that	make	up	HCE	payment	
scheme	and	EMV	payment	tokenization	infrastructure.	

iv. Conduct	a	high	 level	risk	assessment	on	 the	 identified	 threats	and	how	certain	controls	can	be	
applied	to	mitigate	certain	risks.	
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1.4 Structure	of	the	project	
	
This	document	is	structured	as	follows:	
	
Chapter	2,	titled	"An	overview	of	contactless	payments",	provides	an	overview	on	the	history	of	contactless	
technology	and	specifications	used	by	the	payment	 industry.	This	chapter	will	also	briefly	highlight	 the	
stakeholders’	role	in	the	mobile	eco	system	as	well	as	some	facts	on	NFC	and	HCE	architecture.	This	chapter	
is	an	introduction	to	the	first	objective.	
	
Chapter	3,	titled	"An	analysis	of	attacks	on	traditional	and	HCE	based	contactless	payment	schemes",	will	
involve	an	analysis	of	attacks	on	contactless	payments	 including	traditional	and	HCE.	Some	commercial	
implementation	will	be	 identified	along	with	 their	associated	advantages	and	disadvantages.	Thus,	 this	
chapter	addresses	the	first	objective.		
	
Chapter	4,	titled	“Modelling	an	HCE	Payment	Transaction”	will	include	reviewing	modeling	tools	including	
their	characteristics	and	 limitations	and	 their	application	 in	modeling	similar	payment	 transactions	by	
other	 academics	 or	 researchers.	 Following	 this,	 the	 HCE	 process	 and	 tokenization	 processes	will	 be	
modeled	using	a	selected	modeling	tool.		
	
Chapter	5,	titled	"Security	Analysis	of	an	HCE	Payment	Transaction",	analyses	from	a	security	perspective.	
As	this	title	reads,	this	addresses	the	third	objective.		
	
Chapter	6,	 titled	 "Conclusion",	 sums	up	 the	 project	 by	 summarizing	 the	main	 findings	 and	provides	 a	
reference	for	further	research	on	the	subject.	This	chapter	addresses	the	fourth	objective.	 	Wrapping	up	
this	chapter	by	outlining	areas	of	further	research.	
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2 An	overview	of	contactless	payments	
	
Radio	Frequency	Identification	(RFID)	[2]	is	technology	that	uses	close	range	wireless	communication	to	
transmit	a	unique	‘id’	related	to	a	particular	object	or	entity.		A	small	tag,	sticker	or	card	would	house	a	chip	
with	a	unique	or	programmable	id	value.		Such	a	tag	would	then	be	used	to	replace	a	physical	key,	a	passport	
or	contactless	payments	 to	name	a	 few.	 	The	specifications	of	 the	communication	between	 the	 tag	and	
reader	are	defined	in	ISO-14443	[3].		The	main	difference	between	a	tag	and	a	contactless	card	is	that	the	
chip	in	a	contactless	card	is	capable	of	some	computation	(e.g.	generating	a	cryptographic	signature)	rather	
than	just	transmitting	back	a	Unique	ID.				
	
A	report	[4]	by	Visa	Europe	issued	in	April	2016	states	that	there	are	around	3	million	terminals	(POS)	with	
NFC	contactless	capabilities	and	around	130	million	contactless	cards.		The	report	states	that	between	June	
2014	and	June	2015,	around	1.4	billion	transactions	where	made	using	contactless	cards	summing	up	to	a	
total	of	£14	Billion	in	transactions	[4].		
	
According	to	the	UK	Card	Association	[5],	in	December	2015,	12%	of	the	total	transaction	made	using	credit	
and	debit	cards	used	contactless	technology.		The	UK	had	81.5	million	contactless	cards	issued	and	during	
2015	a	total	of	1	billion	transactions	were	made	using	contactless	cards	for	a	total	of	£7.75bn.		An	increase	
of	233% in	spending	was	recorded	over	the	year	in	2015.	
	
In	the	near	future,	mobile	payments	will	be	a	significant	payment	medium	potentially	overtaking	any	type	
of	smart	cards	[6].	The	next	section	will	cover	a	brief	summary	of	timelines	outlining	the	early	inventions	
of	contactless	technology	including	first	patents	awarded	the	evolution	and	development	of	NFC.	

2.1 History	of	contactless	payments	
	

The	 industry	has	evolved	 from	 contactless	EMV	 card	payments,	 to	mobile	NFC	payments	using	 secure	
elements	to	HCE	payments.		In	1997	the	first	patent	for	RFID	was	awarded	[7].	This	served	as	the	baseline	
for	the	invention	of	the	NFC.	Also	within	the	same	year,	Mobil	Oil	Corp	provided	a	key	fob	to	be	used	by	its	
customer	to	pay	for	fuel	in	its	US	gas	stations.	

Around	2004,	the	NFC	forum	was	formed	by	Nokia,	Philips	and	Sony	with	the	purpose	to	advance	the	use	
of	NFC	technology	and	to	create	standards	and	interoperability	in	the	mobile	industry	[8].			

In	2007,	Barclaycard	 introduced	the	 first	contactless	cards	 in	the	UK	[7].	 	Following	this	period,	Google	
launched	Google	Wallet	which	enabled	Android	users	to	pay	the	participating	retailers	with	their	mobile	
phones,	 simply	 tapping	 the	 phone	 on	 any	contactless	 enabled	 terminal	 at	 checkout.	 This	 system	was	
initially	implemented	using	an	SE-based	model.		

In	2013,	Google	 released	 the	 first	HCE	 architecture	 in	Android	4.4	KitKat	 and	 subsequently	 launched	
Android	Pay.	Later	in	2014,	Google	stopped	supporting	the	SE	version	[9].	Within	the	same	year,	Apple	Pay	
was	also	introduced	in	the	market.	Next	Visa,	MasterCard,	Android	Pay,	Samsung	Pay	and	Microsoft	Wallet	
also	launched	their	contactless	mobile	payment	platform	[10]	[11]	[12]	[13].		

A	more	detailed	historic	audit	trail	on	contactless	payments	can	be	located	in	Appendix	1.			

2.2 Contactless	payments	standards	and	specifications	
	
Standard	bodies	and	industry	organisations	such	as	Smart	Card	Alliance	[14]	and	EMVCo	[15]	have	created	
a	set	of	standards	and	guidelines	to	ensure	interoperability	between	different	equipment	and	processes	
within	the	contactless	payments	industry.	 	 	 	The	following	sections	provide	an	overview	of	the	different	
standards	pertaining	to	HCE.	
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 Near	Field	Communication	
	
1. ISO/IEC	14443:		

o Is	the	international	Standard	for	proximity	contactless	smartcards.		This	standard	defines	the	
physical	layer	of	NFC	communication.	There	are four	parts	that	comprise	the	Standard:		

 Part	1:	ISO/IEC	14443-1	[16]defines	the	physical	characteristics	of	the	cards.	
 Part	2:	ISO/IEC	14443-2	[17]	specifies	the	radio	frequency	power	and	signal	interface.	
 Part	3:	ISO/IEC	14443-3	[3]	defines	the	initialization	and	anti-collision	measures	used	

in	the	protocol.		
 Part	4:	 ISO/IEC	14443-4	 [18]	specifies	 the	 transmission	protocol	requirements.	 	 It	

includes	 special	 provisions	 required	 for	 a	 contactless	 environment	 including	
activation	and	deactivation.	

o Contactless	payment	transactions	between	an	NFC-enabled	mobile	phone	and	a	POS	reader	
use	the	standard	ISO/IEC	14443	communication	protocol.	This	standard	is	also	currently	used	
by	EMV	contactless	credit	and	debit cards.		

o Furthermore,	the	ISO	14443	standard	is	available	in	two variants	(type	A	and	B)	that	differ	in	
the	way	they	handle	radio	frequency	power	and	signal	interface	[19].		

o NXPs	 MIFARE	 [20]	 smart	 card	 uses	 ISO	 14443	 part	 1	 -	 3	 type	 A	 and	 is	 a	 proprietary	
transmission	protocol	instead	of	ISO	14443-4	[19].	

	
2. ISO/IEC	18092	[21]:		

o Defines	the	possible	communication	modes	for	NFC	devices	operating	at	13.56MHz.		These	are	
the	Active	(both	devices	are	powered)	and	the	Passive	mode	(i.e.	Initiator	is	powered,	target	
is	not	powered).	

o Also	referred	to	as	NFCIP-1	(Near	Field	Communication	-	Interface	and	Protocol	Specification)	
[22].	

o It	is	based	on	ISO/IEC	14443	but	utilizes	a	different	command	protocol	to	replace	Part	4	of	
ISO/IEC	14443	[22].	

o There	are	three	modes	of	operation	defined	in	ISO/IEC	18092:		Read/Write,	Peer-to-Peer	and	
Card	Emulation.		For	the	scope	of	this	project,	it	is	the	Card-emulation	mode	that	applies.			

	
3. ISO/IEC	7816	[23]:	

o ISO	7816,	specifically	part	4	of	the	standard,	defines	the	'application	layer'	protocol	used	in	a	
contactless	transaction.	This	protocol	is	used	for	contact	and	contactless	smart	cards	and	can	
also	be	used	with	NFC.	It	specifies	the	application	protocol	data	units	(APDU)	which	are	type	
of	a	message	format	that	is	used	between	a	reader	and	smart	card	[19].	

 Tokenisation	
	
Industry	bodies	such	as	the	American	National	Standards	Institute	(ANSI)	Accredited	Standards	Committee	
(ASC	X9)	[24], EMVCo	[25],	Payment	Card	Industry	Security	Standards	Council	(PCI	SSC)	[26]	and	National	
Institute	of	Standards	and	Technology	(NIST)	[27]	have	developed	tokenisation	specifications	[28]	to	be	
used	by	the	payment	card	industry	to	replace	sensitive	card	data	with	a	token	and	mitigate	associated	risks	
for	merchants,	acquirers,	payment	card	Issuers,	and	mobile	and	digital	payment	providers.			
	
The	aim	of	tokenisation	is	to	replace	the	static	PAN	in	a	card	with	a	token,	normally	called	a	tokenized	PAN	
or	tPAN.	A	token	is	a	substitute	value	used	instead	of	the	PAN.		The	token	is	a	13	to	19	digit	value	that,	like	
the	PAN,	has	 to	pass	 the	 basic	 rules	of	 validation	 including	 the	Luhn	Algorithm	 [29].	 	The	 tokens	 are	
generated	within	a	BIN	range	that	has	been	dedicated	for	tokens.	During	a	transaction,	the	token	simply	
replaces	the	PAN,	hence	the	existing	payment	infrastructure	(e.g.	POS	terminals,	etc.)	does	not	require	any	
changes	to	work	with	tokenization.					
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The	following	is	a	list	of	existent	standards,	guidelines	and	specifications	that	define tokenization	and	its	
implementation	in	a	payment	transaction:	

 EMVCo,	EMV	Payment	Tokenisation	Specification	–	Technical	Framework,	Version	1.0	[25]:	This	
framework	provides	guidance	regarding	the	building	and	maintenance	of	token	requester	APIs,	
token	vaults,	token	storage	and	security,	token	provisioning	platforms	and	token	registries.	A	draft	
version	of	version	2	of	the	EMV	Payment	Tokenisation	Specification	has	been	released	in	February	
2017,	however	at	the	time	of	reporting,	access	to	such	document	was	available	to	subscribers	only.	

	
 PCI	 DSS	 Tokenization	 Guidelines	 [26]:	 is	 a	 set	 of	 guidelines	 for	 developing,	 evaluating	 and	

implementing	a	tokenization	system.	
	
Card	Schemes	are	also	releasing	good	practices	documents	and	API	specifications	that	define	how	other	
entities	 in	 the	 payments	 industry	 can	 communicate	 with	 their	 tokenization	 services.	 Some	 of	 these	
documents	are	being	outlined	in	Section	4.2.1.2.	
	
Tokenization	is	a	process	that	is	optional.	Issuers	are	free	to	use	their	own	security	schemes	that	do	not	
rely	 on	 a	 tokenization	 based	 infrastructure.	 Instead	 they	may	 use	 static	 PANs,	 dynamic	 tokens	 or	 a	
combination	of	 both	 for	 individual	 transactions.	Tokenisation	will	 also	be	 covered	 in	 greater	detail	 in	
Sections	3.2.4	and	4.3.6.	

 Authentication	and	Verification	Methods	
	
There	are	various	stages	where	verification	and/or	authentication	of	the	cardholder	is	required	 in	HCE.		
When	a	user	enrols	a	new	card	 in	 the	wallet	 the	application	has	 to	verify	 the	cardholder	and	during	a	
payment	the	cardholder	needs	to	be	verified	to	authorize	a	payment.		In	card	based	payment	methods,	this	
was	achieved	through	a	signature	or	PIN.				
	
With	the	introduction	of	mobile	devices	for	payment	EMVCo	introduced	the	concept	of	Consumer	Device	
Cardholder	Verification	Method	(CDCVM)	[30].	 	The	concept	behind	CDCVM	 is	that	the	mobile	device	 is	
used	 to	 provide	 cardholder	 verification	 using	 new	 methods	 of	 verification	 such	 as	 fingerprint	 and	
biometrics.		EMVCo	does	not	declare	which	methods	can	be	used	and	how	such	methods	are	implemented.		
The	methods	used	are	subject	 to	availability	across	 the	supported	mobile	devices	and	approval	by	 the	
Issuer	and/or	card	scheme.	
	
On	12th	July	2016,	EMVCo	and	the	FIDO	Alliance	[31]	signed	a	memorandum	of	understanding	in	order	to	
collaborate	 together	 to	 develop	 an	 open,	 interoperable	 authentication	 standard	 [32].	 	 FIDO	 Alliance	
specification	is	an	open	standard	to	enable	simple	and	secure	user	authentication	across	different	online	
and	mobile	 services.	 FIDO	 does	 not	 define	 any	 particular	method	 of	 verification/authentication	 but	
provides	a	protocol	whereby	any	method	of	verification,	can	be	used	to	provide	authentication.		A	typical	
example for	the	use	of	FIDO	in	HCE	would	be	in	the	communication	between	the	mobile	device	and	a	TSP.		
The	TSP	would	support	FIDO	and	hence	different	devices	using	different	methods	of	verification	would	be	
able	to	authenticate	to	the	TSP	through	the	FIDO	protocol.		FIDO	uses	public	key	cryptography	techniques	
to	provide	an	authentication	framework.			During	registration,	the	client	generates	a	set	of	keys	and	sends	
the	 private	 key	 to	 the	 server.	 	During	 authentication,	 the	 client	 proves	 to	 the	 server	 that	 it	 is	 in	 the	
possession	of	 the	private	key	by	signing	a	challenge.	 	The	signature	 is	only	provided	 if	 the	verification	
method	used	(e.g.	fingerprint)	is	approved.		The	FIDO	specification	version	1.0	was	released	in	December	
2014	[33]	to	enable	two	factor	authentication.	Subsequently	in	June	2015,	this	specification	document	was	
extended	to	support	NFC	[34].		
	
Different	methods	of	verification	are	already	being	used	 in	 the	 industry	 for	CDCVM.	 	Android	Pay	and	
Samsung	Pay	use	fingerprint	biometric	authentication	with	FIDO	as	the	underlying	protocol	[35].	Apple	has	
developed	a	similar	method	known	as	Touch	ID	which	is	integrated	in	iOS	devices.			On	5th	January	2016,	
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EyeVerify,	 Inc.	announced	 its	 eye-based	 mobile	 biometric	 authentication	 technology,	 Eyeprint	 ID.		
EyeVerify	claim	their	technology	is	fully	compliant	with	the	FIDO	1.0	Universal	Authentication	Framework	
(UAF)	 standard	 [36]	 .	 	Another	 proposed	 type	 of	biometric	 authentication	 is	 selfie	 [37].	This	 is	 being	
acknowledged	by	FIDO	alliance,	MasterCard	and	HSBC.	The	selfie	approach	typically	identifies	distinctive	
features	of	a	 face.	 It	was	reported	 in	 the	media	 that	MasterCard	will	 incorporate	 the	use	of	selfie	 [38],	
customers	would	require	to	blink	 for	the	app	to	ensure	the	image	is	 live when	customers	carry	out	any	
purchases	or withdrawals.	This	prevents	someone	 from	downloading	an	 image	 for	example	 from	social	
network	sites	and	use	it	for	authentication.	HSBC	is	also	allowing	customers	to	take	a	selfie	to	open	bank	
accounts	[39].		
	
It	is	the	author’s	opinion	that	in	the	foreseeable	 	future,	we	might	also	see	mobile	device	authentication	
incorporating	other	types	of	methods	such	as	behavioural	biometrics	(e.g.	metrics	capturing	application	
use,	keystrokes	such	as	keys	pressed,	touch	gestures)	and	physiological	(e.g.	iris	and	face,	recognition)	to	
make	the	payment	experience	more	convenient	and	faster.	
	
Other	 standards	 and	 protocols	 such	 as	 Biometric	 Open	 Protocol	 Standard	 (BOPS),	 Trusted	 Execution	
Environment	(TEE),	Trusted	Mobile	Zone	(TMZ),	and	Secure	Enclave	Processor	(SEP)	provide	features	and	
functions	required	to	achieve	secure	authentication.	[40].		

 Transaction	Data	Encryption	
	
Both	point-to-point	encryption	(P2PE)	and	end-to-end	encryption	(E2EE)	solutions	encrypt	payment	data	
at	point-of-interaction	with	the	payment	type	(i.e.	Swipe/MSR,	Dip/EMV,	Tap/NFC).	 	In	a	P2PE	solution,	
the	data	is	encrypted/decrypted	at	each	stakeholder	(e.g.	merchant,	Issuer	etc.)	and	thus	prevents	third-
parties	from	accessing	data	while	it	is	transferred	from	one	end	system	or	device	to	another.	In	an	E2EE	
solution,	the	cardholder	data	is	encrypted	at	the	point	of	entry	when	tapping	the	mobile	device	with	POS	
and	decrypted	only	at	the	intended	destination,	from	one	endpoint	to	another	endpoint.	
	
The	originator	 is	responsible	 for	encrypting	 the	data	 for	 the	receiver	 in	both	methods.	Under	 the	P2PE	
standard,	only	the	transaction	processor	or	other	third	party	is	allowed	to	perform	key	management	and	
data	is	decrypted	in	a	Hardware	Security	Module	(HSM).	Whilst	in	E2EE	management	of	the	encryption	key	
management	can	be	carried	out	by	any	party	that	has	an	endpoint	such	as	a	merchant	or	a	service	provider.	
	
The	latest	version	of	the	standard	titled	PCI	Point-to-Point	Encryption	Solution	Requirements	and	Testing	
Procedures	Version	2.0	was	published	in	June	2015	[41]	by	PCI	SSC.	Despite	that	E2EE	may	represent	an	
acceptable	trend	such	method	has	not	yet	been	recognised	by	any	standard	body	in	the	payment	industry 	
due	to	the	following	risks:	

 The	lack	of	definition	of	the	end	points,	in	reference	to	PCI	DSS:			
o If	 E2EE	 encryption	 is	 provided	 between	 the	 terminal	 and	 the	 payment	 network	 or	

acquirer	then	the	card	or	mobile	device	is	still	susceptible	to	a	range	of	attacks	such	as	
skimming,	eavesdropping	during	a	transaction	etc.	[42].	

o Having	 E2EE	 encryption	 between	 the	 card/mobile	 device	 and	 the	 payment	 network	
creates	an	issue	of	key	management	since	it	would	entail	management	of keys	for	every	
card	or	account	in	the	industry.		Improper	key	management	could	become	a	new	source	
of	data	compromise.	

 The	security	of	 the	endpoints	 -	For	E2EE	 to	be	secure,	 it	 is	 important	 for	both	endpoints	 to	be	
secured.	 	Example	POS	 terminals,	especially	network	connected	terminals,	are	suspect	 to	being	
breached.		
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 Card	Scheme	HCE	specifications	
	
The	EMVCo	contactless	standards	do	not	provide	any	specifications	regarding	HCE.		From	an	EMV	point	of	
view,	there	is	no	difference	between	a	contactless	card	and	an	HCE	device	during	a	payment	transaction.		
EMVCo,	 at	 the	 time	of	writing	has	published,	 in	December	 2016,	 a	 specification	 entitled	 “EMV	Mobile	
Payment	-	Software-based	Mobile	Payment	Security	Requirements	Version	1.0"	[43].		The	objective	of	this	
specification	is	to	provide	guidance	and	generic	security	requirements	for	Mobile	Wallet	applications	that	
provide	payment	transaction	capabilities	without	the	use	of	a	secure	element.	This	is	the	only	specification	
provided	by	EMVCo	pertaining	to	HCE.			
	
The	EMV	contactless	specifications	[15]	that	HCE	wallet	App developers	have	to	take	into	consideration	
when	developing	applications	are:	

 EMV	Contactless	Book	A	-	Architecture	and	General	Requirements.	
 EMV	Contactless	Book	B	-	Defines	the	entry	point	requirements	(e.g.	Application	selection,	etc.).	
 EMV	Contactless	Book	C	-	Kernel	Specifications	-	Differs	between	the	different	type	of	cards	and	

relates	mostly	to	the	POS	requirements.		Used	by	HCE	developers	when	developing	communication	
with	the	POS.	

 EMV	Contactless	Book	D-	Contactless	Communication	Protocol.			
	
These	 4	 books	 provide	 the	 specifications	 and	 requirements	 for	 contactless	 transactions.	 	 The	 same	
specification	and	requirements	apply	to	HCE.	
	
The	payment	card	schemes	have	chosen	to	define	their	own	specifications	and	requirements	for	HCE	wallet	
app	 developers	 that	 intend	 to	 develop	wallets	 for	 their	 contactless	 card	 types.	 A	 list	 of	 some	 of	 the	
specifications	provided	by	VISA	pertaining	to	HCE	can	be	traced	in	Section	4.2.1.1.		
	
Other	 card	 schemes	 such	 as	 MasterCard	 also	 provide	 similar	 specifications	 and	 requirements.	 	 The	
MasterCard	and	Visa	implementations	are	both	compliant	with	EMV	standard	to	ensure	compatibility	with	
installed	EMV	contactless	POS	 terminals.	These	specifications	were	used	 in	Section	4	 for	designing	and	
implementing	the	HCE	model.		

2.3 Mobile	devices	and	Host	Card	Emulation	
	
A	payment	conducted	with	HCE	requires	a	mobile	device	with	NFC	capabilities.	 	The	availability	of	NFC-
enabled	mobile	 devices	 continues to	 grow,	with	NFC	 included	 in	 over	 690	 devices	 [44].	 	 It	 has	 been	
estimated	 that	more	 than	100million	people	[45]	around	 the	world	will	use	an	NFC	handset	 to	make	a	
purchase	during	2016.	The	value	of	transactions	conducted	via	NFC	handsets	will	grow	from	US$30bn	in	
2016	to	US$45bn	in	2017,	up	to	US$240bn	in	2021	[45].	
	
There	are	many	markets	players	in	the	industry	launching	their	own	payment	services	such	as	Samsung	
Pay,	Apple	Pay,	Android	Pay	and	Microsoft	Wallet.	There	are	also	banks	and	major	companies	launching	
their	own	mobile	payment	app.		NFC	and	HCE	payments	will	continue	to	strengthen	when	more	commercial	
implementations	of	HCE	enabled	payments	will	be	rolled	out.	HCE	is	currently	supported	by	Android	OS,	
version	Kitkat	4.4	and	higher,	Blackberry	7OS	and	higher,	and	recently	Windows	version	10	OS.		
	
In	this	section,	first	an	introduction	on	NFC	is	provided	specifically	the	different	modes	available	and	those	
used	for	HCE.		Next	the	architecture	that	makes	HCE	possible	in	a	mobile	phone	is	introduced	and	finally	
different	models	of	HCE	are	provided.			
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 Near	Field	communication		
	
NFC	is	a	communication	technology	based	on	close	magnetic	field	as	a	medium	for	transmission.		Unlike	
most	wireless	communication	technologies	that	rely	on	electromagnetic	radiation	(i.e.	radio	waves),	NFC	
relies	on	electromagnetic	induction.	 	This	is	why	it	can	only	operate	at	very	short	range,	typically	a	few	
centimeters.	 NFC	 inherited	 electromagnetic	 induction	 communication	 from	 RFID.	 	 Electromagnetic	
induction	allows	a	receiver	to	‘harvest’	a	limited	amount	of	energy	from	the	transmission	thereby	a	receiver	
does	not	require	any	battery	to	operate.		This	is	why	contactless	credit/debit	cards	do	not	require	a	battery	
to	operate.	
	
The	basic	architecture	of	both	an	NFC	reader	and	smartcard	is	made	up	of	an	antenna,	a	transceiver	chip	
and	controller.	In	a	reader	the	controller	is	normally	separate	from	the	transceiver	but	in	most	tags	and	
smartcards	 the	 controller	 and	 transceiver	 is	 incorporated	 into	one	 chip.	 	As	 from	2011	mobile	device	
manufacturers	such	as	Samsung,	Nokia,	HTC	and	BlackBerry	started	to	integrate	NFC	chips	and	antennas 	
in	mobile	 devices,	 (further	 detail	 found	 in	Appendix	 1).	 	 In	 the	mobile	 device	 the	NFC	 transceiver	 is	
connected	to	either	a	secure	element	or	to	the	host	controller.	Since	a	mobile	device	already	contains	a	
battery,	a	mobile	device	can	act	as	a	reader	and	also	as	a	smartcard.			
	
NFC	works	 at	 13.56	MHz	 and	 its	 interface	 specifications	 is	 provided	 by	 ISO/IEC	 18000-3	 [46].	 	 The	
communication	channel	provides	a	data	rate	of	up	to	424kbit/s	(~50KB/s).		In	a	typical	NFC	transaction	a	
reader	initiates	the	transaction	by	generating	an	RF	field	which	is	detected	by	the	target	such	as a	smartcard	
or	a	mobile	device.		When	the	target	is	not	powered	(e.g.	smartcard),	NFC	is	said	to	be	working	in	a	Passive	
mode	while	if	both	the	reader	and	the	target	are	powered	(as	in	the	case	of	HCE)	then	NFC	is	said	to	be	
working	in	an	Active	mode.	 	In	passive	mode,	only	the	initiator	(i.e.	reader)	generates	the	field	while	the	
target	 communicates	 by	 varying	 the	 amount	 of	 power	 it	 harvests	 from	 the	 electromagnetic	 field	 (i.e.	
load).This	allows	for	a	full	duplex	communication	channel	between	the	initiator	and	the	target.			In	an	active	
mode,	both	devices	generate	their	own	magnetic	field.		Amplitude	Shift	Keying	(ASK)	modulation	is	used	
on	both	sides	and	to	ensure	that	no	collisions	occur.	The	device	receiving	data	switches	off	its	field	while	
the	other	is	transmitting.		Data	in	NFC	is	transmitted	according	to	the	NFC	Data	Exchange	Format	(i.e.	NDEF)	
protocol	[47].		
	
Furthermore,	 the	 standard	 identifies	 three	 possible	 operating	 modes	 or	 scenarios.	 	 These	 are	
reader/writer,	peer-to-peer,	and	card	emulation.			The	reader/writer	mode	is	used	with	contactless	cards	
and	smartcards	in	passive	mode,	the	peer-to-peer	mode	is	mostly	used	to	transfer	files	and	information	
(e.g.	a	business	card)	between	mobile	phones	while	card	emulation	is	the	mode	used	during	HCE.	 	Card	
emulation	can	be	used	for	other	purposes	apart	from	HCE	such	as	when	a	mobile	device	is	used	to	emulate	
an	access	smartcard.	

 Host	Card	Emulation	architecture	
	
Host	card	emulation	(HCE)	is	an	on-device	technology	that	enables	NFC	enabled	mobile	devices	to	emulate	
a	payment	card	in	order	for	a	user	to	perform	contactless	payments.	Prior	to	HCE,	the	NFC	transceiver	was	
connected	directly	to	the	SIM	card	in	a	mobile	device	known	as	a	Secure	Element.					The	payment	application	
containing	 the	payment	credentials	 (i.e.	secret	cryptographic	keys)	 reside	on	 the	 secure	element.	 	The	
mobile	device’s	processor	does	not	take	part	in	the	payment	transaction	and	all	sensitive	communication	
is	done	between	the	NFC	and	the	SE.			The	fact	that	the	SE	(SIM)	is	owned	by	the	mobile	operator	has	created	
some	barrier	as	no	access	is	provided	by	the	SE	to	host	third	party	applications.	Access	to	store	or	use	the	
SE	must	be	requested	from	the	mobile	network	operator	(MNO)	and/or	trusted	service	managers.	 	Due	to	
these	dependencies,	Google	 implemented	a	software	based	payment	card	emulation	solution,	(i.e.	HCE)	
based	only	software	[9].	In	contrast	with	SE	based	systems,	HCE	eliminates	the	need	for	a	hardware	based	
SE	as	the	mobile	device	operating	system	(the	device	host)	hosts	the	payment	application.	
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Card	emulation	is	based	on	ISO-IEC	14443-4.	The	HCE	communication	process	between	the	NFC	Reader	
and	the	mobile	device	is	described	in	Figure	1:	
	
	

	

Figure	1	–	Android	HCE	[48]	

The	HCE	architecture	consists	of:	
i. Host	CPU:		

This	is	the	location	where	consumer	applications	are	running	on	the	main	processor	and	serves	as	
a	user	interface	for	functions	such	as	selecting	a	card	and	initiating	a	transaction.	
	

ii. NFC	controller:	
This	is	the	contactless	hardware	front-end	which	acts	as	a	gateway	between	the	reader	and	the	
CPU	on	the	device.			
	

iii. NFC	reader:		
This	 is a	 type	 of	 electronic-transaction	 terminal	where	 signals	 can	 be	 sent	 and	 received	 for	
contactless	payment	systems.	A	contactless	symbol	present	on	the	reader	 indicates	compliance	
with	EMV	Contactless	Communication	Protocol.		

	
When	a	user	taps	a	mobile	device	on	a	POS	terminal	both	devices	will	go	through	a	‘’handshake”	procedure.		
During	this	initial	setup,	the	POS	will	send	the	Applet	ID	(AID).		The	mobile	device	uses	the	AID	to	determine	
where	to	route	the	incoming	transaction.		When	a	user	installs	a	wallet	app	and	adds	a	card,	the	app	will	
‘register’	a	service	with	that	AID	and	inform	the	OS	that	any	 ‘transactions’	related	to	that	AID	should	be	
routed	towards	its	service.		Every	card	may	support	more	than	one	AID	normally	referred	to	an	AID	group.		
These	AID	groups	are	publicly	known	but	new	AIDs	 can	be	 registered	 (for	new	 cards)	and	 the	whole	
procedure	 is	 defined	 in	 the	 ISO/IEC	7816-5	 [49]	 specification.	 It	 is	 vital	 that	 card	 Issuers	 follow	 such	
specification	as	it	will	avoid	collisions	with	other	applications.	
	
HCE	Implementations	vary	between	different	mobile	platforms	(e.g.	Android	versus	Windows	Phone)	but	
in	essence	they	all	follow	the	same	procedure.		The	actual	service	runs	in	the	background	and	does	not	need	
any	user	 intervention	 to	 execute,	 except	 in	 cases	where	 the	user	 is	 required	 to	provide	 some	 form	of	
authentication	or	verification.		Android	devices	do	not	allow	transactions	to	occur	when	the	screen	is	off	
while	Windows	Phone	allow	transactions	to	occur	even	if	the	screen	is	off.	 	This	possess	a	risk	since	an	
attacker	can	read	sensitive	data,	through	NFC,	from	the	mobile	device	even	when	the	device	is	in	a	pocket	
or	handbag	simply	by	bringing	a	NFC	reader	device	close	to	the	victim’s	mobile	device	without	the	owner	
being	aware	of	such	theft.	
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The	software	used	by	the	mobile	phone	to	make	a	payment	transaction	takes	the	form	of	a	service	running	
in	 the	 background.	 	 A	mobile	 device	 can	 have	more	 than	 one	 card	 type	 (e.g.	 Visa,	MasterCard,	 etc.)	
associated	with	it	hence	a	number	of	these	service	can	be	running	in	the	background.			When	the	mobile	is	
tapped	on	a	POS	reader,	the	device’s	OS	receives	a	specific	number	(i.e.	AID)	from	the	terminal	instructing	
it	to	call	a	particular	service,	according	to	card	type	and	pass	the	NFC	communication	to	that	particular	
service.	 	 The	 service	 is	 expected	 to	 implement	 the	 transaction	 processing	 according	 to	 the	 kernel	
specification	of	the	card	it	is	developed	for.		More	information	on	the	different	kinds	of	implementations	
for	this	background	service	are	provided	in	the	next	section.	

 Models	of	HCE	
	
All	payment	cards	store	some	 form	of	data.	 	Starting	 from	simple	mag-stripe	card,	 to	chip-and-pin	and	
contactless	cards,	they	all	hold	data	related	to	an	account/cardholder	such	as	PAN,	name,	expiry,	CVC	etc.		
The	data	varies	between	different	 types	of	cards	but	essentially,	such	data	should	be	kept	as	secure	as	
possible.	 	 Furthermore	 chip-and-pin	 and	 contactless	 cards	 not	 only	 store	 data	 but	 they	 also	 have	
cryptographic	capabilities	whereby	they	can	generate	signatures,	encrypt	data,	etc.	 	 	Therefore,	an	HCE	
service	should	be	able	to	store	data	securely	and	operate	cryptographic	functions	on	that	data.		Based	on	
these	two	requirements,	several	models	of	implementation	have	been	proposed	and	below	is	an	overview	
of	the	different	possibilities.	
	
The	different	implementations	are	made	up	of	‘modules’.		Some	modules	are	on	the	actual	mobile	device	
while	others	exist	on	the	cloud.	
i. User	Data:	

Credentials	e.g.	PAN,	expiry,	cardholder	name	and	master	keys,	used	to	create	the	cryptogram	(i.e.	
a	digital	signature).	Note	that	the	card	will never	communicate	via	NFC	the	keys	used	to	generate	
the	application	cryptogram,	but	 it	will	only	communicate	 the	cryptogram.	 In	a	 traditional	card	
based	system,	the	credentials	were	stored	on	the	magnetic	card	itself.	 	

ii. Service	applet	(agent):		

The	service	that	is	responsible	for	communicating,	through	the NFC	controller	with	the	POS.		It	is	
responsible	for	sending	the	credentials	to	the	POS	and	generating	the	application	cryptogram	or	
dynamic	CVV	required	during	an	online	transaction.		The	applet	is	also	referred	to	as	the	mobile	
wallet	application.	

iii. HCE	API:	

This	 is	more	 commonly	 known	 as	Hardware	 Abstraction	 Layer	 (i.e.	HAL)	 or	 driver.	 	It	 is	 an	
intermediate	layer	residing	in	the	mobile	OS.		Its	function	is	to	provide	a	universal	API	(i.e.	set	of	
functions)	to	mobile	app	developer	irrespective	of	the	NFC	hardware	being	used.		This	allows	apps	
to	be	developed	that	work	on	different	NFC	hardware.	

Several	different	models	have	been	proposed	by	industry	experts.	A	brief	explanation	can	be	traced	in		
Figure	2.	
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Figure	2	–	Models	as	proposed	by	Industry	Experts	[48]	

Model	1:	

In	Model	 1,	 both	 the	 user	 data	 and	 the	 applet	 are	 stored	 in	 the	 cloud.	 The	mobile	 device,	 reads	 the	
transaction	data	from the	POS,	and	sends	this	data	to	a	cloud	applet.	This	in	turn	obtains	the	user	data	from	
the	cloud	and	generates	the	cryptogram.		This	is	sent	to	the	mobile	device	which	in	turn	communicates	it	
to	the	NFC	controller	finally	reaching	the	POS	via	NFC.	 	Note	that	the	device	still	has	a	small	 ‘dumb	app’	
whose	role	is	to	send	and	receive	data	between	the	HCE	API	and	the	cloud.			
	
Such	model	requires	that	an	internet	connection	is	available	for	every	transaction.	As	a	result	a	user	might	
experience	network	latency.	Furthermore,	this	would	make	it	more	difficult	to	identify	relay	attacks	based	
on	time	delay	as	this	model	requires	a	longer	time	window	to	accommodate	for	network	latencies.	
	
Model	2:		

Similar	to	Model	1,	both	user	data	and	applet	are	stored	on	the	device	itself.		It	is	very	insecure	as	the	data	
is	stored	on	the	mobile	which	is	vulnerable	to	attacks	and	could	also	be	physically	stolen.	
	
Model	3:	

User	data	is	stored	in	the	cloud	and	the	applet	resides	on	the	mobile	device	OS	which	is	beneficial	as	no	
performance	and	network	issues	are	present.	It	simply	means	that	the	PAN	and	the	keys	are	not	stored	on	
the	device	but	retrieved	from	the	cloud	when	in	need.		Another	strategy	could	be	to	download	or	cache	the	
data	from	the	cloud	before	the	transaction.	That	way	it	would	further	reduce	network	latency	and	it	will	be	
transparent	to	the	POS.	Such	model	requires	that	an	internet	connection	is	available	for	every	transaction.	
	
Model	4:	

User	data	 is	 stored	 in	 the	 cloud	 along	with	 a	 set	 of	 tokens.	Tokens	 are	 random	numbers,	 replacing	 a	
traditional	PAN	that	expire	and	become	useless	after	some	set	time	according	to	some	rules.	The	cloud	
keeps	a	mapping	of	PAN	to	Tokens.	In	this	case,	the	user	data	(i.e.	PAN)	is	never	sent	to	the	device	but	a	
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token	is	sent	instead.		Later	during	the	transaction	the	token	is	‘detokenized’	by	the	payment	infrastructure.		
An	internet	connection	is	required	to	download	the	tokens	(i.e.	token	replenishment)	but	this	does	not	need	
to	be	during	the	transaction	as	tokens	can	be	cached.		
	
Model	5:	

The	user	data	is	stored	in	the	secure	element,	(SIM	card	or	specialised	hardware)	on	the	phone.		The	service	
applet	can	communicate	with	the	NFC	controller	but	it	can	never	read	the	user	data	from	the	SE.		When,	
user	data	is	sent	during	the	payment	transaction,	the	SE	will	communicate	directly	with	the	NFC	controller	
and	pass	this	data	directly	to	POS	reader.		More	importantly	the cryptogram	is	generated	in	the	SE,	thus	the	
key	is	never	sent.		This	way,	if	a	mobile	device	is	compromised	(malware,	etc.)	it	would	be	very	difficult	that	
the	user	data	is	stolen	as	this	is	simply	not	available	at	the	OS	level.		
	
With	 this	model,	 Issuers	 have	 to	 depend	 on	 either	MNOs	 (e.g.	 as	 in	 the	 UICC-based	 SE	 case)	 or	 the	
manufacturers	(as	in	the	embedded	SE	case).	 	This	makes	it	difficult	and	expensive	for	actors	in	an	NFC	
ecosystem	to	interact	efficiently.		
	
Although	 Models	 1,	 2,	 3	 are	 rarely	 used	 in	 today’s	 current	 implementation	 they	 are	 options	 for	
implementation.	Model	4	and	Model	5	are	the	closest	commercial	implementation	in	the	current	markets.		

2.4 Stakeholders	roles	in	a	Mobile	Payment	Ecosystem
	
The	mobile	payment	 ecosystems	 is	made	up	of	many	 stakeholders,	 each	 assuming	different	 roles	 and	
responsibilities.	The	major	stakeholders	that	make	up	the	HCE	Payments	Industry	are:	
	
i. Customers/CardHolder:	

o Authorised	users	that	hold	a	debit,	credit	or	charge	card	issued	by	Issuers	and	are	able	to	
carry	out	an	HCE	NFC	payment	using	their	mobile	device.	A	wallet	is	required	to	carry	out	
such	task.	This	can	be	downloaded	from	an	app	store,	which	is	normally	managed	by	the	
OS	 provider	 for	 the	mobile	 device.	 The	 app	 is	 published	 by	 the	 payment	 application	
provider	typically	by	the	Issuer.	
	

ii. Merchant:	
o Any	 business	 entity	 such	 as	 retailers,	 transportation	 providers	 and	 vending	machine	

providers	that	are	authorised	to	accept	mobile	payment	for	the	goods	and	services.		
	

iii. Acquirer:	
o These	may	be	a	bank,	or	a	 third	party	payment	processor/s	 that	process	 the	payment	

transactions	for	the	merchants,	via	the	payment	networks	through to	the	Issuer.	Typically,	
the	 relationship	 with	 the	 merchant	 is	 negotiated	 and	 translated	 in	 a	 financial	
contract/service	agreement.	The	acquirer	bank	may	also	supply	a	payment	processing	
terminal	known	as	contactless	POS	terminal.	
	

iv. Payment	Network:	
o An	entity	that	manages	and	facilitates	the	flow	of	transactions,	the	clearing	and	settlement	

of	card	payment	transactions	between	acquirers	and	Issuers.	
o Examples	of	payment	network	brands	include	Visa,	MasterCard	and	American	Express.	

	
v. Token	Requestor:	

o Acts	as	an	intermediate	entity	between	cardholders	and	Token	Service	Provider	(TSP).	
o Collect	payment	card	details	from	the	cardholders	and	submit	the	information	in	a	token	

request	to	the	TSP.	
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o Requests	payment	tokens	on	behalf	of	the	cardholders	upon	registering	with	a	TSP	and	
provisioning	them	in	a	mobile	device	or	remote	location	in	a	cloud.			

o The	 following	 are	 the	 typical	parties	 that	 can	 act	 as	 token	 requestors	 –	digital	wallet	
providers,	 Issuers,	card-on-file	merchants,	acquirers,	acquirer	processors	and	payment	
service	providers	operating	on	behalf	of	merchants.	

	
vi. Token	Service	Provider	(TSP):	

o The	 TSP	 can	 be	 an	 issuing	 bank,	 payment	 network	 or	 independent	 third	 entity	 that	
provides	tokenisation	services	and	payment tokens	to	token	requestors.		

o Responsible	 for	 payment	 token	 generation	 and	 issuance	 and	managing	 the	 payment	
token’s	lifecycle.	

o The	TSP	maintains	the	mapping	between	card	numbers	and	expiry	dates,	PAN	and	other	
payment	card	confidential	data	and	payment	tokens	and	their	respective	expiry	dates.		

o It	 oversees	 the	 operation	 and	maintenance	 of	 token	 vault	 stored	 in	 a	 PCI-compliant	
environment,	deployment	of	security	measures	and	controls	and	the	registration	process	
of	allowed	token	requestors	[1].	

o Responsible	to	perform	due	diligence	and	registration	functions	for	Token	Requestors	and	
assigns	them	with	a	unique	token	requestor	ID.	
	

vii. Issuer:	
o Is	a	bank	 that	 issues	payment	cards	 to	a	customer	and	are	 responsible	 for	billing	and	

payment	of	transactions	from	the	respective	customer’s	account.	
o Issuers	may	also	publish	their	own	mobile	payment	application	on	the	app	store.	
o Issuers	 can	 setup	 a	 relationship	 with	 TSP	 for	 provisioning	 of	 tokenisation	 services.	

However,	they	are	also	free	to	use	their	own	security	schemes	such	as	use	of	static	PANs,	
dynamic	data	(e.g.	session	keys)	for	individual	transactions.	
	

viii. Mobile	Wallet	App	Developer:		
o A	mobile	wallet	is	an	app	that	can	hold	one	or	more	cards.		Issuers	may	develop	their	own	

mobile	wallet	app	or	else	they	could	accept	that	their	card	be	used	 in	other	wallet	apps.		
Typically	mobile	device	OS	vendors	provide	a	wallet	that	could	 ‘host’	many	cards	 from	
different	vendors	(e.g.	AndroidPay).	 	Therefore	 the	developer	of	 the	mobile	wallet	app	
could	be	an	 Issuer,	a	 third-party	working	 for	 the	 Issuer,	mobile	device	OS	vendor	or	a	
third-party	with	no	direct	connection	to	Issuers	or	mobile	device	OS	vendors.	

	
Figure	3	illustrates	the	involvement	of	every	stakeholder	during	the	life	cycle	of	a	payment	transaction.	
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Figure	3	–	Credentials	and	Payment	transaction	life	cycle	
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Enrolment	and	Provisioning	

1. The	process	starts	with	the	card	Issuer	sending	an EMV	card	to	the	customer	or	equivalent	credit	
card	number	through	a	secure	web-based	service	such	as	internet	banking.		A	payment	account	for	
the	credit/debit	card	is	linked	with	the	EMV	card	at	the	issuing	bank.			

Typically	the	payment	card	is	provisioned	with	application	identifiers	known	as	AID’s,	customer	
specific	 data,	 specific	 transaction	 rules	 such	 as	 cardholder	 verification	method,	 online/offline	
authorization	and	authentication	and	other	security	information	according	to	the	Issuer’s	policy.		

2. Since	the	cardholder	will	pay	using	the	mobile	device,	the	cardholder	must	ensure	that	the	mobile	
device	supports	near	field	communication	and	downloads	a	mobile	wallet	application	(e.g.	Android	
Pay)	or	a	proprietary	HCE	mobile	application	(e.g.	Barclaycard	app).		

3. Cardholder	then	registers	the	EMV	card	information	in	their	mobile	wallet	application	residing	in	
the	mobile	device	operating	system,	either	by	using	the	camera	to	capture	the	card	information	or	
entering	it	manually.	Multiple	payment	cards	can	be	maintained	on	the	mobile	wallet	application.	

4. Issuer	 then	verifies	 the	cardholder’s	 identity	and	mobile	device	before	provisioning	 the	actual	
payment	credentials	to	the	mobile	device.	 	Different	methods	of	ID&V1	can	be	used.		One	typical	
method	is	for	the	Issuer	to	send	an	OTP	to	the	cardholder’s	registered	mobile	phone	number.	

5. The	mobile	device	will	request	a	token	to	be	generated	and	provisioned.		The	request	is	made	to	
the	token	requestor,	which	in	turn	requests	the	token	from	the	TSP.	

6. The	TSP	generates	a	tPAN	(Tokenized	PAN)	and	a	tUDK	(Tokenized	Unique	Derived	Key)	and	sends	
it	to	the	token	requestor	(TR).	

7. The	token	requestor	(TR)	generates	a	set	of	LUK	(Limited	Use	Keys)	using	the	tPAN	and	tUDK	and	
sends	the	tPAN	and	the	LUKs	to	the	mobile	device.	

a. The	tPAN	eventually	replaces	the	card	primary	account	number	(PAN)	and	expiration	date	
with	numeric	codes	of	the	same	length	with	a	randomly	generated	token.				Separate	ranges	
of	numeric	codes	are	allocated	so	that	no	payment	token	can	be	reversed	engineered	to	
find	the	related	PAN	number.	 	At	most,	a	mobile	wallet	usually	has	five	to	fifteen	stored	
LUKs	on	 it	at	one	time	[1].	A	token	can	be	restricted	to	be	valid	depending	on	the	risk	
appetite	defined	by	 the	 Issuer	e.g.	can	be	valid	 for	a	single	 transaction,	changed	at	set	
intervals.	

b. Tokens	may	be	generated	and	downloaded	to	the	device	‘on-the-fly’	when	a	user	is	making	
a	payment	or	else	they	can	be	downloaded	and	stored	in	a	secure	location	on	the	mobile	
device	called	the	TEE	and	used	later	during	a	payment	transaction.		

c. Mapping	a	token	to	the	original	payment	card	information	(PAN)	is	limited	to	the	TSP	or	
to	the	issuing	bank.		The	mapping	is	stored	in	a	TSP	token	vault.	

Checkout	

8. The	 cardholder	 hovers	 or	 taps	 the	mobile	 NFC	 device	 with	 the	merchant’s	 contactless	 POS	
terminal.	

9. If	more	 than	one	card	of	 the	same	 type	have	been	enrolled	 the	mobile	device	will	ask	 the	card	
holder	to	select	which	card	is	to	be	used	for	payment.	

10. Optionally,	the	cardholder	is	asked	to	authenticate	to	the	mobile	device	(e.g.	through	a	fingerprint).		
Note	 this	processes	can	happen	 later	 in	a	 two	 tap	approach	or	other	methods	can	be	used	 for	
authentication	such	as	entering	a	PIN	on	the	POS.	

																																																																				
1 Identification	and	Verification	of	Customer	(ID&V)	is	the	processes	of	verifying	the	cardholder	with	the	issuer	 
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11. The	mobile	device	generates	the	required	data	and	sends	the	data	to	the	Merchant’s	POS:	

a. QVSDC	mode	–	in	this	case	the	mobile	device	generates	an	application	cryptogram	based	
on	the	transaction	data	provided	by	the	POS.		The	cryptogram	is	generated	using	the	LUK	
(provisioned	earlier)	as	the	key.	

b. MSD	mode	–	in	this	case	the	mobile	device	generates	a	signature	(dynamic	CVV)	using	the	
ATC	(as	dynamic	data).	

12. The	POS	forwards	the	transaction	data	to	the	acquirer,	then	to	the	payment	network.		At	this	point,	
the	payment	network	detects	the	transaction	is	using	a	token	and	asks	the	TSP	to	de-tokenize	the	
transaction.		The	TSP	maps	tPAN	to	its	PAN	and	sends	the	PAN	back	to	the	payment	network.		The	
Payment	network	forwards	the	transaction	(detokenized)	to	the	card	Issuer	for	authorization.	

13. The	Card	Issuer	generated	an	authorization	response	and	sends	it	to	the	payment	network.		The	
payment	network	asks	the	TSP	to	re-tokenize	the	transaction	data.	 	The	payment	network	then	
forwards	the	data	back	to	the	Merchant’s	POS.		Merchant	completes	the	transaction	based	on	the	
authorization	response	provided.	

Clearing	and	Settlement	

14	-16.	 This	leads	us to	the	“clearing	stage”	which	involves	the	merchant	depositing	the	transaction	
purchases	information	to	the	acquirer.	The	transaction	is	routed	to	the	respective	payment	network.	
Example	visa	transactions	to	the	Visa	network,	and	so	forth.		The	payment	network	pays	the	acquirer	
and	in	turn	pays	the	merchant	for	the	goods	or	services	originally	purchased	by	the	cardholder.	The	
payment	 network	 then	 passes	 the	 transaction	 to	 the	 card	 Issuer	 and	 the	 cardholder’s	 account	 is	
debited.	Throughout	 the	 transaction	process	 the	appropriate	 interchange	 fees	are	deducted	by	 the	
respective	stakeholders.		

17. Cardholder	then	receives	the	bank	statement	summarising	all	the	financial	transactions.		
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3 An	 analysis	 of	 attacks	 on	 traditional	 and	HCE	 based	 contactless	
payment	schemes	

	
This	chapter	will	be	covering	relevant	existing	literature	encompassing	attacks	on	both	traditional	and	HCE	
based	 contactless	 payment	 implementations.	 	 The	 traditional	 attacks	will	 include	 attacks	 at	 physical,	
application	and	key	management	and	cryptography.		The	literature	review	with	respect	to	attacks	relating	
to	 HCE	 will	 cover	 attacks	 at	 Operating	 System,	 secure	 memory	 areas,	 consumer	 device	 cardholder	
verification	and	tokenisation	and	its	infrastructure.	

3.1 Literature	review	of	attacks	on	traditional	contactless	payments	
	
Contactless	technologies	including	RFID	and	NFC	have	been	used	for	payments	and	other	uses	for	quite	
some	time.		The	use	of	these	technologies	for	payments	has	driven	the	interest	on	studying	the	weaknesses	
associated	with	 these	 technologies	 and	 their	 implementation	 in	 the	 payments	 industry.	 	 This	 section	
provides	an	overview	of	the	research	done	with	regards	to	contactless	payments.	

 Attacks	at	the	Physical	Layer		

3.1.1.1 RFID	Skimming	
	
RFID	skimming	is	also	known	as	NFC	Skimming	or	Electronic	Pickpocketing.	RFID	skimming	occurs	when	
an	unauthorised	RFID	reader	interacts	with	the	card	or	similar	device	without	the	owner’s	knowledge	for	
the purpose of stealing	information. The aim	of	which	is normally	to	be able to	replicate the information
onto	a	 fraudulent	card	 for	theft	or	malicious	reasons.	 	The	skimming	process	was	common	 in	magnetic	
swipe	cards	where	‘skimming	devices	and	a	camera’	are	installed	in	ATM	machines	to	capture	card	data	
from	the	magnetic	stripe	when	customers	insert	their	card	into	ATMs.		While	the	process	and	the	hardware	
for	RFID	skimming	is	different	than	ATM	skimming,	the	aim	remains	the	same,	stealing	information	stored	
on	the	card	to	make	fraudulent	transactions	on	a	victim’s	account.	
	
Kirschenbaum	 and	Wool	 [50]	 showed	 the	 development	 of	 a	 stand-alone	 portable	 RFID	 skimmer	 that	
successfully	read	the	contents	from	an	ISO14443	RFID	tag	from	a	distance	of	approximately	25cm	using	a	
lightweight	40cm-diameter	copper-tube	antenna.	With	such	a	distance,	the	attacker	does	not	need	to	touch	
or	bump	into	the	victim	but	merely	stay	close.	Using	hobbyist	electronic	supplies	and	tools,	the	authors	
managed	 to	 build	 a	 skimmer	with	 a	 total	 budget	 of	 approximately	 $100.	 	 The	 authors	 outlined	 that	
additional	controls	such	as	physical	shielding	inside	a	Faraday	cage,	cryptographic	application-level	access	
controls,	 and	 an	 actuator	 (switch	 to	 activate	 the	RFID)	 are	needed	 to	prevent	 simple	RFID	 tags	being	
skimmed.	 	Despite	that	this	study	was	conducted	on	RFID	tags,	contactless	cards	use	the	same	physical	
layer	and	thus	are	also	susceptible	to	the	same	kind	of	attack.	
	
Complementing	 this	 section,	 two	 cases	 were	 traced	 where	 card	 skimming	 thieves	 stole	 credit	 card	
information	to	make	fraudulent	purchases	from	people	in	a	public	place	using	RFID	wireless	technologies	
from	RFID	enabled	credit	card	carried	in	pockets	and	purses	as	follows:	
	

i. In	February	2016,	a	scammer	photographed	 in	Russia	by	a	man	named	Paul	 Jarvis	showed	on	
Facebook,	how	 a	payment	device	 (i.e.	POS)	was	used	 to	 read	 contactless	 cards	 in	 the	 victims’	
pockets	and	bags	without	the	victims	knowing,	whilst	traveling	on	the	train	[51].	 	The	scammer	
can	then	use	the	money	transferred	from	these	victims	 to	make	purchases	of	less	than	a	certain	
value	without	needing	the	victim’s	signature	or	PIN.		
	

ii. In	October	2015,	Mr.	Perez	reported	that	a	thief	had	bumped	into	him	on	the	train	and	the	thief	
managed	to	steal	£20	through	an	unauthorized	contactless	payment	[52].	
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One	important	aspect	worth	mentioning	in	NFC	skimming	is	the	fact	that,	in	developing	‘skimming’	devices,	
contrary	 to	 commercial	 approved	 readers,	 the	 attacker	 can	 transmit	 signals	 at	higher	 levels	 than	 that	
mandated	in	ISO	14443	and	therefore	can	achieve	higher	distances	[50].	
	
Heydt-Benjamin	et	al,	[53]	used	an	off	the	shelf	ISO14443	reader	to	skim	credit	cards	and	steal	information	
such	as	cardholder	name,	number,	and	expiration	date	stored	on	the	card.	The	authors	make	also	reference	
to	the	fact	that	banks	normally	distribute	contactless	cards	using	regular	mail	and	therefore	side	road	mail-
boxes	can	be	an	ideal	‘scenario’	to	mount	a	skimming	attack	prior	to	the	card	is	distributed	to	the	owner.	
This	attack	is	known	as	the	Johnny	Carson	attack	since	the	attacker	can	determine	the	‘contents’	of	the	card	
without	actually	opening	the	envelope	it	was	posted	in.		
	
Alfaraj	[54],	further	developed	the	work	of	Kirschenbaum	and	Wool	[50],	by	improving	the	antenna	design.	
The	author	managed	to	achieve	a	skimming	distance	of	1.2	meters	under	ideal	conditions.		One	important	
consideration	 is	 the	 fact	 that	 in	all	of	 these	 cases	 the	 authors	used	 ISO14443	 cards	which	are	passive	
devices,	meaning	they	need	to	be	powered	by	the	reader’s	H-Field	signal	output.		HCE	mobile	devices	do	
not	have	this	requirement	and	hence	the	distance	and	the	success	of	mounting	a	skimming	attack	might	be	
higher.	 	On	the	contrary,	most	mobile	phones	with	HCE	implementations,	turn	off	their	NFC	capabilities	
when	the	screen	is	off	[55]	thereby	limiting	‘skimming’	attacks	only	when	the	mobile	device	is	being	used	
by	the	user.		However,	such	implementation	is	different	in	Windows	based	mobile	phones	where	the	phone	
can	make	NFC	 payments	when	 the	 screen	 is	 off	 [56].	 Furthermore,	mobile	 phone	 payment	 apps	 can	
implement	some	form	of	notification	(sound,	pop-up,	etc.)	event	which	is	triggered	whenever	a	payment	
transaction	is	made.		In	a	skimming	attack,	the	event	would	serve	as	an	alarm	for	the	customer.	
	
Finally,	 another	 type	 of	 skimming	 could	be	done	on	mobile	phones	 in	HCE	mode.	 	Without	using	 any	
eavesdropping,	an	app	first	emulates	a	POS	and	allows	someone	to	tap	a	card	or	an	HCE	device	to	the	device	
running	the	app	and	then	the	data	extracted	is	stored	in	the	device’s	memory.		Later,	the	device	changes	its	
function	 from	a	POS	to	a	card	(HCE)	and	when	 it	 is	tapped	on	a	real	POS	 it	provides	the	data	extracted	
previously	from	the	card	or	HCE	device.		SpotMe	app	[57]	has	been	developed	around	this	principle.	Despite	
that	the	app	is	not	intended	for	malicious	reasons	as	it	is	aimed	at	friends	who	simply	would	like	to	 ‘pre	
pay’	an	item	for	another	friend,	the	logic	behind	it	could	be	used	by	an	attacker	to	skim	and	replay	an	offline	
payment	transaction.	
	
In	addition	to	RFID	skimming,	RFID	technology	is	also	susceptible	to	eavesdropping.		

3.1.1.2 Eavesdropping	
	
Eavesdropping	 is	 the	process	of	using	a	device	 to	 ‘listen’	on	a	communication	event	 that	 is	happening,	
between	a	card	and	a	reader	at	a	certain	distance.	 	Contrary	to	a	skimming	attack,	the	attacker	does	not	
need	to	provide	power	to	the	card	and	the	card	is	unaware	that	the	attack	is	being	mounted.		However,	the	
attacker	has	a	very	limited	window	of	time	to	mount	the	eavesdropping	attack	as	one	has	to	wait	for	the	
victim	to	use	(tap)	the	card	with	the	reader	for	a	payment.	A	typical	contactless	transaction	takes	around	
500mS	[58]	and	the	attacker has	to	 ‘capture’	the	signal	during	this	small	period	of	time.		This	means	the	
attacker	has	to	be	at	the	right	place	and	at	the	right	time	to	mount	the	attack.			
	
Hancke	[59]	claims	a	system	with	specialized	RF	equipment	will	almost	certainly	be	able	to	eavesdrop	from
further	away	 than	an	attacker	with	 standard	 equipment	 such	as	 commercial	NFC	Readers.	The	author	
conducts	a	proof-of-concept	eavesdropping	attack	against	HF	RFID	devices	using	the	ISO	14443A/B	and	
ISO	 15693	 standards.	During	 a	 transaction,	 a	 reader	 (master)	 communicates	with	 the	 card	 (slave)	 to	
exchange	data	over	the	NFC	channel.		This	communication	is	split	into	2	channels.		The	forward	channel	is	
when	the	reader	sends	data	to	the	card,	and	the	backward	channel	is	when	the	card	is	sending	data	to	the	
reader.	In	most	studies,	the	channels	are	treated	separately,	but	most	of	the	time,	the	backward	channel	is	
the	most	important.	 It	is	also	the	most	difficult	to	eavesdrop	as	the	card	is	a	passive	device	and	hence	its	
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signal	output	strength	is	less	than	that	of	the	reader.	 	Hancke	[59]	used	an	RFID	reader,	RFID	token	and	
Active	h-field	antenna.	The	author	positioned	 the	reader	and	 the	 token	at	a	practical	distance	and	 then	
placed	the	antenna	at	the	same	height	level.		Throughout	the	test,	the	antenna	was	kept	at	a	fixed	positioned	
while	increasing	the	distance	from	the	antenna to	the	token	and	reader	in	steps. Using	an	oscilloscope	and	
Matlab	 software,	 the	 data	 signals	 from	 the	 receiver	 were	 captured	 and	 recorded.	 The	 author	 then	
demodulated	 the	 data	 and	 recovered	 the	 original	 data	 sent.	 The	 author	 noted	 that	 the	 result	 of	 such	
experiment	is	affected	by	a	number	of	factors	such	as	environmental	conditions	e.g.	noise,	RF	equipment,	
barriers,	amplitude	modulation,	which	eventually	during	the	analysis	stage	have	to	be	accounted	for.			The	
author	reported	eavesdropping	distances	of	between	1m	and	3m,	successfully	recovering	both	the	forward	
and	backward	channel.		A	distance	of	5m	was	achieved	but	reading	the	forward	channel	only.	
	
It	is	important	to	note	that	for	HCE,	the	concept	of	forward	and	backward	channel	does	not	exist,	it	exists	
in	Peer-to-Peer	mode	which	operates	under	ISO	18092	[21].		Despite	this,	the	claim	of	5m	by	Hancke	[59]	
as	a	possible	distance	for	eavesdropping	on	HCE	based	transaction	still	holds.	This	 is	because,	based	on	
ISO14443,	which	is	the	standard	in	which	HCE	operates	[60],	both	the	reader	and	the	device	use	the	same	
modulation	effectively	creating	a	‘forward’	channel for	both	reader	to	HCE	device	and	HCE	device	to	reader.		
		
Diakos,	Brown,	Wesemeyer	and	Briffa	[61]	proved	how	reliable	 information	 from	an	 ISO	14443	Type	A	
device	 could	 be	 recovered	 by	 an	 eavesdropper	 through	 analysing	 the	 frame	 error	 rates	 over	 various	
distances	 up	 to	 100cm	 using	 a	 covert	 antenna	 and	 low-cost	 electronics.	 Unlike	 the	 previous	 studies	
mentioned	above,	the	authors	did	not	use	any	special	antennas	but	instead	used	a	small	loop-antenna	which	
is	easily	concealed	(i.e.		by	wearing	it)	and	a	shopping	trolley.		These	antennas	would	not	raise	suspicion	at	
a	POS	station.		The	authors	proved	that	eavesdropping	distances	between	20cm	to	90cm	were	achievable.	
Having	a	shopping	 trolley	90cm	away	 from	a	POS	reader	 is	not	uncommon	 in	a	supermarket.	One	key	
finding	in	this	research	was	the	fact	that	the	power	output	from	readers	(termed	H	Field	strength)	was	
higher	for	some	readers	compared	to	others	and	the	fact	that	in	an	HCE	transactions,	both	the	reader	and	
the	device	are	active	devices	(powered),	the	possibility	of	eavesdropping	further	increases.	
	
In	another	study,	Brown,	Diakos	and	Briffa	[62]	carried	out	a	similar	study	using	a	5m	wire,	worn	on	the	
body	and	using	a	shopping	trolley	as	antennas.			Distances	of	between	90cm	and	40cm	were	achieved.		The	
study	 also	 showed	 the	 importance	 of	 background	 noise	 which	 serves	 as	 a	 ‘protective	 layer’	 to	
eavesdropping	of	NFC	devices.	
	
Contrary	 to	 the	mentioned	 authors,	 Pfeiffer,	Finkenzeller	 and	Biebl	 [63]	 took	 a	 completely	 theoretical	
approach	 to	 analyse	much	 of	 the	 claims	 presented	 in	 their	 study.	 	 The	 author	modelled	most	 of	 the	
components	 related	 to	 an	 eavesdropping	 attack	 and	 calculated	 several	 theoretical	 distances	 at	which	
eavesdropping	 could	 occur	 in	 different	 conditions.	 	 The	 authors	 stated	 that	 1m	 to	 3m	 distances	 are	
achievable	 in	 typical	 ‘business’ conditions	while	higher	distances	are	only	achievable	 in	 ‘RF	Noise	 free’	
environments	which	are	impractical	in	reality.	

3.1.1.3 Relay	Attacks	
	
Given	that	eavesdropping	is	possible	at	lengths	which	are	practical	enough	to	be	used	in	a	typical	payment	
scenario	(e.g.	near	a	counter	in	a	shop)	and	skimming	is	also	possible,	the	ability	to	mount	a	relay	attack	is	
trivial.	 	The	concept	behind	the	relay	attack	relies	on	a	fast	digital	communication	to	a	device	which	can	
emulate	a	card/token.		Given	this	project	focuses	on	HCE,	it	is	worth	mentioning	any	HCE	enable	device	can	
be	used	to	mount	such	an	attack.			
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Figure	4	–	Relay	attack	process	flow	diagram	

	
The	process	to	mount	a	Relay	attack	goes	as	follows:	

1. A	person	holding	the	skimmer/mobile	device	approaches	the	victim.	The	victim	would	have	the	
card/mobile	device	held	in	a	pocket	or	wallet.	

2. Another	person	holding	another	HCE	device	approaches	a	POS	reader,	orders	an	item	and	proceeds	
to	pay	with	his	HCE	device.		The	reader	makes	a	series	of	communication	requests	(i.e.	data	such	
as	PAN,	etc.)	via	NFC	to	the	HCE	device.					

3. The	HCE	device	then,	communicates	via	a	high-speed	connection	with	the	skimmer/HCE	device	
held	by	the	other	person.		

4. The	 skimmer	makes	 the	payment	 request	 to	 the	 card	held	by	 the	 victim,	without	 the	 victim’s	
knowledge,	and	communicates	the	reply	back	to	the	HCE	device.			

5. The	HCE	device	forwards	the	reply	back	to	the	POS	via	NFC.		The	POS	is	fooled	into	thinking	it	is	
communicating	with	the	victim’s	card.	

The	attack	in	Figure	4	is	possible	as	no	PIN	or	any	form	of	authentication	is	being	used	and	hence	the	victim	
is	unaware	of	the	attack.		If	a	PIN	or	any	other	form	of	authentication	is	requested	then	this	attack	would	
not	work.	 	 In	 the	UK,	 the	 limit	 is	 currently	 set	 to	 £30	 and	 therefore	 it	makes	 this	 attack	possible	 for	
purchases	smaller	than	this	limit.	
	
Another	limitation	to	such	an	attack	is	the	latency	introduced	by	digital	communication.	 	In	the	diagram	
above,	when	 the	HCE	 devices	 communicate,	 the	 latency	 could	 be	 higher	 than	 that	 allowed	 under	 the	
ISO14443	for	example	due	to	network	latency,	and	therefore	the	transaction	would	be	refused.	 	ISO/IEC	
14443-4	specifies	a	Frame	Waiting	Time	(FWT)	of	500uS	to	5s	[64].			It	is	up	to	manufacturer	to	choose	the	
respective	 FWT.	 	 500uS	would	 certainly	 limit	 the	 attack	 possibility	 in	 certain	 architecture,	 especially	
software	based,	while	5s,	would	practically	allow	any	architecture	to	work.	
	
Hancke	[64]	describes	a	system	with	an	ISO14443	transceiver2	at	both	ends	(i.e.	POS	terminal	and	victim	
contactless	card)	and	a	wireless	data	link	between	them.		This	type	of	link	introduces	virtually	zero	latency	
and	is	transparent	to	the	reader.	 	The	author	successfully	mounted	a	relay	attack	having	the	victim	50m	
away	from	the	POS	reader.				
	
Francis,	Hancke,	Mayes and	Markantonakis	[65] propose a system	similar to	that	shown in Figure 4 but
using	mobile	phones	(i.e.	SE	based)	on	both	ends	with	a	Bluetooth	connection	between	the	mobile	devices.		
At	the	time	of	the	research	the	mobile	phones	only	supported	SE	based.	 	This	 limited	the	success	of	the	
attack	 to	 a	 certain	 extent,	 as	 the	 attacker	 is	 ‘bound’	 by	 the	 operating	 system	 and	 the	 hardware	
implementation.	Example,	 some	 data	 flows	directly	 from	 the	NFC	 controller	 to	 the	 SE	 and	 vice	 versa.	
Therefore	 the	attacker	would	not	have	access	 to	 the	data	at	 the	application	 layer	 to	be	 ‘relayed’.	 	 If	an	
attacker	would	be	able	to	obtain	full	control	of	the	processor	of	the	mobile	device,	then	it	would	be	possible	
to	communicate	directly	with	the	NFC	controller.		
	
	

																																																																				
2	A	transceiver	is	a	device	comprising	of	both	a	transmitter	and	a	receiver	that	are	combined	in	a	single	package	and	
share	common	circuitry.	
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Roland,	et	al,	[66]	took	a	different	approach	towards	a	relay	attack.			The	authors	installed	a	Google	Wallet	
app	on	an	Android	phone.	 	The	authors	proved	that,	with	certain	privileges provided	to	the	app,	the	app	
was	able	to	access	information	from	the	google	wallet	applet	on	the	secure	element.		The	app	then	opened	
a	TCP	connection	to	a	remote	PC	which	had	a	USB	(i.e.	ACR	122U)	NFC	transceiver	connected	to	it.		The	
remote	PC	then	had	a	software	that	would	receive	the	 information	 from	the	app	running	on	the	mobile	
Android	device	and	then	execute	a	transaction	through	the	USB	NFC.		The	authors	notified	Google	about	
this	issue	and	claimed	that	this	vulnerability	was	fixed	in	a	new	version	of	Google	Wallet.	
	
Issovits	and	Hutter	[67]	propose	a	similar	study	but	instead	of	just	having	a	basic	relay	infrastructure,	the	
authors	 exploited	a	vulnerability	 in	 the	 ISO/IEC	14443	 standard	which	 is	 the	Waiting	Time	Extension	
(WTX)	command.	This	command	can	be	sent	to	the	reader	 to	request	an	extension	to	 the	delay	time	 in	
order to	relay	the	data	and	the	transaction	would	still	be	considered	as	valid.	The	authors	also	claimed	that	
the	ISO	14443	does	not	enforce	systems	to	have	countermeasures	against	relay	attacks	such	as	time	limits	
that	make	mounting	a	relay	attack	harder	 for	the	attacker.	As	part	of	their	study,	the	authors	have	also	
proposed	a	number	of	possible	countermeasures	to	limit	relay	attacks	while	still	being	compliant	with	the	
respective	ISO	standard.	
	
In	a	more	resent	study	(2015),	Van	Den	Breekel	[68]	utilized	HCE	without	the SE	to	 implement	a	relay	
attack.	 	The	author	used	 two	smartphones	connected	 to	each	other	using	WIFI	 to	 implement	 the	relay	
attack.	 	The	author	also	developed	an	 ‘optimized’	version	of	 the	attack.	 	In	the	optimized	version,	some	
communication	 terminal	 requests	 (e.g.	 AID,	 get	 processing	 options	 command)	 was	 cached.	 When	
information	is	cached,	the	use	of	the	WIFI	channel	is	minimised	and	therefore	limiting	the	delay/latency	
that	could	occur	due	to	the	WIFI	channel.		The	optimized	relay	attack	added	less	than	200mS	to	the	non-
relayed	(normal)	transaction	time.		This	is	less	than	the	variance	observed	when	comparing	the	transaction	
time	taken	by	different	card	scheme	cards.	Thus	if	timing	was	to	be	used	as	a	monitoring	basis	to	detect	
relay	attacks	it	would	fail	to	detect	such	an	attack.	Hence,	the	author	claims	that	countermeasures	based	on	
‘delay	sensing’	are	not	effective	against	such	an	attack.	
	
Vila	and	Rodriguez	[69]	also	propose	a	system	similar	 to	Van	Den	Breekel.	 	The	authors	also	used	 two	
Android	phones	in	HCE	mode	to	mount	the	attack.		The	authors	proposed	a	‘conceptual’	distributed	attack	
where	one	could	use	a	network	of	dishonest	readers,	these	being	Android	mobile	devices	with	malware	
software	that	relays	card	data	to	one	central	reader	upon	detecting	a	contactless	card	in	the	vicinity.		Given	
the	maximum	of	5	seconds	time	windows	provided	by	ISO	14443-4	the	authors	claim	the	attack	could	be	
mounted	 even	 by	 using	 internet	 (3G/GPRS)	 communication	 between	 the	mobile	 phones.	 	 In	 fact,	 the	
authors	claim	to	have	run	the	attack	when	the	reader	was	in	New	York	relaying	information	back	to	the	
other	HCE	mobile	phone	 in	Madrid	(Spain).	 	EMVCo	defines	the	maximum	time	allowed	using	the	FWT	
(Frame	Waiting	Time)	parameter	and	recommends	an	FWT	max	of	37mS	[70].		The	authors	recommended	
that	a	FWT	of	37mS	should	be	a	mandatory	requirement	[69]	rather	than	a	recommendation	to	reduce	the	
risk	of	a	relay	attack.		

3.1.1.4 Data	Corruption,	Modification	and	Insertion	
	
While	many	of	the	attacks	are	developed	for	financial	gains,	some	attacks	could	have	a	different	aim.		Data	
corruption	is	one	type	of	attack,	where	the	aim	is	to	interfere,	disturb	or	block	a	transaction	from	taking	
place,	commonly	known	as	a	DoS	attack.		A	data	modification	attack	consists	of	an	attacker	capturing	data	
and	manipulate	 it	when	being	transferred	across	NFC	enabled	devices	but	such	data	still	remains	valid.	
Such	attacks	could	prevent	users	from	making	a	payment	in	places	such	shopping	establishment	or	in	a	
subway	station	to	cause	chaos.	In	NFC,	these	type	of	attacks	could	be	split	into	two	NFC	Jamming	and	NFC	
Zapping.	
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3.1.1.4.1 NFC	Jamming	
	
NFC	card	and	readers	use	air	as	a	channel	in	which	a	magnetic	field	is	used	to	transmit	data.		If	that	channel	
is	 in	some	way	disabled,	 then	cards	and	 readers	will	not	be	able	 to	communicate.	 	 In	NFC,	 the	 typical	
transaction	occurs	between	a	POS	reader	and	a card.		The	reader	is	an	active	powered	device	while	the	card	
is	a	passive	device.		Under	this	scenario,	the	reader	modulates	the	signal	by	varying	the	amplitude	of	the	
signal.		The	card,	as	a	passive	device	is	not	powered	and	thus	harvests	power	from	the	reader.	In	fact,	the	
card	modulates	its	signal	response	by	varying	the	load	depending	on	how	much	energy	it	harvests	[71].		
	
Oren,	Schirman,	and	Wool	[72]	developed	a	device	that	would	transmit	a	signal	at	14.408	MHz,	at	upper	
frequency	channel	 in	NFC	used	by	 the	card	 to	 load	modulate	 its	signal.	This	signal	would	 interfere	and	
essentially	corrupt	the	data	that	the	card	would	send	back	to	the	reader.		The	authors	used	commercially	
available	antennas	to	transmit	the	jamming signal	and	corrupt	transmissions	from	2	meters	away	from	the	
POS	reader.	
	
Gummeson,	 et	 al,	 [73]	 in	 their	 research	developed	 a	device	 that	uses	 the	 ‘jamming’	principle	 to	block	
malicious	behaviour	according	to	defined	blacklisted	rules,	as	to	protect	a	mobile	phone	from	external	NFC	
threats.	 	The	device	consist	of	a	small	card/sticker	that	is	attached	at	the	back	of	the	device.		The	device	
harvests	 power	 from	 the	 NFC	 being	 transmitted	 and	 is	 programmable	 to	 stop/block	 only	 the	 NFC	
transactions	the	user	wants	to	block	
	
Armourcard	 [74],	another	 commercial	product	on	 the	market	 that	 claims	 to	protect	against	 skimming	
attacks	using	NFC	 Jamming.	 	Armourcard	claims	 [75]	 the	device	has	a	 touch	 interface	which	 is	used	 to	
indicate	if	the	signal	should	be	blocked	or	not.		The	device	senses	NFC	signals	and	when	no	touch	event	is	
registered	a	‘blocking’	signal	is	generated	to	block	the	skimming	attack.	

3.1.1.4.2 NFC	Zapping	
	
Another	method	of	attack	is	to	totally	disable	the	chip	on	the	card.		This	process	is	known	as	zapping.		Since	
contactless	cards	do	not	have	a	battery,	the	cards	have	to	harvest	power	from	the	13.66MHz	signal	provided	
by	the reader.				Oren,	Schirman,	and	Wool	[72]	explain	a	method	of	‘over	powering’.		The	device	using	a	
simple	 camera	 flashlight	 connected	 to	 an	 antenna.	 	The	 flashlight	 electronics	 generate	 a	 high	 voltage	
(>250VDC)	and	when	this	is	discharged	into	the	antenna	held	near	a	contactless	card,	the	magnetic	field	
generated	 is	 large	 enough	 to	 damage	 the	 electronic	 circuit	 in	 the	 card	 rendering	 the	 card	 faulty	 and	
unusable.	 	 	The	same	principle	can	be	applied	on	a	mobile	phone	with	the	intention	to	damage	the	NFC	
hardware	on	the	mobile	device.	
	
Whilst	NFC	Jamming	and	NFC	Zapping	can	be	considered	as	a	form	of	data	modification	attack,	the	actual	
modification	effects	the	whole	transmission	thus	resulting	in	blocking	the	whole	transmission	(i.e.	denial	
of	service).			

3.1.1.4.3 NFC	Data	Modification	
	
It	is	more	difficult	for	an	attacker	to	be	able	to	modify	or	change	the	data	during	a	transaction.		NFC	uses	
two	different	encoding	schemes:	Miller	encoding	with	100%	Amplitude	Shift	Keying	(ASK)	and	Manchester	
coding.		Haselsteiner	and	Breitfuß	[76]	claim	that	data	modification	on	Miller	encoding	is	only	possible	on	
certain	bit	combinations	while	using	Manchester	coding	data	modification	is	possible	on	all	bits.		Since	this	
project	focuses	on	HCE,	where	both	the	reader	and	the	HCE	device	would	be	using	active	mode,	the	reader	
and	 the	mobile	device	will	be	using	Miller	encoding	with	100%	ASK	hence	only	 certain	bit	 sequences	
combination	can	be	modified.		
	
Data	 insertion	 in	NFC	 is	only	possible	 if	 the	device	(e.g.	smart	card)	responding	 to	a	message	 from	 the	
reader	 (POS)	provides	a	delay,	enough,	 for	some	other	 rogue	device	 to	reply	 ‘instead’	of	 the	 legitimate	
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device.		If	both	devices	transmit	together	the	data	will	overlap	and	hence	it	will	be	corrupted.	Hence	such	
an	attack	can	only	be	feasible	if	the	smart	card	or	device	being	used	has	a	long	delay	before	it	responds	to	
the	message	sent	by	the	reader.		Given	that	most	NFC	payment	transaction	are	normally	a	tap	event	(very	
short	event)	such	delays	do	not	normally	occur	[76].		
	
As	at	October	2016,	no	research	could	be	found	indicating	a	practical	implementation	of	data	modification	
and	or	insertion	at	the	bit	level	during	NFC	communication.	

 Attacks	at	the	Application	Layer	
	
After	 looking	 at	 various	ways	of	how	data	 can	be	 attacked	 and	 extracted	 at	 the	physical	 layer	due	 to	
weaknesses	during	 the	communication	process,	 the	application	 layer	will	be	 the	next	 layer	 that	will	be	
analysed	 for	possible	attacks.	 	Attacks	 in	the	application	 layer	relate	to	weaknesses	 in	the	standards	or	
specifications	used	in	the	contactless	payments	infrastructure	or	weaknesses	in	the	implementation.		

3.1.2.1 Cloning	
	
While	cloning	a	contactless	card	is	classified	as	a	weakness	at	the	physical	layer.		The	success	to	mounting	
the	cloning	attack	is	because	the	information	provided	by	the	card	is	‘static’	and	thus	it	could	be	copied	and	
‘replayed’.	The	consequences	could	be	avoided	if	the	application	layer	provides	some	form	of	protection	
against	this	attack.	Despite	that	countermeasures	have	been	developed	to	limit	the	inherent	risks,	loopholes	
remained	and	thus	attacks	could	be	mounted.	
	
Roland	and	Langer	research	[77]	focused	on	cloning	a	contactless	card	and	exploiting	the	design	flaw	in	the	
CVC3s	range	due	to	problems	with	the	unpredictable	number.		The	authors	noted	that	the	unpredictable	
number	was	made	up	of	a	4-byte	field,	theoretically	providing	a	range	of	232	possibilities.		But,	due	to	the	
way	it	was	implemented,	using	BCD	and	the	Mag-Stripe	Protocol,	the	practical	range	was	reduced	to	1000	
possible	options	thus	not	benefiting	from	the	full	range	of	a	4	byte	field.	Using	BCD	the	range	was	reduced	
from	0-232	down	to	a	number	between	0-99999999	(227).	Furthermore,	due	to	requirements	in	Mag	strip	
protocol	not	all	the	numbers	in	this	range	could	be	used	and	in	essence	only	1000	numbers	in	that	range	
were	valid	possibilities.		Therefore,	the	authors	developed	an	app	on	an	Android	phone	that	eavesdrops	on	
a	contactless	card	and	forces	it	to	generate	the	CVC3	for	all	the	1000	possible	numbers	 in	a	minute.	 	An	
ideal	scenario	for	such	task	to	take	place	is	in	a	crowded	area	such	as	in	a	bus.		Once	the	CVC3	are	generated,	
a	clone	card	is	created	by	entering	the	details	into	the	new	card	collected	from	the	mobile	app	along	with	
the	table	of	CVC3	responses.		The	card	is	then	used	to	make	purchases	and	when	the	terminal	asks	for	an	
ARQC,	the	card	would	simply	lookup	the	CVC3	stored	in	the	table	and	provide	the	response	based	on	the	
unpredictable	number	provided.	 	The	only	limiting	factor	is	the	ATC	which	would	make	the	whole	table	
obsolete	after	one	transaction.		
	
Emms	and	Moorsel	[78]	proved	how	a	contactless	card	could	be	used	to	make	purchases	online.		While	this	
is	not	a	direct	‘Application	Layer’	defect,	it	is	still	considered	as	a	weakness	due	to	the	way	of	how	merchants	
handle	card	not	present	transactions.		The	authors’	methodology	was	to	install	a	hidden	NFC	reader	near	a	
legitimate	POS	reader.		While	a	customer	is	paying	for	goods	using	a	chip-and-pin	terminal,	the	NFC	reader	
would	read	the	contents	of	the	card	(i.e.	cardholder	PAN,	name,	issue	date	and	expiry)	and	send	them	to	
the	attacker.	The	CVC	was	read	using	a	camera	also	placed	strategically	near	the	POS.			The	attacker	would	
then	make	purchases	online	where	3D	secure	 is	not	being	utilized.	 	The	authors	claimed,	at	the	 time	of	
writing,	that	there	were	a	number	of	online	retailers	which	were	still	not	using	3D	secure	technology.		
While	the	attack	above	can	be	mounted	in	a	card-not-present	transaction,	when	the	card	is	present,	the	
EMV	protocol	has	in	place	several	mechanisms	at	the	application	layer	to	protect	against	a	skimming	and	
replay	attack.		The	EMV	standard	protects	against	a	replay	using	a	transaction	counter	(ATC3),	stored	on	

																																																																				
3 A	16	bit	number	stored	by	the	card	and	incremented	on	each	transaction 
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the	card	and	against	a	pre-play	attack	using	an	‘unpredictable	number’	provided	by	the	terminal	or	ATM.	
The	card	when	asked	to	generate	the	ARQC	uses	these	numbers,	in	a	signature	and	hence	cloning	a	card	
would	require	knowledge	of	these	numbers.	If	the	unpredictable	number	is	truly	unpredictable	then	an	
attacker	can	never	clone	a	card.			
	
As	Bond,	Choudary,	et	al,	presented	in	their	study	[79]	a	weakness	resides	in	the	specifications	of	EMVCo	
[80]	which	states	that	in	4	consecutive	transactions	the	terminal/ATM	should	provide	4	unique	numbers.	
This	 is	 a	 very	weak	 test	 and	ATM	 developers	 favoured	 a	 simple	 counter	 rather	 than	 a	 truly	 random	
generator	to	generate	the	unpredictable	number.	The	authors	outlined	the	analysis	a	transaction	log	file	
containing	the	unpredictable	number	provided	by	the	customer’s	Bank	from	an	ATM,	which	clearly	showed	
that	a	simple	time	bound	counter	was	being	used.	The	authors	then	described	an	attack	scenario	where	an	
attacker	would	predict	the	unpredictable	number	and	then	use	a	modified	POS	terminal	(in	a	mafia	shop).		
When	a	customer	pays	for	an	item	at	the	shop	with	his/her	card,	the	POS	would	provide	the	 ‘predicted’	
unpredictable	number	and	a	large	value	to	the	card.			The	card	will	then	generate	the	ARQC	which	is	stored	
in	the POS.		The	attacker	than	collects	the	ARQC	and	the	pin,	also	entered	by	the	customer	on	the	rogue	POS,	
and	creates	a	clone	of	the	card,	visits	an	ATM	(which	will	use	the	predicted	number)	and	uses	the	cloned	
card	to	withdraw	money.		.	The	downside	to	this	attack	is	the	fact	that	the	transaction	amount	is	entered	as	
part	of	the	ARQC	and	the	cloned	card	is	only	used	once.		Notwithstanding,	the	POS at	the	mafia	shop	would	
make	the	card	sign	whatever	amount	it	wants.	
	
One	key	‘risk	limiting’	feature	within	EMV	is	configuring	transactions	limits	which	do	not	require	a	PIN	or	
a	signature	to	authorise	payment.		In	the	UK,	a	cap	was	set	at	£30	at	the	time	of	writing	to	prevent	fraudulent	
activity	should	a	card	be	stolen.	But	Emms,	Arief,	et	al,		in	their	research	[81]	found	another	weakness,	in	
the	application	layer,	providing	them	with	an	opportunity	to	mount	an	attack	by	bypassing	the	transaction	
limit	and	steal	considerable	amount	of	money.	 	The	authors	 found	that	 if	the	Visa	contactless	cards	are	
presented	with	a	transaction	involving	a	foreign	currency	other	than	the	base	currency	the	cards	would	
sign	any	amount	up	to	999,999.99	without	requesting	a	pin	or	making	the	terminal	go	online.		Secondly,	
the	authors	also	noted	that	there	is	no	requirement	in	EMV	protocol	for	POS	terminal	to	authenticate	itself	
to	the	card	and	thus	any	rogue	POS	can	be	used	with	the	card.		In	their	attack	scenario,	an	attacker	would	
use	an	Android	mobile	phone	with	a	special	app.	 	The	app	would	allow	 the	attacker	 to	enter	a	specific	
amount	and	currency	which	will be	sent	to	the	victim’s	card	to	generate	the	signature.	When	it	comes	in	
contact	with any	contactless	card	through	NFC,	the	App	would	ask	the	card	to	sign	a	transaction	in	foreign	
currency.	 	The	details	are	stored	 in	 the	mobile	phone	and	 later	 transferred	 to	a	 rogue	merchant.	 	The	
merchant	would	simply	pass	these	transactions	through	a	rogue	POS	that	would	be	programmed	to	pass	
these	transactions	to	a	bank.		The	merchant	would	then	collect	the	money	in	his/her	account.		If	the	card	
could	 in	some	way	authenticate	the	POS	 then	the	card	would	have	never	provided	the	signature	on	 the	
transaction	when	in	contact	with	a	rogue	POS,	an	Android	mobile	phone	in	this	case.	

3.1.2.2 Point	of	Sale	(POS)	
	
POS	hardware	has	over	the	years	evolved	from	simple	POS	Terminal	systems	having	a	stripe	and	keypad	
up	to	PCs	commonly	used	in	large	retail	stores.		Today	POS	systems	have	much	more	functionality	rather	
than	 payment	 application/function	 only.	 	 These	 include	 systems	 with	 ERPs,	 cash	 registers	 and	
barcode/RFID	scanner.		In	such	systems,	the	POS	would	be	running	an	operating	system	such	as	Windows	
or	Linux.				
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Figure	 5	 –	 Simple	 Terminal	 with	 ‘closed	
hardware’	

			

	

Figure	 6	 –	 POS	 Terminal/PC	 running			
Windows	OS	

	
Different	types	of	attacks	on	the	POS	are	possible.	We	can	classify	these	in	two	categories:	

3.1.2.2.1 Physical	tampering	
		
In	this	kind	of	attack,	the	POS’s	hardware	is	modified	in	a	way	where	the	attacker	would	be	able	to	gain	
information	or	control	from	the	POS.		For	example,	a	wireless	chip	might	be	added	to	transmit	details	to	a
wireless	 receiver.	 	Another	example	could	be	a	special	chip	or	module	 installed	 in	 the	POS	 that	would	
bypass	certain	functionality	in	the	POS	such	as	making	the	POS	authorize	a	transaction	even	if	the	actual	
authorization	 fails.	To	countermeasure	these	attacks,	POS	hardware	 is	designed	to	be	 tamperproof	 [82]	
with	special	seals	used	to	determine	if	the	POS	is	tampered.	 	Nonetheless,	technicians	might	gain	access	
during	maintenance	 or	 servicing	 and	 attacker	might	 even	 find	 ways	 of	 bypassing	 the	 tamper	 proof	
hardware.	

3.1.2.2.2 Software/Firmware	tampering	
	
Software	and	firmware	attacks	modify	or	install	new	software	and	firmware	on	the	POS.		Obviously	physical	
or	remote	access	to	the	POS	is	required	to	mount	such	an	attack.		Such	an	attack	can	happen	throughout	
the	whole	 supply	 chain	 and	 hence	 POS	 hardware	 should	 be	 closely	 guarded	 even	 during	 supply	 and	
installation.	 	In	2008	[83]	several	chip	and	pin	readers	installed	around	Europe	were	said	to	have	been	
tampered	in	such	a	way	that	the	POS	reads	and	forwards	card	data	to	attackers	that	eventually	created	
clones	of	the	cards	and	made	payments	through	these	cards.		The	report	states	the	POS	might	have	been	
tampered	during	manufacturing	or	supply.				Software	and	firmware	attacks	can	also	be	mounted	through
remote	access	of	the	POS,	especially	POS	hardware	making	use	of	operating	systems	such	as	Linux	and	
Windows.		The	attacks	vary	from	installation	of	malware,	RAM	scrapping,	etc.		The	end	aim	of	the	attacker	
would	be	to	either	steal	card	data	from	the	POS	or	modify	the	operation	of	the	POS	for	the	attacker’s	benefit.	
	
In	November	2009,	Visa	issued	an	alert	entitled	“Targeted	Hospitality	Sector	Vulnerabilities”	[84]	and	in	
2013	“Preventing	Memory-Parsing	Malware	Attacks	on	Grocery	Merchants”	[85].	 	In	both	of	these	cases	
Visa	acknowledged	an	 increase	 in	attacks	on	POS	using	specialized	software.	 	The	attackers	either	used	
debugging	tools	capable	of	accessing	volatile	memory	or	memory	parsing	malware	[86].	

3.1.2.3 Payment	Infrastructure	
	
Up	to	now,	the	attacks	considered	have	been	based	on	communication	between	the	POS	and	the	contactless	
device	and/or	the	POS	itself	but	the	payment	infrastructure	also	consists	of	stakeholders	and	payment	data	
that	flows	through	all	the	stakeholders	that	are	subject	for	attacks.			
	
Albeit,	the	security	between	the	stakeholders	has	increased,	the	research	on	attacks	on	these	stakeholders	
is	still	relevant	to	ensure	a	secure	infrastructure.			In	2005,	CardSystems	solutions,	a	credit	card	processing	
company	was	breached	and	over	40	million	card	data	was	stolen	[87].		The	company	said	the	attackers	got	
access	to	a	file	which	was	holding	transaction	data	that	was	not	secured	properly.		The	company	also	issued	
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a	statement	that	it	was	not	compliant	to	the	guidelines	as	required	by	card	schemes	for	storing	transaction	
data.	
	
In	2008,	Heartland	Payment	System	suffered	a	data	breach	[88].		The	investigations	led	to	a	weakness	in	
one	of	the	web-based	services	through	which	the	attackers	mounted	an	SQL	injection	attack	and	managed	
to	get	access	to	sensitive	card	data	which	was	‘moving’	through	their	network.	
	
Unprotected	data,	whether	in	transit,	information	exchanged	during	communication	or	at	rest	such	as	data	
stored	in	plaintext	in	a	database,	can	be	a	target	 for	the	attackers.	While	these	type	of	breaches	are	not	
‘directly	 related’	 to	HCE,	 the	 fact	 that	 third	party	providers	and/or	 Issuers	 can	act	as	a	Token	Service	
Providers,	their	role	is	added	to	the	payment	infrastructure	model	and	thus	increase	the	chance	of	being	
attacked.		

 Attacks	on	Cryptography	and	Key	Management	
	
During	a	payment	transaction,	the	payment	card	or	device	communicates	with	the	POS	to	send	payment	
account	 information	 data	 related	 to	 the	 transaction.		 During	 this	 exchange,	 several	 cryptography	
mechanisms	are	used	to	authenticate	the	card	in	both	online	or	offline	transactions.	Below	is	an	analysis	of	
the	authentication	mechanisms	used during	an	EMV	contactless	transaction.		

3.1.3.1 Offline	Authentication	

3.1.3.1.1 Static	Data	Authentication	
	
As	 its	name	 implies	SDA	 is	a	 ‘static’	 form	of	authentication	whereby	 the	aim	 is	 to	provide	data-origin	
authentication.		This	means	that	the	static	data	on	the	card	was	actually	created	by	the	Issuer.	This	prevents	
an	attacker	from	creating	a	counterfeit	card	under	an	Issuer’s	name	or	modifying	the	data.			However,	this	
does	not	 limit	an	attacker	 from	copying	the	card	contents	and	cloning	 it	on	another	card.		Section	3.1.1	
identifies	a	number	of	ways	of	how	such	attacks	could	be	carried	out.		 
	
SDA	is	based	on	public	cryptography	and	in	its	simplest	form	is	an	RSA	signature	[89],	using	the	private	key	
of	the	Issuer,	on	the	card’s	data	(e.g.	PAN,	etc.).		The	actual	cryptogram	is	personalized	and	written	to	the	
card	 upon	 production.		 This	 means	 that	 with	 every	 transaction,	 the	 same	 signature	 will	 be	
applied.		However	the	cryptography	of	SDA	itself	relies	on	RSA	signatures.		RSA	is	considered	secure	as	long	
as	the	correct	keysize	is	observed	[90].		EMVCo,	does	not	provide	any	guidance	or	mandatory	requirements	
as	to	the	size	of	the	key	but	the	guidelines	state	that	the	Issuer	shall ensure	that	the	keys	used	“should	be	
adequate	for	the	planned	lifetime”	[91].	This	paper	claimed	that	in	2014, some	CA	public	keys	used	on	SDA	
cards	where	still	using	1024	key	size	even	when	many	experts	and	companies	in	the	security	field	were	
recommending	a	minimum	size	of	2048	bytes	[92].	
	
Coron,	Naccache	and	Stern	[93],	showed	how	it	was	possible	to	create	a	forged	existential	signature	over	
ISO	9796-1	and	2,	which	are	used	in	EMV.		Following	this	study,	ISO	9796-1	was	withdrawn	and	ISO	9796-
2	was	modified	to	ensure	this	attack	could	not	be	used	against	the	standard.			Further	on in	2009,	the	same	
authors	published	another	study	this	time	refining	the	algorithms	used	in	their	previous	research	to	prove	
an	attack	on	the	‘modified’	ISO	9796-2	using	an	Amazon	rented	server.		The	authors	proved	that	for	a	cost	
of	$800	(in	2009)	they	were	able	to	create	a	signature	on	a	message	for	a	single	modulus	(key).		While	this	
applied	to	ISO	9796-2,	EMV	provides	further	restrictions	and	thus	the	authors	concluded	that	an	attack	on	
EMV	to	create	an	existential	signature	would	be	unfeasible	at	a	cost	of	$45,000.	Both	Visa	and	MasterCard	
have	mandated	for	SDA	removal,	starting	October	2015	[94].	
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3.1.3.1.2 Dynamic	Data	Authentication	
	
DDA	is	an	improved	version	of	SDA,	where	apart	from	signing	the	static	data	on	the	card,	the	card	has	to	
prove	knowledge	on	the	private	key	that	is	matching	the	public	key	of	the	certificate.		To	do	this	a	message	
is	sent	to	the	card,	known	as	DDOL	(Data	Authentication	Data	Object	List)	containing	at	least	a	terminal	
generated	nonce	and	some	dynamic	data	provided	by	the	card	(e.g.	a	nonce).		The	terminal	generated	nonce	
ensures	that	the	card	is	actually	generating	the	signature,	rather	than	replaying	one	that	was	pre-generated.			
DDA	uses	RSA	signatures	and	hence	the	same	factors	mentioned	above	for	SDA	apply.			

3.1.3.1.3 	Combined	Data	Authentication	
	
The	main	difference	between	DDA	 and	CDA	 is	 the	 fact	 that	 in	CDA,	no	 additional	messages	 (i.e.	 extra	
terminal	to	device	requests)	are	required	as	the	actual	authentication	is	part	of	the	 transaction	itself.		In	
CDA	 the	 card	 signs	 dynamic	 application	 data	made	 up	 of	 a	 card-generated	 nonce,	 CID,	 cryptogram,	
Transaction	Data	Hash	Code	(TDHC)	and	a	nonce	generated	by	the	terminal.		All	this	is	supplied	to	the	card	
during	 the	 transaction	 (terminal	generated	nonce	 is	 supplied	within	 the	GENERATE	AC	 command	and	
hence	there	are	no	additional	messages/steps	to	be	done	for	authentication.		The	basics	of	the	cryptography	
are	the	same	as	that	used	in	DDA	and	SDA	(RSA).		The	same	factors	as	those	mentioned	for	SDA	apply	for	
CDA.	
	
Within	EMV,	 the	same	key	pair	used	 for	generating	 the	signature	and	 for	encrypting	 the	PIN	 for	online	
cardholder	verification.		Degabriele	et	al,	[95]	presented	a	study	showing	how,	using	a	partial	decryption	
oracle,	a	forged	signature	can	be	generated	on	a	chosen	message.		The	attack	is	based	on	the	knowledge	
about	the	‘structure’	for	encrypting	the	PIN	for	the	card	to	verify.		Specifically,	the	pin	is	required	to	have	a	
padding	of	0x7F	and	based	on	the	algorithm	presented	by	Bleichenbacher	[96]	and	the	algorithm	provided	
in	[95]	by	Degabriele	et	al,	and	given	access	to	a	cryptographic	oracle	that	can	provide	if	a	certain	ciphertext	
is	valid	or	not,	it	is	possible	to	forge	a	signature.		The	attack	uses	a	wedge	(i.e.	a	device)	between	a	card	and	
the	terminal	to	mount	the	attack,	result	would	be	to	manipulate	the	messages	flowing	between	them.	The	
whole	attack	is	possible	only	because	the	same	key	pair	is	used	for	signature	in	CDA	and	to	encrypt	the	PIN	
for	 verification.	 	 The	 authors	 provide	 a	 theoretical	 attack	 on	 forging	 the	 signature	 in	 an	 offline	 CDA	
authentication.		The	attack	mentioned	in	the	research	was	described	for	a	chip	and	pin	system	but	the	same	
attack	would	work	with	a	contactless	transactions	especially	in	a	relay	situation.			

3.1.3.2 Online	Authorization	
	
Both	the	card	and	the	terminal	can	decide	to	request	a	transaction	to	be	authorized	online.		The	factors	that	
are	 taken	 into	 consideration	 vary	 between	 different	 schemes	 and	 Issuers.	 	 One	 example	 could	 be	 a	
transaction	 amount	 limit	 whereby	 transaction	 above	 that	 limit	 would	 have	 to	 be	 done	 using	 online	
authorization.	 	Transactions	 are	 required	 to	 go	 online	when	 the	 ARQC	 is	 requested.	 	The	ARQC	 is	 an	
encrypted	hash	of	specific	data	‘tags’.	Both	the	type	of	hash	or	mac	used	and	the	encryption	are	selected	by	
the	Issuer.		Some	Issuer	can	request	offline	authentication	cryptograms	and	ARQC,	for	example	MasterCard	
PayPass	 can	 request	 CDA	 and	 ARQC	 [97].	 The	 ARQC	 generated	 by	 the	 card	 is	 sent	 to	 the	 Issuer	 for	
authentication.		Typically	the	card	would	have	a	Card	Key	which	is	based	on	a	master	key,	held	by	the	Issuer	
and	its	PAN.		The	Issuer	hence	can	generate	the	ARQC	and	verify	it	matches	with	the	received	ARQC	from	
the	card.	 	The	contents	of	 the	ARQC	are	specified	using	 the	CDOL1	 tag	 list	and	can	vary	between	card	
schemes.			
	
While	access	to	the	secret	key	in	the	card	is	difficult,	it	is	very	important	that	the	protocol	used	contains	
‘features’	that	limit	relay	and	pre-play	attacks.		As	shown	in	Section	3.1.2.1	when	the	unpredictable	number	
was	actually	predictable,	attackers	were	able	to	demonstrate	how	the	card	itself,	using	NFC,	could	be	used	
to	generate	the	ARQCs	without	the	need	for	the	attacker	to	know	the	secret	key	[79].			 	
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3.2 Literature review	 on	 attacks	 of	 mobile	 payments	 using	 Host	 Card
Emulation	(HCE)	

	
As	usage	of	Host	Card	Emulation	is	increasing,	such	technology	can	become	a	prime	target	for	attackers	by	
exploiting	the	threats	and	vulnerabilities	in	the	design	and	application	of	the	technology	such	as	the	mobile	
app	and	OS	and	 tokenisation.	Absence	of	proper	 security	measures	and	 controls	 can	 lead	 to	attackers	
stealing	payment	credentials	to	make	fraudulent	transactions.		
	
The	analysis	in	this	section	has	been	split	into	attacks	and	vulnerabilities	related	to	the	OS/Kernel	of	the	
mobile	device,	secure	memory	areas,	cardholder	verification	and	tokenization.		

 Attacks	at	the	Operating	System/Kernel	Mobile	Device		
	
Host	card	emulation	emulates	what	a	chip	in	a	contactless	card	would	do	in	software.	 	While	the	mobile	
device,	might	have	hardware	vulnerabilities	(e.g.	tampering),	most	of	the	related	work	and	literature,	on	
weaknesses	and	vulnerabilities,	available	is	focused	on	the	software	running	in	the	device.		Since	mobile	
phones	 are	 connected	 to	 the	 internet,	weaknesses	 in	 software	 can	 be	 exploited	 by	 attackers	 to	 steal	
information,	create	backdoors,	etc.		At	the	time	of	writing	the	three	major	mobile	operating	systems	in	the	
market	are	Android,	Windows	Phone	and	iOS.		Both	Android	and	Windows	Phone	have	implemented	HCE	
while	iOS	(Apple)	use	an	SE	model.			In	essence	all	the	mobile	operating	systems	are	vulnerable	to	attacks	
but	the	fact	that	Android	has	an	open	source	model	has	allowed	researchers	to	study	and	scrutinize	the	
security	of	the	OS	easier	and	in	much	more	detail.	
	
For	the	purpose	of	this	project,	the	analysis	in	this	section	will	be	focused	on	Android.	With	time,	it	is	being	
noted	that	the	vulnerabilities	are	increasing	and	growing	exponentially	as	per	reference	observed	in	the	
Common	Vulnerabilities	and	Exposures	database	(CVE).		Figure	7	represents	this	detail.	
	

	

Figure	7	–	Vulnerability	Statistics	reported	in	CVE	database	[98]		
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When	 researchers	 identify	a	vulnerability,	 it	 is	 reported	 to	Google,	acknowledged	and	eventually	 fixed	
through	patches	and	updates	to	the	system	or	the	app	where	the	vulnerability	is	found.	The	different	type	
of	vulnerabilities	currently	identified	in	the	Android	OS	is	being	summarised	in	Figure	8.		It	is	to	be	noted	
that	the	respective	vulnerability	may	be	classified	under	more	than	one	type	of	vulnerability.	
	

	

Figure	8	–	Vulnerability	Statistics	reported	by	Type	in	CVE	database [98]		

	
The	Android	OS	has	been	built	to	provide	different	level	of	permissions	to	applications	 thereby	 limiting	
what	an	application	can	do	and	access.	Typically	applications	are	run	independently	in	a	sandbox.	Thus	
under	normal	circumstances	an	attacker	would	have	a	limited	set	of	actions.	But	if	‘Root’	access	privileges	
are	gained,	the	attacker	would	have	full	access	to	do	anything	and	access	everything	in	the	OS	including	the	
device’s	applications,	data	and	resources.	Following	such	access,	attacks	can	be	mounted.		
	
Hei,	Du	and	Lin	[99]	show	a	typical	example	of	such	an	event.		The	authors	show	a	vulnerability	in	a	sub-	
section	of	 the	kernel	 leading	 to	 a	 buffer	overflow	 and	 subsequently	 gaining	 root	 privilege	 by	 running	
specific	code.		Figure	9	identifies	known	vulnerabilities	that	managed	to	obtain	root	access	level	within	the	
Kernel.	
	                 

       
Vulnerable component 

Nickname	 CVE	or	ID	 Release	
(platform)	 Cause	of	Vulnerability	 Kernel	 Driver	 Daemon	

asroot	 2009-2692	 08/2009	(<2.2)	 Null	pointer	dereference	 socket	 -	 -	
exploid	 2009-1185	 07/2010	(<2.1)	 Incorrect	input	validation	 -	 -	 udev	
RAtC	 2010-EASY	 10/2010	(<2.2)	 Incorrect	error	handling	 -	 -	 adbd	
Zimperlich	 2010-EASY	 12/2010	(<2.2)	 Incorrect	error	handling	 -	 -	 zygote	

KITNO	 2011-1149	 01/2011	(<2.2)	 Incorrect	sharing	of	
resources	

-	 -	 init	

psneuter	 2011-1149	 01/2011	(<2.2)	 Incorrect	sharing	of	
resources	 -	 -	 init	

GingerBreak	 2011-1823	 04/2011	(2.1	-
2.3.3)	

Incorrect	input	validation	 -	 -	 vold	

Zergrush	 2011-3874	 10/2011	(2.2-2.3.6)	 Buffer	overflow	 -	 -	 vold	

levitator	 2011-
1350,1352	 11/2011	(2.3-2.3.5)	 Improper	bound	check	 -	 PowerVR	 -	

mempodroid	 2012-0056	 01/2012	(4.0-4.0.4)	 Improper	permission	check mem_write	 -	 -	
bin4ry	 OSVDB	94059	 09/2012	(4.0-4.0.4)	 Symlink	attack	 -	 -	 adbd	

diaggetroot	 2012-
4220,4221	 11/2012	(2.3-4.2)	 Integer	overflow	 -	 diagchar	 -	

-	 2013-2094	 06/2013	(2.2-4.3)	 Integer	overflow	 perf	 -	 -	
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Vulnerable component 

Nickname	 CVE	or	ID	 Release	
(platform)	 Cause	of	Vulnerability	 Kernel	 Driver	 Daemon	

FramaRoot	 2013-6282	 04/2014	(2.x-4.x)	 Missing	checks	 get/	
put_user	 -	 -	

TowelRoot	 2014-3153	 06/2014	(4.0-4.4)	 Use-after-free	 futex	 -	 -	

GiefRoot	 2014-
4321,4322	

12/2014	(4.0-4.4)	 Missing	checks	 -	 camera	 -	

PingPongRoot	 2015-3636	 08/2015	(>4.3)	 Use-after-free	 net	 -	 -	

Figure	9	–	Past	Vulnerabilities	in	the	Android	Platform	[100]	

As	shown	in	Figure	9,	the	attacks	were	concentrated	against	the	Kernel,	Drivers	and	Daemons.		The	reason	
is	that	these	three	types	of	processes	are	run	with	root	privilege	within	the	OS,	therefore	exploiting	one	of	
them	would	mean	 the	attacker	would	be	able	 to	 run	code	at	 root	 level.	 	Once	 these	attacks	have been	
acknowledged,	patches	will	be	released	to	fix	these	issues.	
	
Once	an	attacker	has	gained	root	privileges,	there	are	many	ways	in	which	an	HCE	payment	process	could	
be	affected.		Some	examples	include:	

 An	attacker	could	corrupt	the	AID	table,	thereby	routing	a	transaction	to	another	service.	 	
 An	attacker	can	corrupt	the	ARP	table	and	set-up	a	Man-In-The-Middle	attack	forcing	the	mobile	

to	pass	through	a	‘false’	router	or	gateway,	change	values	in	memory	or	even	change	the	execution	
position	(Program	Counter)	of	another	app.			

	
Zimperium,	a	vendor	of	enterprise	mobile	security,	described	a	vulnerability	which	was	eventually	fixed	
where	an	attacker	could	install	and	run	a	malicious	app	without	the	user	interaction	[101].		The	only	pre-
requisite	for	the	attacker	is	the	mobile	number	of	the	victim.		The	attack	is	based	on	a	framework	known	
as	StageFright	within	Android.		The	framework	is	used	for	displaying	media	content	such	as	videos.		The	
framework	contained	an	issue	with	a	length	field	used	in	‘.mp4’	movies	which	the	framework	treated	as	32	
bit.		Zimperium	explained	that	when	sending	a	64bit	size	field	it	will	overload	the	buffer	and	create	a	buffer	
overflow	attack	and	subsequently	making	the	processor	execute	code	within	the	media	content	itself.		The	
attacker	 is	 only	 required	 to	 send	 an	MMS	 to	 the	 victim	with	 the	movie	 as	 part	 of	 the	message.	 	The	
StageFright	is	called	upon	automatically	when	the	victim’s	device	receives	the	message	to	be	able	to	display	
a	preview	of	the	movie	on	the	notifications	screen.		This	means	that	without	the	victim	taking	action,	the	
attacker	manages	to	gain	access	to	the	device.	Privilege	escalation	can	be	used	by	attackers	to	mount	or	aid	
in	other	attacks	such	as	stealing	information.	

3.2.1.1 Denial	of	Service	
	
This	type	of	attack	is	aimed	at	denying	the	mobile	phone	from	providing	certain	services.		For	example	an	
attacker	can	deny	the	use	of	NFC	in	a	phone	thereby	disabling	the	possibility	of	an	HCE	payment.		A	typical	
vulnerability	of	this	type	is	identified	in	CVE-2016-7990	[102].		This	vulnerability	exploits	a	special	protocol	
named	OMA	Client	Provisioning	(i.e.	OMACP).		OMACP	is	used	to	provision	settings	to	a	mobile	phone	via	a	
WAP	message	sent	directly	to	the	phone.	 	 	The	user	would	visit	a	site,	request	the	provision	and	a	WAP	
message	is	sent	as	a	message	to	the	device.		Upon	clicking	and	accepting	the	message	certain	settings	on	
the	phone	are	automatically	changed.			In	CVE-2016-7990	a	vulnerability	was	identified	in	Samsung	Galaxy	
S4	and	S7	devices	where	an	integer	overflow	occurs	when	parsing	an	OMACP	message	which	 leads	to	a	
heap	corruption	thereby	creating	a	Denial	of	Service	of	certain	services	on	the	phone.			

3.2.1.2 Execute	Code	
	
In	 this	 type	 of	 attack,	 the	 aim	 of	 the	 attacker	would	 be	 to	 execute	 certain	malicious	 code	 for	 various	
intentions.		The	software	could	be	code	that	would	already	be	existing	on	the	mobile	device	or	otherwise	
injected	to	the	phone	during	the	attack.		Vulnerability	CVE-2016-7990,	mentioned	above	in	the	DoS	attack	
can	be	used	to	mount	such	an	attack.		In	this	vulnerability	the	heap,	which	is	the	memory	allocated	to	an	
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App	including	the	code	it	will	execute,	is	corrupted.		If	the	heap	is	corrupted	then	an	attacker	can	potentially	
change	the	execution	code	of	an	App	thereby	making	it	execute	malicious	code.	

3.2.1.3 Memory	Corruption	
	
Some	of	the	vulnerability	types	can	be	used	to	mount	a	memory	corruption	attack.		The	OS	should	ensure	
that	when	RAM	is	assigned	to	an	application	other	applications	should	not	be	able	to	access	it	and	more	
importantly	 should	 not	 be	 able	 to	 corrupt	 it.	 	 If	memory	 is	 corrupted	 it	 could	 lead	 to	 other	 types	 of	
vulnerabilities	 such	 as	 DoS	 (the	 app	 could	 stop	working	 if	 the	memory	 content	 is	 corrupted),	 Code	
execution,	etc.	 	A	 typical	example	 is	described	 in	CVE-2016-0705	 [102].	 	 In	 this	vulnerability	a	special	
condition	known	as	a	‘double	free’	occurs.		The	vulnerability	was	found	in	code	used	in	OpenSSL	1.0.1	and	
1.0.2.		A	double	free	condition	occurs,	in	C,	when	the	function	“free()”	is	called	twice	on	the	same	pointer.		
In	the	first	call	the	condition	works	as	intended	but	in	the	second	call	the	pointer,	passed	as	an	argument,	
would	have	been	set	to	null.		According	to	the	C11	standard	[103],	this	leads	to	‘undefined	behaviour’.		In	
CVE-2016-0705	this	condition	leads	to	a	memory	corruption	and	eventually	to	a	DoS	of	certain	services	
due	to	the	memory	corruption	that	occurs.	

3.2.1.4 Bypass	procedures	
	
This	type	of	attack	is	used	to	bypass	certain	procedures	in	the	mobile	device.		For	example,	it	could	involve	
an	attacker	bypassing	certain	access	procedures	 to	gain	access	 to	 information	 that	would	otherwise	be	
unavailable	to	the	attacker.		
	
An	example	of	a	vulnerability	of	this	type	is	identified	in	the	CVE	database	as	CVE-2015-8890	[102].		This	
vulnerability	was	found	in	the	driver	that	handles	partitioning	in	the	Android	system.		Researchers	found	
that	the	system	was	not	validating	the	GUID	Partition	Table.		This	allows	an	attacker	to	create	an	SD	or	MMC	
card	with	a	carefully	crafted	Partition	Table	to	bypass	access	limitations	 i.e.	gaining	access	and	even	the	
possibility	to	write	data	in	areas	where	the	OS	does	not	provide	access.		Note	that	no	root	access	is	required	
to	mount	the	attack.	 	All	that	is	required	 from	the	attacker	 is	physical	access	to	the	phone	to	install	the	
malicious	SD	or	MMC	card.	

3.2.1.5 Gain	Information	
	
This	type	of	attack	focuses	on	exposing	certain	information.		For	example,	in	an	HCE	wallet	application,	it	
could	expose	the	value	of	a	Key	if	the	key	is	used	in	the	application’s	memory	(i.e.	RAM).		A	typical	example	
of	this	case	has	been	 identified	 in	CVE-2016-2419	[102].	 	This	vulnerability	was	 found	 in	the	Android’s	
media	server.		The	vulnerability	is	based	on	an	uninitialized	data	structure	which	can	expose	certain	data	
until	it	is	actually	initialized	by	the	media	server	software.		When	a	software	is	allocated	a	piece	of	RAM	for	
a	variable	or	data	structure,	the	area	would	still	contain	the	previous	value	and	it	is	up	to	the	software	to	
initialize	(clear)	the	structure.		If	initialization	is	not	done	then	the	software	can	potentially	expose	the	RAM	
contents	that	would	have	been	left	by	the	previous	software	occupying	that	part	of	the	RAM.		Hence	through	
this	weakness	an	attacker	could	expose	the	contents	of	the	RAM	of	another	piece	of	software.	

3.2.1.6 Trusted	Execution	Environment	(TEE)	
	
With	the	many	different	types	of	vulnerabilities	that	exist	it	would	be	impractical	to	store	highly	sensitive	
data	and	cryptographic	keys	 through	 the	 ‘standard’	ways	provided	by	 the	OS.	 	For	 this	 reason,	a	more	
‘isolated	hardware’	 solution	has	been	proposed	by	different	manufacturers.	 	The	 solutions	vary	but	 in	
essence,	the	aim	is	to	have	a	hardware	isolated	section	(secure	world)	in	the	processor	which	is	separate	
from	the	regular	OS	software	such	as	the	kernel	and	other	applications	(normal	world).	
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3.2.1.6.1 GlobalPlatform’s	TEE	Specifications	
	
The	 ‘secure	world’	environment	is	normally	called	the	TEE	(Trusted	Execution	Environment)	which	is	a	
secure	area	in	the	main	processor	in	which	data	can	be	stored	and	processed	securely.		Different	hardware	
manufacturers	have	come	up	with	different	solutions	making	it	difficult	for	software	vendors	to	develop	
and	 support	 the	different	 types	of	 configurations	of	TEE	available	hence	 industry	associations	 such	as	
GlobalPlatform	 [104]	 have	 come	 up	 with	 specification	with	 the	 aim	 of	 enhancing	 interoperability	 of	
software	 between	 different	 hardware	 manufacturers.	 	 GlobalPlatform	 has	 been	 responsible	 for	
standardization	of	the	TEE	Features	on	behalf	of	the	industry.			The	first	specifications	were	published	in	
July	2010	[105].		The	following	is	a	list	of	some	of	the	most	important	specification	pertaining	to	HCE:	

 TEE	Client	API	Specification	v1.0	–	Communication	between	trusted	applications	in	the	TEE	and	
regular	application	in	the	OS.	

 TEE	 Internal	 Core	 API	 Specification	 v1.1.1	 –	 Secure	 data	 storage,	 operating	 cryptographic	
functions,	etc.	

 TEE	Sockets	API	Specification	v1.0	–	provides	standards	to	enable	trusted	applications	to	directly	
make	use	of	internet	communication,	bypassing	the	need	to	send	data	through	applications	at	the	
OS	level.	

 Trusted	User	Interface	API	Specification	v1.0	–	provides	standards	on	how	trusted	applications	can	
access	 system	hardware	 resources	 such	as	displaying	 text	and	graphics	and	allowing	users	 to	
preform	actions	such	as	entering	PINs	etc.	

3.2.1.6.2 ARM	Trustzone	
	
ARM	[106]	is	by	far	the	most	popular	mobile	processor	architecture	and	is	used	in	over	95%	[107]	of	mobile	
phones	on	the	market.		In	the	ARM	architecture	the	TEE	is	implemented	under	the	name	TruztZone.		The	
technology	was	added	to	ARMv6	processors	upwards.		The	concept	behind	TrustZone,	as	shown	in	Figure	
10,	is	that	an	arm	processor	is	able	to	run	two	operating	systems,	Secure	OS	and	Normal	OS	[106]	at	the	
same	time	using	a	single	core	of	operation.		With	TrustZone	normal	applications	operate	in	a	‘normal’	mode,	
the	kernel	operates	at	‘system’	mode	and	the	trusted	application	operates	in	‘monitor’	mode.		Hence	even	
if	an	attacker	manages	to	obtain	access	to	a	rooted	application,	the	attacker	would	still	be	unable	to	access	
the	protected	parts	of	the	trusted	applications.			The	way	trustzone	is	implemented	allows	developers	to	
have	access	to	hardware,	e.g.	accessing	PCI-E	address	space,	therefore	trusted	applications	can	be	provided	
the	ability	to	access	certain	hardware	directly.		

	

	

Figure	10	–	ARM	Trust	Zone	Technology	[106]	
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3.2.1.6.3 Intel	SGX	
	
Intel’s	solution	to	create	a	TEE	in	its	processor	is	based	on	Intel’s	Software	Guard	Extensions 	as	shown	in	
Figure	11.		IntelSGX	is	made	up	of	a	set	of	extensions	to	the	Intel	architecture	that	aim	to	provide	two	key	
assurances	 to	 software	 running	 under	 IntelSGX:	 Integrity	 and	 Confidentiality.	 	 These	 assurances	 are	
provided	even	when	normal	software,	including	the	privileged	OS	kernel,	are	compromised.	
	
Confidentiality	 in	 IntelSGX	 is	provided	by	 isolating	 the	 code	and	data	of	a	 trusted	application	 from	 the	
outside	environment	 (normal	software	 including	 the	operating	system	and	 the	hardware	devices).	 	To	
achieve	this, a	trusted	application	is	first	loaded	in	an	‘enclave‘	and	from	then	on	all	the	code	and	data	in 	
the	enclave	become	inaccessible	to	the	regular	environment	(OS	and	regular	applications)	[108].			
	
The	 second	 assurance	 property	 is	 data	 Integrity.	 	 Integrity	 in	 IntelSGX	 is	 provided	 through	 software	
attestation.		Upon	development	of	an	application,	the	developer	creates	a	cryptographic	hash	of	the	enclave	
when	the	application	is	loaded	in	the	enclave.		This	hash	is	provided	to	the	attestation	service	provider	in	
the	form	of	a	certificate.	 	 	When	a	user	loads	a	trusted	application	in	the	user’s	computer	(i.e.	inside	the	
processor’s	enclave),	IntelSGX	creates	a	hash	of	the	enclave	and	verifies	the	hash	with	that	stored	in	the	
attestation	service.		If	this	value	matches	then	the	attestation	service	can	‘attest’	to	the	software’s	integrity	
thereby	providing	assurance	of	the	integrity	of	the	software.		
	

	
	

Figure	11	–	Intel	SGX	Remote	Attestation	feature	[109]	

	

3.2.1.6.4 Implementation	of	the	TEE	in	Android	
	
In	Android,	the	TEE	is	known	as	Trusty	[110].	This	is	an	open	source	set	of	software	components	that	make	
up	 the	 TEE.	 	 The	 key	 components	 that	 make	 up	 the	 TEE	 are	 the	 Trusty	 OS,	 drivers	 that	 handle	
communication	between	 the	Android	kernel	 and	 the	 trustlets,	 and	 a	 set	of	 libraries	 (API)	 to	 facilitate	
communication	between	the	non-secure	world	and	the	trustlets	running	in	the	Trusty	OS.	
	
There	are	two	methods	of	how	the	TEE	could	be	used	as	a	secure	memory	storage	for	HCE	wallet	apps.	

 The first	method	uses the TEE to	store a ‘Master’ key	and	a trustlet	to	operate that	master key.	The
actual	data	 (e.g.	credentials	or	 tokens)	would	still	be	stored	 in	 the	non-secure	OS	but	 they	are	
encrypted	in	the	TEE	with	the	master	key	also	stored	in	the	TEE.		This	is	how	the	hardware-backed	
Android	keystore	works.			

 The	other	method	uses	the	TEE	to	store	its	own	keys.		This	means	that	a	trustlet	would	have	to	be	
developed	to	handle	the	key	storage	and	communication	to	and	from	the	wallet	app	in	the	non-
secure	OS.	 Samsung	Pay	uses	this	model	to	store	payment	tokens	and	cryptographic	keys	in	the	
TEE	in	the	mobile	device	[111].		
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 Attacks	on	Secure	Memory	Areas	
	
One	key	requirement	for	every	HCE	app	is	a	secure	memory	area	to	store	and	process	payment	applications	
and	account	information.		This	could	either	be	volatile	or	non-volatile	memory.		Whenever	data	is	stored	
on	the	mobile	device,	it	is	subject	to	attacks	with	an	aim	of	stealing	or	modifying	the	data.		In	Android,	an	
app,	like	an	HCE	Service,	runs	in	a	Sandbox	[112].	This	is	an	‘isolated’	environment	from	any	other	App	and	
only	processes	with	root	privileges	would	have	access	to	 this	environment.	Non-volatile	memory	 for	an	
app,	keys	and	other	security	assets,	by	default,	also	has	 this	 isolated	property.	 	Files	stored	on	 internal	
storage	of	the	mobile	device	are	only	accessible	to	the	app.	 	Access	controls	can	be	set	to	the	files	to	be	
readable	by	other	apps.		
	
While	it	is	safe	to	assume	that	an	attacker	would	be	able	to	access	any	data	when	gaining	root	privileges,	
other	vulnerabilities	have	been	found,	where	the	attacker	does	not	need	root	access.		MWR	Labs	found	a	
vulnerability	in	the	Google	Admin	app,	where	a	malicious	app	residing	on	the	same	device	read	data	from 	
within	the	sandbox	of	the	Google	Admin	app	[113].	The	Android	OS	provides	for	inter-app	(i.e.	interacting	
with	other	apps)	communication	through	a	system	of	‘intents’.		MWR	Labs	found	that,	by	passing	an	intent	
for	 the	 ResetPinActivity	within	 Google	 admin	 and	 passing	 a	 file	 url	 that	 is	writable	 from	within	 the	
malicious	app,	such	file	is	loaded	in	a	webview	(running	in	Google	Admin).	 	Eventually,	using	HTML,	the	
malicious	app	manages	to	read	files	that	are	within	the	Google	Admin	sandbox.		This	is	not	a	‘sandbox’	flaw	
but	a	flaw	in	Google	admin	that	exposed	its	own	sandbox.	
	
Android	provides	a	secure	mechanism	to	encrypt	the	data	being	stored	and	a	‘keystore’	[114]	to	store	keys	
for	an	app	securely.	The	mechanism	is	called	a	keystore.			The	mechanism	is	implemented	on	Android	using	
a	KeyMaster	service	[115]	which	is	split	between	a	service	running	in	the	Android	OS	non-secure	world	
and	a	trustlet	running	in	the	TEE	as	illustrated	in	Figure	12.		Any	application	that	needs	to	use	the	keystore	
will	first	use	the	Inter	Process	Communication	to	communicate	with	KeyMaster	service	(i.e.	running	in	the	
secure	world)	which	in	turn	communicates	with	the	trustlet.	
	

	

Figure	12	–	Access	to	Keymaster	[115]	

	
The	actual	key	is	not	stored	in	the	TEE	but	it	is	stored	in	the	app’s	sandboxed	storage.		The	key	is	encrypted	
using	a	device	specific	key	which	is	stored	in	the	TEE.		Since	the	keys	are	bound	to	the	device	a	malicious	
app	with	root	access,	can	use	these	keys	to	sign	or	encrypt	the	data	[116].		
	
For	example	consider	a	payment	application	that	requires	a	signature	on	a	transaction.	 	A	malicious	app 	
with	root	access	copies	the ‘honest’	payment	application’s	key	file	to	 its	own	sandbox.	Subsequently,	the	
attacker	signs	a	fraudulent	transaction	with	that key	and	it	would	still	be	valid	as	the	key	is	device	binding.		
The	app,	however	cannot	find	out	the	value	of	the	key.	
	
Not	 all	mobile	 device	 vendors	 provide	 support	 for	 TEE	 based	 hardware	 keystore	 and	 in	 such	 case	 a	
software	based	keystore	is	used.		In	such	case	the	keys	are	also	stored	in	the	application’s	sandbox.		The	
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keys	are	encrypted	with	the	device	lock	screen	pin	if	this	is	activated	or	no	encryption	is	used	if	the	 lock	
screen	pin	is	deactivated	[116].	If	a	lock	screen	pin	is	used	it	is	only	‘accessible’	when	the	device	has	been	
unlocked,	(i.e.	when	the	user	has	been	authenticated)	[114].	Just	like	a	hardware	supported	keystore,	the	
key	is	device	bound	since	the	lock	screen	pin	is	device	specific.		Hay	and	Dayan	[117]	found	a	vulnerability	
in	the	keystore	that	could	be	potentially	used	to	leak	the	device	lock	screen	password	and	hence	it	could	be	
used	to	leak	the	keys	of	other	applications	if	root	access	is	provided.	 	The	vulnerability	was	related	to	a	
buffer	overflow	in	the	keystore	related	to	one	of	the	 functions	 ‘KeyStore::getKeyForName’.	This	function	
calls	another	function	‘encode_key’	and	if	a	large	key	name	is	provided	the	encode_key	function	will	end	up	
with	a	buffer	overflow	since	no	bound	checking	was	implemented	in	encode_key	function.		Once	the	buffer	
overflow	occurs	the	attacker	could	expose	the	device’s	lock	credentials.		The	credentials	can	then	be	used	
to	extract	the	keys	of	other	applications.	

 Attacks	on	Consumer	Device	Cardholder	Verification	(CDCVM)	methods	

3.2.3.1 Introduction	to	CDCVM	
	
In	an	EMV	payment	 transaction,	 the	 terminal,	based	on	a	 risk	decision	mechanism,	decides	whether	a	
cardholder	verification	is	necessary.	This	is	necessary	to	ensure	the	authenticity	of	the	person	attempting	
to	make	the	transaction.		
	
In	a	contact	based	transaction	this	is	normally	in	the	form	of	a	PIN	or	signature	on	the	terminal	but	with	
contactless,	 specifically	HCE	 based	payments	 the	 terminal	has	 the	 option	 to	 opt	 for	 Consumer	Device	
Cardholder	Verification	Method	(CDCVM)	[30].	CDCVM	options	include	PIN	or	biometric	such	as	fingerprint	
entered	on	the	mobile	phone.		Similarly	to	Apple	Pay	[118],	which	uses	Touch	ID	or	the	passcode	on	the	iOS	
device	as	the	‘verification’	of	the	cardholder	identity	for	purchases	Android	Pay	supported	in	Android	6.0	
Marshmallow	 [119]	 launched	 the	option	 to	verify	a	payment	 transaction	using	 the	 fingerprint	scanner	
sensor,	instead	of	a	PIN.	In	the	future,	other	verification	methods	may	be	supported	like	pattern	and	vein	
recognition.	 In	 fact,	 the	 FIDO	Alliance	 is	working	with	 EMVCo	 in	 developing	 specifications	 for	 secure	
authentication	and	authorization	protocols	for	the	mobile	ecosystem	to	reduce	reliance	on	passwords	and	
properly	address	these	vulnerabilities	[120].		
	
The	EMVCo	specifications	do	not	mandate	what	type	of	‘verification’	method	should	be	used.		Both	Visa	and	
MasterCard	support	CDCVM	in	their	specifications	[118]	but	mostly	 leave	it	up	to	the	Issuer	in	terms	of	
methods	to	be	used.		For	example,	MasterCard	leaves	it	up	to	the	Issuer	to	select	the	method	but	suggest	
that	the	actual	PIN	of	the	card	should	not be	entered	on	the	mobile	device	if	the	device	is	not	certified	to	
the	PCI	PTS	[121].			
	
The	sections	below	outline	different	attacks	that	have	been	identified	in	relation	to	CVM	methods.	

3.2.3.1.1 PIN/Password	Authentication	
	
PIN	authentication	 is	already	used	as	a	cardholder	verification	option	in	both	contactless	payments	and	
chip-and-pin/EMV	cards.	 	With	the	addition	of	CDCVM,	Issuers	are	able	to	provide	on-device	PIN	or	any	
passcode	bound	to	the	user.	One	consideration	that	Issuers	have	to	consider	about	CVM	is	the	fact	that	the	
whole	contactless	experience	 is	about	 speed	and	convenience.		Considering	 the	 fact	 that	mobile	device	
users	are	already	providing	a	pin	 to	unlock	 their	mobile	device	and	 in	some	cases	 to	open	 the	wallet,	
another	pin	would	mean	that	a	payment	could	easily	result	in	3	PIN	entries	for	a	simple	purchase.		Most	
probably	the	value	of	the	pins	would	also	be	different.		This	would	be	a	problem	from	a	usability	point-of-
view	especially	given	the	fact	that	most	contactless	schemes are	marketed	as	‘tap	and	go’.		Hence	Issuers	
need	to	find	a	balance	between	usability	and	security.		Furthermore	the	problems	with	knowledge-based	
factors,	like	PINs	and	password	is	that	such	factors	rely	on	memory.		People	tend	to	forgot	them,	use	weak	
passwords	or	pins	(i.e.	1234,	0000)	or	reuse	them	for	multiple	accounts.	
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The	PIN,	used	for	CVM,	does	not	need	to	be	the	same	as	that	used	on	the	terminal	as	long	as	the	Issuer	has	
some	way	of	verifying	 it.	While	one	might	argue	that	a	4	digit	PIN	entered	on	the	mobile	phone	should	
provide	the	same	security	as	that	offered	with	a	4	digit	pin	entered	on	the	terminal,	one	has	to	consider	
other	factors	when	entering	the	pin	on	the	mobile	phone.		Most	of	the	attacks	presented	in	literature	are	
‘side	 channel’	 attacks	 using	 ‘sensors’	 on	 board	 the	mobile	 device	 to	 try	 and	 determine	 the	 PIN	 being	
entered.		Simon	and	Anderson	[122]	studied	how	the	front	facing	camera	and	the	microphone	on	the	device	
could	be	used	to	guess	the	pin	being	entered	on	the	mobile	device.		The	authors	developed	an	application	
on	a	device	to	prove	that	after	5	attempts	the	software	was	able	to	guess	the	correct	pin	50% 	of	the	time	
from	a	set	of	50	pins.		Similarly,	Spreitzer [123] described a method using the ambient light sensor on the 
device to determine the PIN. The author describes how specific variations in the light sensor output are 

generated when a user clicks a different number on the touchscreen of the mobile device.   The method 

guessed the right pin from a random set of 50 pins within the first 10 guesses.  

 

Other methods  have  been  proposed  to  lift  pins  or  patterns  entered  on  a  keyboard.    Aviv	 et	 al,	 [124]	
presented	a	study	on	‘Smudge	Attacks’	where	a	set	of	cameras	were	used	to	determine	the	oily	residue	left	
by	the	fingers	as	they	touch	or	move	on	the	mobile	phone’s	screen.		The	authors	claimed	that	they	were	
able	to	identify	a	pattern	in	different	lighting	conditions	and	camera	setups.	Out	of	all	the	possible	setups	
tried,	the	authors	identified	a	pattern	partially	92%	and	fully	68%.		

3.2.3.1.2 Fingerprint	Verification	
	
One	of	the	most	common	attack	used	against	fingerprint	recognition	for	unlocking	the	mobile	and	executing	
a	payment	is	a	spoofing	attack.		A	copy	of	the	fingerprint	image	is	obtained	in	some	way	and	then	used	to	
provide	verification.		The	methods	to	obtain	a	fingerprint	vary.		They	can	be	stolen	from	polished	surfaces	
such	as	mobile	screens	or	even	from	a	waving	hand	photo.	It	can	then	be	re-created	using	conductive	ink	
on	AgIC	paper,	using	latex	milk	or	white	wood	glue.		As	an	example	Krissler,	a	German	hacker,	showed	how	
using	commercial	software	VeriFinger	[125]	and	a	set	of	high	resolution	pictures	he	managed	to	recreate	
the	fingerprints	of	Germany’s	Defence	Minister	[126].					
	
The	second	type	of	attack	focuses	on	the	fingerprint	verification	process	within	the	operating	system	on	
the	mobile	device.		A	malicious	app	is	presented	to	the	user	to	enter	his	fingerprint.	The	app	records	the	
fingerprint	image	and	sends	it	to	the	attacker.	This	is	a	type	of	phishing	attack	on	the	verification	process.		
It	could	also	be	used	to	fake	an	actual	verification	on	a	legitimate	app	by	for	example	presenting	a	fake	lock-
screen	to	which	the	user	presents	his	fingerprint.		
	
Another	type	of	attack	is	related	to	fingerprint	data.	The	Android	framework,	as	explained	in	Section	3.2.1.6,	
provides	a	TEE	where	both	the	verification	process	and	the	data	could	be	stored	and	processed.	Thus,	even	
in	case	of	elevated	root	privileges	by	an	attack,	the	data	of	the	fingerprint	should	not	be	compromised	if	
properly	implemented	by	the	device	vendor.	Using	the	Android	framework,	device	vendors	can	‘lock’	the	
fingerprint	sensor	so	that	it	is	only	accessed	by	the	TEE	but	device	vendors	do	not	always	implement	such	
locking	mechanism	and	hence	an	attacker	with	root	access	is	able	to	load	the	finger	print	sensor	driver	into	
the	kernel	and	access	the	sensor	directly.		The	attacker	would	present	a	false	lock	screen	and	then	harvest	
the	output	from	the	fingerprint	presented	by	the	user.	 	Such	attack	can	be	mounted	remotely	to	harvest	
finger	 prints	 on	 a	 large	 scale.	 One	 such	 case	was	 identified	 by	 researchers	 in	 the	HTC	 One	Max,	 the	
fingerprint	data	(known	as	 template)	was	saved	 in	“/data/dbgraw.bmp”	with	a	Linux	permission	set	 to	
0666	which	means	it	is	world-readable	and	hence	any	process,	including	unprivileged	ones	can	get	access	
to	the	template	[127].		Similar	attack	also	affected	Samsung	Galaxy	S5.	
	
It	is	worth	mentioning	that	fingerprints,	unlike	passwords,	cannot	be	replaceable.	 	In	case	a	password	is	
compromised	then	the	victim	can	remedy	the	situation	by	changing	the	password	but	the	 fingerprint	is	
something	 that	 is	 bound	 to	 the	 person	 ‘for	 life’.	 	Nowadays	 fingerprints	 are	 used	 for	 access	 control,	
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passports	in	addition	to	verify	the	cardholders.	Any	compromise	of	fingerprint	has	a	ripple	effect	on	other	
applications	where	fingerprint	is	used	and	thus	a	new	form	of	authentication	is	required.	

3.2.3.1.3 General	Attacks	on	Biometric	Verification	
	
Figure	 13	 represents	 the	 different	 points	 of	 architecture	 of	 a	 biometric	 verification	 system	 that	 are	
vulnerable	to	be	attacked.	
	

	

Figure	13	–	Generic	architecture	of	a	biometric	verification system	[128]	

	
There	are	two	types	of	attacks	on	biometric verification	system	(i.e.	 	direct	and	indirect).	 	Direct	attacks	
target	 the	 sensor	 in	order	 to	 fraudulently	 access	 the	 system	 and	 thus	 such	 attacks	 can	be	 carried	out	
without	any	knowledge	about	the	system.			A	fingerprint	spoofing	attack	is	one	such	kind	of	a	direct attack.		
Note	that	biometric	authentication	methods	rely	on	parts	of	our	body	which	can	easily	be	 ‘captured	and	
copied’	(spoofed).		Unlike	a	password	or	pin,	there	is	no	secrecy	to	guard	body	features.	
	
Indirect	 attacks	 focus	 on	 the	 ‘inner’	processes	 of	 the	 authentication	method	 including	pre-processing,	
feature	extraction,	the	database	and	the	matching	process.		To	be	able	to	carry	out	the	attack	the	attackers	
needs	to	have	some	knowledge	on	the	inner	workings	of	the	systems	and	also	access	to	the	parts	of	 the	
system	 such	 as	 the	database	or	matcher.	 	To	 achieve	 such	 an	 attack	 the	 attacker	would	 rely	on	 some	
malicious	software	such	as	a	trojan	horse	or	malware.		A	typical	indirect	attack	would	for	example	intercept	
the	communication	between	the	database	and	the	matcher	with	the	intention	of	manipulating	the	data	to	
the	attacker’s	advantage.	

 Attacks	on	Tokenization	and	its	Infrastructure	
	
The	tokenization	infrastructure	is	meant	to	deal	with	issues	relating	to	static	payment	data.	 	Static	data,	
such	as	an	account	number	(PAN),	once	stolen	can	be	re-played	or	used	elsewhere.		Tokens,	on	the	other	
hand	are	‘random’	numbers	that	represent	static	data,	but	are	meant	to	be	used	once	and	then	discarded 	
thus	becoming	dynamic.		The	obvious	advantage	is	the	fact	that	if	stolen,	the	token,	will	expire	and	can	only	
be	used	once	thus	will	have	little	or	possibly	no	value.		A	TSP	provides	mapping	between	a	token	and	its	
represented	static	data.	 	 In	case	of	payment	 transactions,	 the	 token	normally	represents	a	PAN	and	 its	
expiry,	apart	from	other	data.		Assuming	that	tokens	are	truly	randomly	generated	and	are	reasonably	hard	
to	steal,	than	tokens	would	provide	protection	against	replay	attacks.		
	
With	a	 random	 token,	a	method	 is	 required	 to	map	 the	 token	back	 to	a	PAN,	a	process	known	as	de-
tokenization.		While	this	ensures	that	a	token	is	useless	if	stolen	(attacker	is	unable	to	determine	the	PAN)	
it	creates	a	highly	centralized	infrastructure	as	all	‘trusted’	entities	have	to	rely	on	the	TSP	to	de-tokenize	
the	token.		These	kind	of	tokens	are	known	as	irreversible	tokens	but	the	PCI	guidelines	for	tokenization	
[26]	allow	the	use	of	reversible	tokens.		Such	tokens	are	cryptographic	tokens	which	are	reversible	only	
through	the	knowledge	of	a	key.	 	This	way,	trusted	entities	within	the	 infrastructure	can	share	the	 ‘de-
tokenization’	key	and	that	way	the	infrastructure	is	not	centralized.	 	This	comes	at	a	disadvantage	as	an	
attacker	might	be	able	to	de-tokenize	the	token	if	it	is	not	cryptographically	secure	or	if	a	key	is	obtained.	
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Mendoza	[129]	presented	a	study	on	Samsung	Pay	using	Visa	Token	Service	framework	infrastructure.	In	
his	 study,	he	 found	 a	 flaw	 related	 to	 the	 implementation	of	 the	 actual	 Samsung	Pay	App.	 	The	 attack,	
described	by	the	author,	is	mounted	on	a	contactless	transaction	using	Mag	Stripe	Mode.		In	this	mode	the	
card	generates	a	signature	known	as	dynamic	CVV	but	this	signature	does not	contain	any	dynamic	data	
provided	by	the	terminal	[130].	The	signature	only	contains	the	card’s	ATC.	 	This	means	an	attacker	can	
simply	 obtain	 a	 dCVV	 and	 re-use	 it	 as	 long	 as	 the	 card	 is	 not	 used	 elsewhere.	 The	 author	 showed	 a	
conceptual	attack	using	social	engineering	to	 ‘steal’	a	token	(using	specialized	hardware	acting	as	a	POS	
Terminal	collecting	the	tokens	which	are	then	used	on	another	device	to	make	payments.	
	
MalcomVetter	 [131]	 provided	 an	 overview	 of	 side	 channel	 attacks	 that	 an	 attacker	 could	 run	 on
tokenization	 which,	 while	 not	 revealing	 all	 the	 data,	 but	 revealing	 important	 properties	 that	 could	
eventually	lead	to	other	attacks.		One	of	the	issues	with	tokenization	is	the	fact	that	a	mobile	device	would	
have	to	communicate	via	internet,	to	a	TSP.		This	opens	up	a	window	of	opportunity	for	an	attacker	who	
has	access	to	the	data	traffic	(e.g.	on	a	WiFi	network).		The	author	explains	two	kinds	of	observations,	one	
based	on	 timing	and	 the	other	based	on	 the	HTTP	header.	 	MalcomVetter	 found	how	 the	 tokenisation	
service	 response	 time	 for	a	new	 credit	 card	versus	a	known	 card	had	a	different	 response	 time	when	
communicating	with	the	TSP	side.			Similarly,	the	author	also	discovered	that	upon	analysing	the	different	
HTTP	headers,	one	can	determine	valuable	data.	
	
At	the	time	of	writing	(i.e.	October	2016)	no	attacks	were	found	against	TSPs.		Notwithstanding,	every	TSP	
is	subject	to	an	attack	especially	attackers	would	be	reluctant	in	attacking	the	database	where	the	mapping	
PAN-to-token	are	stored.	Standard	Bodies	such	as,	EMVCo,	PCI	DSS,	X9.119-2	are	promoting	and	issuing	
requirements	and	guidelines	for	building	a	secure	tokenization	system	and	defining	controls	to	prevent	
potential	attacks	against	tokenization	implementations.	

3.3 Review	of	existing	HCE	Implementations	
	
In	this	section,	twomobile	contactless	deployment	payments	models	implemented	in	the	industry	that	use	
HCE	will	be	discussed.	Such	section	will	be	as	an	extension	to	Section	2.4,	where	the	lifecycle	processes	of	
the	payment	transaction	was	described.	Other	variants	models	may	exist	but	the	focus	will	be	limited	to	
the	ones	described	below:	

 Device/	OS	Provider	Wallet	Model		
 Issuer	HCE	Model	
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 Device/OS	Provider	HCE	Model						
	

	

Figure	14	–	Device/OS	Provider	Wallet	Model	

	
In	this	model	of	implementation,	the	Device	OS	provider	is	responsible	for	developing	and	maintaining the	
wallet	app.		The	app	is	tightly	integrated	with	the	services	provided	by	the	Issuers	such	as	the	tokenization	
infrastructure.		The	concept	behind	this	implementation	is	that	one	wallet	is	shared	between	many	Issuers	
rather	than	having	an	app	per	Issuer.		It	also	makes	it	easier	for	Issuers	that	wish	to	provide	customers	the	
possibility	to	use	HCE	as	they	do	not	need	to	invest	in	their	own	app	development.	
	
Two	 implementations	 fall	 under	 this	 category.	 These	 include	 Android	 Pay	 deployed	 by	 Google	 and	
Microsoft	Wallet	deployed	by	Microsoft.	Both	Android	Pay	and	Microsoft	Wallet	support	both	MasterCard	
and	Visa	 card	 schemes.	The	explanation	 in	 this	 section	will	be	 only	 limited	 to	Android	Pay	due	 to	 the	
maturity	and	popularity	 in	 the	market	by	 the banks	and	 retailers	of	Android	Pay	and	 the	very	 limited	
research	and	documentation	available,	at	the	time	of	writing	on	Microsoft	Wallet.	
	
The	process	starts	by	the	OS	Vendor,	Google	in	this	case,	developing	the	wallet.		The	wallet	is	developed	
according	to	the	recommendations	of	the	cards	it	will	carry.		In	the	case	of	Android	Pay,	Google	made	use	
of	the	card	scheme’s	infrastructure	for	tokenization	but	there	is	no	limitation	on	using	own	(i.e.	OS	Vendor)	
implementations	as	long	as	they	are	in	line	with	the	recommendations	of	the	card	scheme.			The	next	step	
is	for	an	Issuer	to	show	interest	in	Android	Pay	via	a	card	scheme	and	an	agreement	is	formalised	with	
Google [132]. Google will then proceed	in integrating	the Issuer in the wallet	app,	a set	of	cloud	services
to	 administer	HCE	 payment	 card	details	 including	 cardholder	 identification	 and	 integration	with	 card	
schemes	TSP	for	tokenisation.	Other	processes	are	also	integrated	such	as	Issuer	cardholder	identification	
and	verification	on	registration.			
	
Visa	uses	a	system	of	Limited	Use	Keys	(LUKs)	whereby	a	key	is	used	for	a	limited	period	and	then	changed.		
The	key	management	system	handles	when	to	change	the	keys	based	on	a	set	of	thresholds.		These	include	
time,	transaction	amount	and	the	number	of	transactions.	 	MasterCard	uses	a	system	of	single	use	keys	
(SUKs)	[133].			A	set	of	SUKs	are	downloaded	on	the	device	and	the	each	key	will	be	used	once	on	the	device.		
Additional	keys	are	downloaded	from	MasterCard’s	cloud	management	system	when	the	other	set	is	used	
up.	The	SUKs	are	combined	with	a	Mobile	PIN	to	make	up	a	session	key.		This	key	in	turn	is	used	to	generate	
the	online	cryptogram	used	during	the	online	authorization	process.	
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The	customer	downloads	the	app	from	Google	Play	Store,	log	in	using	their	Google	account	information,	
then	registers	the	Issuer’s	card	in	Android	Pay	and	accept	the	terms	and	conditions	for	adding	a	card	to	a	
digital wallet.	It	is	to	be	noted	that	multiple	cards	from	the	same	Issuer	or	different	cards	from	other	Issuers	
can	be	registered.	 	Typically,	a	one-time	verification	passcode,	consisting	of	a	unique	series	of	numbers	
and/or	letters	will	be	sent	via	email	or	text	by	the	Issuer	to	confirm	cardholder’s	identity	to	complete	the	
enrolment.	The	cardholder	authenticates	with	the	Issuer	via	the	card	scheme	TSP.	
	
The	mobile	device	must	support	the	Android	OS	running	Android	4.4	KitKat	or	higher.	Authenticating	the	
transaction	 in	Android	 can	 be	performed	using	 fingerprint	 scanner,	PIN	 code,	pattern	 or	 a	password.	
Furthermore,	Issuers	can	also	issue	their	own	HCE	credentials	for	their	apps	without	the	need	of	involving	
Android	Pay.	However,	such	credentials	will	not	be	valid	for	Android	pay	–	in	app.	
	
At	this	stage	the	customer	is	ready	 to	make	purchases	with	the	HCE	mobile	device.	 	A	payment	token	is	
generated	by	the	card	scheme	TSP	and	is	passed	to	Google’s	cloud	server	to	be	provisioned	to	the	mobile	
device.			A	limited	number	of	tokens	are	stored	locally	to	be	used	when	no	internet	connection	is	available.	
When	the	customer	wishes	to	make	a	purchase	the	Android	device	is	unlocked	(using	the	owner’s	preferred	
method)	and	presented	(tapped)	on	the	POS.	 	During	the	purchase,	cardholder	verification	is	performed	
using	fingerprint	scanner,	PIN	code,	pattern	or	a	password.			
	
The	payment	credentials	are	forwarded	from	the	POS	to	the	acquirer,	card	network	and	Issuer.		The	Card	
network	TSP	de-tokenises	the	PAN	and	forwards	it	to	the	Issuer	for	transaction	authorisation.	This	is	then	
repeated	backwards	to	complete	the	transaction.	Typically	a	message	will	appear	to	confirm	the	payment	
has	been	sent	and	the	terminal	will	confirm	if	the	transaction	has	been	successful.	
	
Current	Issuer’s	supporting	Android	Pay	in	the	UK	industry	include:		Bank	of	Scotland,	First	Direct,	Halifax,	
HSBC,	Lloyds	Bank,	M&S	Bank,	MBNA,	Nationwide	Building	Society,	NatWest,	Santander	and	Ulster	Bank	
[134].	
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 Issuer	HCE	Model	
	

	

Figure	15	–	Issuer	HCE	Model		

	
In	this	model,	the	Issuer	is	responsible	for	developing	the	mobile	wallet	application.		While	this	means	more	
investment	from	the	Issuer,	it	also	means	the	Issuer	gets	to	decide	which	TSP	to	use,	what	type	of	credential	
management	 to	use	and	has	 full	 control	on	 the	wallet	App.	 	As	 shown	 in	Figure	15,	 the	 Issuer	 can	be	
responsible	 for	 the	whole	 deployment	 solution.	 	 	 In	 this	model	 the	 Issuer	would	 develop	 the	wallet	
application	and	also	provide	services	such	as	credential	management	and	Tokenization	by	acting	as	the	
TSP.		
	
Issuers	may	also	opt	 to	outsource	 the	above	mentioned	services	 to	a	 third	party.	 	With	 respect	 to	 the	
tokenisation,	there	are 3	options.	The	role	of	TSP	can	either	be	managed	by	the	Issuer,	or	by	a	third	party	
or	else	using	the	card	scheme	tokenisation	services	platform	offered	by	the	respective	card	schemes	such	
as	Visa	Token	Service	(VTS).	If	multiple	card	schemes	are	to	be	provided,	Issuers	can	opt	for	the	service	of	
a	third	party	gateway,			integrating	various	card	schemes	into	one	common	interface	to	reduce	complexity	
for	the	Issuer.		
	
Parties	having	 the	 role	of	a	TSP,	have	 to	 follow	adherence	 to	EMV	Payment	Tokenization	Specification	
Technical	Framework,	EMVCo	TSP	registration	(i.e.	not	applicable	to	 Issuers	on-premises	solutions)	and	
hold	a	valid	PCI-TSP	certification	[135].		
	
Both	the	Issuer’s	and	third	party	approach	requires	that	the	card	scheme	whose	brand	is	used	will	need	to	
be	certified.	If	more	than	one	card	scheme	brand	is	used,	then	the	Issuer	needs	to	individually	certify	the	
HCE	solution	to	ensure	compatibility	and	compliance	with	the	card	schemes	specifications.	
	
An	 implementation	 that	was	 fully	 developed	 by	 the	 Issuer	 is	 the	Barclaycard	 app	 for	Android.	 It	was	
reported	in	the	media	that	Barclaycard	was	the	first	Bank	in	the	UK	to	launch	its	own	contactless	payments	
app	from	any	NFC	on	any	Android	device	running	version	4.4.2	KitKat	or	above	[136].		Barclaycard’s	wallet	



48	
	

app	 is	available	on	Google	Play	and	currently	accepts	Visa	Barclaycards	as	well	as	Barclays	debit	cards.		
Despite	that	no	public	information	was	traced	specifically	on	Barclaycard	tokenization,	in	an	online	article,	
it	 was	 published	 that	 Barclays,	 which	 is	 the	 parent	 company	 of	 Barclaycard,	 has	 built	 its	 HCE	 and	
tokenization	technology	in-house	[137].	
	
An	example	of	a	third	party	provider	offering	HCE	solution	with	Secure	Element	 in	the	Cloud	 including	
Tokenisation	Management,	Gateway	and	Token	Service	Provider	 is	Rambus	Bell	ID.	Rambus	Bell	ID	 	 	 is	
certified	by	Visa,	MasterCard	and	American	Express	[138].	Their	solution	leverages	HCE	to	emulate	an	EMV	
mobile	payment	via	a	remote	SE,	and	provides	the	functionality	to	complete	a	payment	transaction	using	a	
standard	EMV	 contactless	payment	 terminal.	 	Public	 available	 information	 shows	 that	ANZ	Bank	have	
implemented	their	HCE	solution	compatible	with	Android	mobile	phone	which	is	available	on	Google	Play	
Store.	ANZ	goMONEY	WALLET	 supports	a	 range	of	ANZ	Visa	payWave	 credit	or	debit	 cards,	and	ANZ	
American	Express	contactless	credit	cards	[139].		Their	Mobile	Pay	app	can	also	be	used	to	withdraw	money	
at	any	contactless	enabled	ANZ	ATM	[139].	

 Summary	on	the	Advantages	and	Disadvantages	
	
Both	deployment	models	described	above	has	 its	own	advantages	and	disadvantages.	This	section	will	
briefly	go	through	them.	In	the	banking	and	finance	industry	having	a	number	of	deployment	options	leads	
to	more	competitive	pricing	and	 innovative	strategies.	As	at	November	2016,	no	 transaction	 fees	were	
being	incurred	by	cardholders	when	using	any	of	the	services	by	the	two	deployment	models.		
	
A	common	characteristic	is	that	these	models	rely	on	technology	factors	which	are	deemed	to	fail.	A	case	in	
point	is	when	the	mobile	device	is	out	of	battery,	or	has	connection	issues	with	Issuers	or	TSP	network.		
Thus,	backup	methods	need	to	be	in	place	such	as	still	issuing	physical	contactless	cards	to	cardholders.				
	
The	table	in	Figure	16	summarizes	some	advantages	and	disadvantages	between	the	different	models:	
	

Criteria	 OS	vendor	wallet	
(e.g.	Android	Pay)	

Issuer	Wallet	

Own	Infrastructure					
&	Development

Thirdparty	
Infrastructure	&	
Development	

App/Wallet	
Customization	
(branding)	

Limited	 Yes	 Yes	

Certification	expenses	 None	 High	 Medium	
Setup/Deployment	
Costs	

Low	 High	 Medium	

Running	Costs	 Low	 Medium	 High	

Per	transaction	fees	
Possible		
(currently	none)	

None	
Possible		
(based	on	contract	
signed	with	TSP)	

Multiple	card	schemes	 Yes	 Possible	but	complex	 Yes	
Issuer	Marketing		 Not	Possible	 Yes	 Yes	
Cardholder	Verification	 Chosen	by	OS	Vendor	 Chosen	by	Issuer	 Chosen	by	Issuer	

Figure	16	–	Summary	of	the	advantages	and	disadvantages	between	the	different	models	

	
When	an	Issuer	does	not	operate	its	own	solutions,	monthly	or	per	transaction	fees	will	be	incurred	if	TSP	
platform	card	scheme	or	TSP	third	party	is	being	used.			However,	this	might	be	a	viable	solution	for	small	
Issuers	 due	 to	 the	 cost	 involved	 for	 development	 and	 certifying	 the	 TSP	 platform	 as	 well	 as	 other	
certifications	such	as	PCI	DSS,	ISO27001,	card	scheme	specifications,	etc.		
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Despite	such	complex	task,	large	Issuers	may	prefer	to	have	the	setup	in-house	as	it	would	be	costly	to	pay	
the	 fees	 associated	with	TSP,	 credential	management	 and	per	 transaction	 charges	 associated	with	 the	
infrastructure.		
	
Issuers	have	to	also	consider	security	issues	and	the	cost	to	maintain	the	infrastructure	up	to	standard.		
This	means	updating	the	wallet	app	with	new	updates,	adapting	to	new	versions	of	the	OS,	etc.		On	the	other	
hand	companies	such	as	Google	and	Microsoft	in	collaboration	with	card	schemes	can	take	all	the	steps	and	
actions	to	offer	better	security	when	using	their	platforms	due	to	the	available	resources	to	 implement	
security	features	and	are	able	to	provide	instant	security	vulnerabilities	updates	to	ensure	their	reputation	
is	not	 jeopardised.	Due	 to	 restricted	 budgets	 in	 the	 cards	market,	 Issuers	might	 not	 be	 in	position	 to	
implement	top	end	security	features	and	controls	or	otherwise	might	not	have	the	right	or	in-house	skills	
to	do	so.			
	
When	an	Issuer	does	not	operate	its	own	solutions,	monthly	or	per	transaction	fees	will	be	incurred	if	TSP	
platform	card	scheme	or	TSP	third	party	is	being	used.			However,	this	might	be	a	viable	solution	for	small	
Issuers	due	 to	 the	cost	 it	 involves	 in	 for	development	and	certifying	 the	TSP	platform	as	well	as	other	
certifications	such	as	PCI	DSS,	ISO27001,	card	scheme	specifications,	etc.	Despite	such	complex	task,	large	
Issuers	may	prefer	to	have	the	setup	in-house	as	it	would	be	costly	to	pay	the	 fees	associated	with	TSP,	
credential	management	and	Google	transaction	(currently	no	fees	being	charged).			
	
When	 using	 an	 OS	 vendor	model,	 Issuers	 are	 limited	 in	 what	 content	 they	 can	 push	 towards	 their	
cardholders.	 	Merchants	affiliated	with	 the	OS	vendor	 can	have	 their	campaigns	delivered	 through	 the	
mobile	wallet	app	but	Issuer	cannot	leverage	the	HCE	mechanism	to	do	this	in	an	OS	Vendor	model.		In	an	
Issuer	model,	Issuer	are	free	to	implement	their	own	content	delivery	mechanism.		They	can	provide	other	
services	such	as	offers,	promotions	and	integration	with	mBanking,	ATM	withdrawals	being	offered	by	the	
bank	through	the	Issuer’s	app.	
	
Using	Android	Pay,	Issuers	may	have	an	impact	on	their	branding	and	independence.		Issues	that	may	occur	
within	Android	Pay	will	have	a	ripple	effect	on	the	 Issuer	as	customers	will	associate	the	issue	with	the	
Issuer.	 	Another	disadvantage,	of	using	Android	Pay	 is	 that	Google	might	 filter	 information	on	payment	
transactions	or	any	other	relevant	information	and	share	it	with	merchants	or	other	third	party companies	
for	commercial	and	advertising	purposes.	Greater	control	can	be	exercised	on	transaction	management	for	
Issuers	with	their	own	solution.	Furthermore,	Issuers	have	the	full	power	to	decide	which	options	they	will	
support,	basing	their	choice	on	the	services	that	meet	their	requirements	best	and	their	risk	appetite.	
	
During	the	life	cycle	of	HCE	payment	process,	cardholders	might	need	some	form	of	customer	support.	This	
can	be	easily	provided	by	the	Issuer,	whilst	using	Android	Pay,	customers	might	end	up	ping	ponging	from	
various	stakeholders.	In	terms	of	maturity,	there	is	a	greater	chance	that	Android	Pay	to	be	used	rather	
than	the	respective	 Issuer’s	own	HCE	solution,	due	to	the	branding	advantages	Google	possesses	 in	 the	
industry	and	worldwide.	In	fact,	it	is	the	author’s	opinion	that	as	at	November	2016,	only	very	few	Issuers	
have	implemented	their	own	HCE	and	tokenisation	infrastructure	in-house.	
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4 Modeling	an	HCE	Payment	Transaction	
	
The	aim	of	this	section	is	to	develop	a	model	of	an	HCE	payment	transaction	that	will	aid	in	the	security	
analysis	done	later	in	Section	5	of	this	project.		First	the	modelling	tools	available	and	their	features	vis-à-
vis	 the	 requirements	 of	 this	 project	 are	 evaluated.	 	 Next	 the	methodology	 explaining	 the	modelling	
processes	is	provided	and	eventually	an	explanation	of	the	developed	model	is	provided.			

4.1 Review	of	modelling	 tools	and	 their	application	 in	modelling	 similar	
payment	transactions	

	
A	 state	machine	 consists	 of	 inputs,	 some	 intermediate	 processing	 and	 outputs,	 typically	 following	 a	
sequential	system.	The	machine	‘transitions’	from	one	state	to	another	either	by	default	or	based	on	some	
condition.	 	This	 type	of	modelling	has	been	used	 to	model	many	 types	of	 systems	 including	 computer	
systems,	industrial	processes	and	network	protocols.	Finite	state	machine	analysis	is	also	a	common	tool	
for	security	analysis.	For	example	Mitchell,	Shamtikov	and	Stern	[140]	used	finite	state	analysis	to	model	
and	determine	issues	in	the	SSL	3.0	protocol.	Marrero,	Clarke	and	Jha	[141]	proposed	methods	to	develop	
a	state	machine	model	verification	tool	to	determine	issues	within	a	security	protocol.		
	
The	authors’	objective	of	using	a	state	machine	model	is	to	gather	all	the	states	that	the	transaction	could	
fall	into	and	see	how	an	HCE	Payment	Wallet	transitions	between	states.		This	simplification	provides	a	
window	for	analysis	which	essentially	could	outline	security	risks	which	are	otherwise	difficult	to	observe	
using	 other	ways.	 	 This	 process	 is	more	 commonly	 known	 as	 ‘state	machine	 verification’	 or	 ‘model	
checking’.		The	tools	used	to	‘verify’	and/or	‘check’	a	state	machine	model	will	exhaustively	search	for	all	
possible	execution	traces	(i.e.	set	of	sequential	transitions).		Such	search	will	provide	all	possible states	and	
traces	the	machine	can	run	into	and	this	could	outline	issues	in	the	implementation	or	programming	of	the	
machine	under	study.			
	
For	this	purpose,	five	tools	for	the	modelling	of	a	state	machine	are	reviewed.	The	tools	are:	Fizzim	[142],	
Mobius	[143],	UModel	[144],	QM	[145]	and	Stateflow	–	part	of	Matlab	–	Simulink	[146].		A	brief	overview	
will	be	outlined.		
	
i. Fizzim	

	
Fizzim	 is	 free	 open	 source	 tool	 under	 the	 GNU	 public	 license	 which	 is	 specifically	 targeted	 for	 the	
engineering	community	to	be	used	for	developing	code	for	systems	by	modelling	them	graphically	as	state	
machines.	The	latest	version	of	the	tool	traced	was	version	5.20	released	on	the	5th	August	2016	and	is	
supported	on	Windows,	Linux,	Apple	and	any	other	software	that	supports	Java.	
	
The	tool	offers	the	option	to	intended	users	to	setup	their	states	information	through	the	GUI interface	and	
the	 software	 itself	 generates	 code.	 Other	 functionality	 available	 include	 Mealy	 and	 Moore	 outputs,	
transition	priority	and	automatic	grey	coding.	
	
ii. Mobius	

	
Möbius	 is	 a	 software	 tool	 for	modelling	 systems	using	 a	 finite	 state	machine	 approach.		This	 tool	was	
created	as	part	of	a	research	project	at	University	of	Illinois	at	Urbana-Champaign.		The	aim	of	the	tool	is	
not	to	generate/develop	code	for	a	machine	but	rather	to	study	the	reliability,	availability	and	performance	
of	computer	and	network	systems.		The	tool	allows	model	creation	through	a	graphical	interface	but	it	also	
provides	the	ability	to	write	complex	processing	code	during	a	state	through	programming	languages	such	
as	C++.	 	 	The	software	also	provides	the	ability	to	study	a	system’s	behaviour	under	different	condition	
provided	as	inputs	to	the	model.	 	Mobius	is	free	for	Academic	use	but	requires	a	licence	for	commercial	
purposes.	
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iii. UModel	
	
UModel	is	part	of	a	suite	of	software	developed	by	Altova.		UModel	is	a	tool	for	developing	software	through	
UML	 diagrams.	 	 State	Machine	 diagrams	 are	 one	 of	 the	 types	 of	 UML	 diagrams	 and	 UModel	 allows	
developers	to	develop	software	by	modelling	it	as	a	UML	State	diagram.			The	tool	takes	an	object	oriented	
approach	since	the	output	of	the	tool	is	object	oriented	code	such	as	Java	or	C#.		To	access	this	software	
tool	a	license	is	required.	Various	licenses	exists	including	Enterprise	and	Professional	editions.			
	
iv. QM	

	
QM	(QP	Modeler)	is	a	similar	tool	to	UModel	for	the	development	of	code	through	UML	statechart	diagrams.		
The	tool	is	tailored	for	developing	code	for	embedded	systems.	The	tool	is	provided	as	freeware	but	it	is	
not	open	source.	
	
v. Stateflow	(Matlab	and	Simulink)	

	
Stateflow	is	a	tool	developed	by	MathWorks	within	the	Matlab	software	suite.		Particularly	Stateflow	is	part	
of	Simulink.		Stateflow	is	a	tool	used	to	model	a	system	via	state	machine	diagrams	and	state	charts.			Unlike	
other	tools,	Stateflow	uses	an	enhanced	state	machine	diagram	capable	of	modelling	hierarchy,	parallel	
processing	and	history.		Stateflow	also	provides	the	ability	to	automatically	generate	state	transition	tables.		
These are similar to	truth tables and shows which	inputs make a machine go	into which	state.	

Stateflow	does	not	generate	any	code	but	it	allows	a	simulation	of	the	model	to	be	run.		Moreover,	as	it	is	
part	of	 Simulink	 it	 allows	 the	use	of	other	 tools	within	 Simulink	 and	Matlab	 to	be	used	 in	 the	model.		
MATLAB	 is	a	well-known	 tool	by	both	 the	 industry	and	academics.	A	comprehensive	support	services,	
tutorials,	documentation,	for	using	the	tool	is	also	offered	by	the	company	publicly	on	their	website.	

Simulink	also	provides	a	tool	known	as	Simulink	Verification	and	Validation	[147].		This	tool	can	be	used	
to	run	coverage	analysis	to	exhaustively	search	for	all	the	possible	execution	traces	in	the	model	(known	
as	‘coverage’).  

From	all	the	tools	analysed	it	was	clear	that	the	tools	were	either	geared	towards	software	development	or	
modelling	for	systems	analysis.		Fizzim,	UModel	and	QM	are	aimed	at	software	development	while	Mobius	
and	Stateflow’s	are	more	geared	 towards	system	analysis.	Ultimately,	 the	choice	was	reduced	 to	either	
Mobius	or	Stateflow.		 	
	
Both	Mobius	and	Stateflow	provide	the	tools	and	features	required	for	the	project’s	scope	but	Stateflow	
was	the	preferred	tool	due	to	the	following	points:	

 It	has	a	large	support	community.	
 It	allows	the	use	of	Matlab	and	Simulink	tools	to	be	added	as	part	of	the	model.	
 It	allows	for	parallelism	which	is	a	requirement	for	this	project	as	will	be	explained	further	on	in	

this	section.	
 It	provides	a	model	verification	tool.	
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4.2 Methodology	

 Acquiring	reference	documentation	
	
Prior	 to	starting	 the	documentation	a	good	 introduction	was	acquired	by	reading	 the	paper	 “EMV	 in	a	
nutshell”	[148].	Such	paper	covers	the	key	processes	of	EMV	Contactless	payment	transaction	between	the	
card	and	the	terminal	and	the	similarities	to	contactless	payments	using	NFC	mobile	phones.	The	authors 	
in	this	paper	analysed	both	the	Visa	and	MasterCard	payment	brands.		
	
Such	paper	served	as	a	good	start	to	help	me	understand	the	relative	processes	and	mechanisms	such	as	
data	 authentication,	 cardholder	 verification	methods,	 the	 transaction,	 cryptogram	 generation	 and	 key	
infrastructures.	
	
Eventually,	the	focus	was	narrowed	to	the	Visa	payment	scheme,	given	that	the	author	had	limited	access	
to	 Visa’s	 material	 and	 none	 to	 MasterCard.	 The	 model	 in	 this	 project	 is	 based	 on	 the	 following	
documentation:	
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4.2.1.1 Transaction	Payment	Process	
	

#	 	Document	Name	 Availability4	
Abbreviation	
(in	Model)	

1	 Visa	CloudBased	Payments	Contactless	Specification		Visa	Supplemental	Requirements	Version	1.7		May	
2016	[130]	
	
Scope	of	Document:	
This	is	the	backbone	document	that	was	used	to	build	the	model.	This	document	provides	detailed	specification	for	
a	Mobile	Application	 to	communicate	with	a	contactless	 reader	over	NFC,	while	supporting	 the	Visa	payWave	
transaction	 flow	 irrespective	 of	 the	 application’s	 location	 (i.e.	 SE	 or	 cloud).	 It	 also	 provides	 the	 ‘mobile	
specifications’	where	HCE	is	covered	for	a	Visa	payWave	transaction.	
	
This	document	was	used	for	the	following	processes:	

i. Transaction	Requirements:	
-	 account	 enrolment,	 account	 parameters	 (e.g.	 account	 parameters	 replenishment	 requests	 and	
responses);	
-	 qVSDC	 transactions	 data	 elements	 and	 requirements	 (i.e.	 APDU	 commands,	 PPSE5,	 AID,	 GPO,	 CVM	
processing,	offline	data	authentication);	
-	Read	Records6;	
-	Transaction	Verification	Log7.	
	

ii. Cryptograms	and	Signature:	
- Building	Cryptograms	and	signature	for		Mag-Stripe	Mode(MSD)	and	qVSDC	contactless	options;	
- Provisioning	and	algorithms	of	the	cryptograms.	

	
	
	

Private	
	

VCBPCS		
	

																																																																				
4 Documents	which	are	not	publicly	available	were	accessed through	the	official	site	of	VISA	which	is	accessible	to	its	members.		The	author’s	workplace	is	a	member	of	VISA.  
5 The	Mobile	Application	receives	a	select	command	containing	the	information	“2PAY.SYS.DDF01” 
6 The	read	record	command	reads	a	file	record	in	a	linear	file	in	response	to	the	GPO 
7 After	executing	a	successful	 transaction,	 the	mobile	application	stores	 information	about	 the	 transaction	 in	 this	 log.	The	 information	consists	of:	mobile	device	UTC	 timestamp,	
unpredictable	number	received	from	the	reader,	application	transaction	counter	(ATC)	tag	and	the	type	of	transaction	whether	MSD	or	qVSDC 
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#	 	Document	Name	 Availability4	
Abbreviation	
(in	Model)	

2	 Visa	Mobile	Contactless	Payment	Specification	(VMCPS)		Visa	Supplemental	Requirements	Version	1.4.3	–	
May	2015	[149]	
	
Scope	of	Document:	
This	document	was	used	to	understand	the	concepts	of	qVSDC	Transaction	Flow	(i.e.	Pre-Tap	or	1st	Tap)8,	Issuer	
Update	Processing (i.e.	2nd	Tap)9,	External	authenticate	command	and	Issuer Script	processing	flow.	

Private	 VMCPS	

3	 Transaction	Acceptance	Device	Guide	(TADG)	[150]	
Scope	of	Document:	
This	document	was	used	to	understand	the	concepts	of	CDCVM	request	and	response.	

Public	 TADG	

4	 EMV	Contactless	Specifications	for	Payment	Systems	(Book	C3)	–	Kernel	3	Specification	–	Version	2.6	–	
February	2016	[151]		
	
Scope	of	Document:	
This	document	was	used	as	a	reference	together	with	VCBPCS	and	VMCPS.		The	document	provides	the	expected	
behaviour	from	a	POS	when	an	HCE	device	communicates	with	the	POS.	

Public		 EMV_K3	

5	 Implementing	an	HCE	Service	–		
https://developer.android.com/guide/topics/connectivity/nfc/hce.html	[55]		
	
Scope	of	the	link:	
This	link	was	used	to	determine	how	the	reader	and	mobile	respond	to	an	AID	command,	how	an	HCE	service	is	
started	and	how	data	flows	to	and	from	the	NFC	controller.	

Public		 AndroidOnline	

	
	
	
	
	
	
	

																																																																				
8 Initial	physical	presentation	of	the	consumer	device	to	the	contactless	payment	reader 
9 Second	physical	presentation	of	the	consumer	device	to	the	contactless	payment	reader	to	perform	an	Issuer	Update	(reset	of	application	counters	and	possible	issuer	scripting)  
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4.2.1.2 Tokenisation	Process	
	

#	 Document	Name	
Document	
Source	

Abbreviation	
(in	Model)	

1	 Visa	Token	Service		Introduction	for	Issuers		Version	3	 November	2016	[152]	
	
Scope	of	Document:	
This	document	was	used	to	understand	the	cardholder	verification	process.	Visa	uses	an	authentication	mechanism	
called	step-up	authentication.		The	mechanism	supports	different	method	such	as	a	one-time-password	generated	
by	Visa’s	payment	token	service10.	 

Private	 VTSII	

2	 Visa	Token	Service	–		
https://developer.visa.com/products/vts/reference	[153]	
	
Scope	of	Link:	
This	consists	of	Visa	Token	Service	APIs	published	on	Visa	Developers	website	for	(e-Commerce	and	m-Commerce)	
and	mobile	contactless.		This	information	was	used	to	understand	the	device	enrolment	process	and	how	tokens	
are	provisioned	and/or	replenished	and	the	type	of	cryptograms	applied.	Also,	information	on	the	Token	Lifecycle	
processes	(i.e.	Resume,	Delete,	Active	and	Suspend)	was	used	for	reference.	

Public	 VisaDeveloperOnline	

3	 EMV	Payment	Tokenisation	Specification			Technical	Framework	–	Version	1.0	–	March	2014	[25]	
	
Scope	of	Document:	
This	document	was	used	for	gathering	insight	on	the	Tokenisation	process	in	general.		

Public	 EMV_PTS	

4	 Information	on		limited	use	keys	(LUK):	
http://blog.simplytapp.com/2014/09/applepayandandroidpaymenteco.html	[154]	
http://developer.samsung.com/techinsights/pay/tokenhandlingbysamsungpay	[155]	
	
Scope	of	the	Links:	
These	 links	were	used	 to	understand	principles	of	 token	 storage	 location	and	how	 cryptograms	 (master	keys	
(MDK),	Unique	derived	Key	for	Issuer	per	card	(UDK)	and	dynamic	keys	(LUKs)	are	applied.		

Public	 LUK_SA_TAPP	

	
The	abbreviations	mentioned	in	the	tables	above	have	been	used	as	part	of	the	comments	in	all	the	three	Stateflow	charts	and	in	their	respective	Matlab	‘.m’	script	
files.	

																																																																				
10 Visa	is	a	Token	Service	Provider	in	this	context 
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 Developing	the	model	

4.2.2.1 Conceptual	Architecture	
	
When	 all	 the	documentation	was	 gathered,	 the	 first	process	 in	 developing	 the	model	was	 to	define	 a	
conceptual	 architecture.	 	 The	 mobile	 device	 is	 considered	 as	 a	 finite	 state	machine	 but	 due	 to	 the	
capabilities	 of	 the	 mobile	 device	 and	 the	 way	 HCE	 payment	 wallets	 are	 implemented,	 different	
configurations	are	possible.	The	scope	of	 the	model	will	be	 limited	 to	 the	processes	 involving	 the	HCE	
payment	wallet.	The	most	important	points	considered	in	developing	this	conceptual	model	are:	
	

 The	mobile	device	is	capable	of	multi-threading	(multi-processing).	 	This	essentially	means	that	
the	mobile	device	can	have	more	than	one	‘machine’	running	simultaneously.	

 For	security	reasons,	some	processes,	such	as	the	generation	of	the	cryptogram	or	LUK	does	not	
occur	in	the	HCE	payment	wallet	App.		This	processes	occurs	in	the	cloud	or	in	a	TEE.		This	process	
is	still	considered	part	of	the	model	as	it	is	seen	as	an	extension	of	the	HCE	payment	wallet	App.	

 The	 ‘independent’	 processes	 or	 threads	 share	 the	 same	 data	 or	 database.	 	 Synchronization	
between	the	processes	or	threads	are	outside	the	scope	of	this	model.	

 The	processes	 in	 the	mobile	device	could	be	affected	by	other	processes	running	 in	 the	mobile	
device	which	are	not	related	directly	with	the	HCE payment	wallet.		For	example,	the	user	could	
lock	the	mobile	during	a	payment	transaction.		These	are	outside	the	scope	of	the	model.	

4.2.2.2 Defining	States	and	their	Transitions	
	
Once	a	conceptual	architectural	was	developed	(further	information	can	be	located	 in	Section	4.3.1)	the	
next	step	was	to	study	in	detail	the	documentation	on	each	of	the	processes	identified.		These	processes	
resemble	a	machine	with	a	finite	set	of	states	hence	the	next	step	was	to	define	all	the	possible	states	within	
the	 ‘machine’.	 	The	machine	 is	essentially	executing	a	different	processes	 in	each	state	defined	such	as	
generating	a cryptogram	or	waiting	for	a	request	from	the	POS.				
	
The	next	task	prior	to	developing	the	model	in	Stateflow	was	to	identify	the	transitions	between	the	states.		
Transitions	are	conditions	that	occur	and	take	the	machine	from	one	state	to	the	other.		Some	states	have	
default	transitions	(i.e.	the	state	would	transition	to	another	state	after	a	specific	process	is	completed,	and	
other	states	can	have	multiple	transition	possibilities	based	on	different	conditions	and	priorities).	

4.2.2.3 Defining	Input	and	Output	data		
	
The	final	task	was	to	define	the	input	and	the	output	data.		The	model	uses	different	kinds	of	data.		Part	of	
the	data	is	‘standard’	data	according	to	EMV	or	Visa	specifications.		The	structure	of	this	data	was	preserved	
as	much	as	possible	 to	 these	specification	as	 to	make	 it	easier	 for	analysis.	 	The	other	data	 resembles	
conditions	or	settings	within	the	mobile	device.	 	The	data	was	grouped	into	 ‘structures’	which	was	then	
routed	into	the	model	as	a	signal	bus.		
	
The	 actual	model	was	developed	using	 the	 graphical	 tools	provided	by	 Simulink,	 specifically	 the	 tools	
within	Stateflow.		Similar	to	how	state	machines	are	represented,	in	Stateflow,	states	are	defined	as	boxes.		
Processing	done	within	a	state	is	declared	as	Matlab	code	within	the	state	box	and	transitions	are	modelled	
by	drawing	lines	from	one	state	to	the	other.		Conditions	for	the	transitions	are	also	entered	as	part	of	the	
line	in	Matlab	code.			
	
Stateflow	defines	different	kinds	of	data	representation,	but	for	the	scope	of	this	project	three	types	were	
used;	input,	output	and	local.		Data	which	is	‘fed’	into	the	model	is	registered	as	input.		Local	data	represents	
structures	which	the	model	alters	but	do	not	provide	data	to	external	entities	while	output	data	is	provided	
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to	external	entities	such	as	data	provided	to other	processes.		The	data	structure	and	contents	was	defined	
in	Matlab	‘.m’	script	files.			
	
To	ensure	that	the	model	works	a	sequence	of	simulations	were	run.	Different	variables	were	initialized	to	
ensure	that	all	states	are	executed	at	some	point.	

4.3 Development	of	an	HCE	Payment	Transaction	Model	

 Architecture	
	
After	analysing	the	documentation	made	available	by	EMV	and	Visa	it	was	concluded	that	an	HCE	payment	
wallet	can	be	modelled	as	three	state	machines	(i.e.	processes)	which	can	run	in	parallel.		Given	a	mobile	
device	is	capable	of	multi-threading	or	running	multiple	processes	in	parallel,	such	a	configuration	can	be	
achieved.			The	three	processes	identified	are:	

 Payment	Transaction	–	responsible	for	NFC	communication	with	the	POS.	
 Token	Requestor	–	responsible	for	the	provision	of	tokens	on	the	mobile	device	from	the	Token	

Service	Provider.		Also	responsible	for	the	replenishment	of	limited	use	keys	on	the	mobile	device	
related	to	a	token	in	use.	

 Account	Management	–	responsible	for	the	provision/replenishment	of	account	parameters	such	
as	limited	use	keys	and	the	overall	management	of	an	account.	

The	Payment	Transaction	and	the	Account	Management	processes	are	part	of	the	HCE	payment	wallet.		The	
Token	Requestor	process	could	also	be	part	of the	HCE	payment	wallet	app	but	as	a	good	practice	this	is	
not	recommended	as	 the	 token	requestor	 is	 in	possession	of	 the	Unique	Derived	Key	(UDK).	This	 is	an	
important	key	as	 it	 is	used	 to	generate	 the	Limited	Use	Keys	 (LUKs)	used	by	 the	Payment	Transaction	
process	 to	generate	 the	cryptogram	[154].	Figure	17	below	shows	at	a	high	 level	 the	generation	of	 the	
tokenized	PANs	(tPANs),	the	UDK	(tUDK)	and	the	LUKs.		This	shows	the	importance	for	storing	the	UDK	in	
a	secure	environment.	
	

	
	
	

Figure	17	–	Generating	the	Application	Cryptogram11	

Hence	the	Token	Requestor	process	is	normally	located	either	in	the	TEE	of	a	mobile	device	or	in	the	cloud,	
provided	by	the	wallet	provider	or	a	third	party.		Both	the	TEE	and	the	cloud	provide	a	‘safer’	environment	
when	compared	to	an	HCE	service	App	hosted	in	a	non-secure	environment	in	the	mobile	device.	
	

																																																																				
11 E	in	the	diagram	resembles	some	form	of	encryption	algorithm.		(e.g.	Triple	DES) 



58	
	

	

Figure	18	–	Model	Architecture	

	
As	shown	in	Figure	18,	the	three	processes	above	were	modelled	as	three	separate	Stateflow	charts	which	
are	capable	of	running	(or	simulated	to	run)	in	parallel.		Data	between	the	processes	flows	through	a	series	
of	Simulink	busses.		Each	chart	(process)	has	its	own	set	of	data	inputs,	outputs	and	local	data	structure.		
The	data	from	one	chart	is	not	accessible	directly	from	within	another	chart.	But	Simulink	busses	are	used	
to	make	data	available	between	the	charts.	
	
The	Token	Requestor	 process	 forwards	 the	 LUKs	 to	 the	 Payment	 Transaction	 process.	 	The	 payment	
transaction	process	provides	 the	verification	 logs	 to	 the	Account	Management	process	and	 the	Account	
Management	provides	the	account	parameters	to	the	Payment	Transaction	process.	
	
Figure	25	shows	further	detail	on	the	Simulink	busses	(i.e.	signals)	connecting	the	three	processes	together.		

 Data	and	Structures	
	
Data	in	Simulink	‘travels’	by	means	of	signals.		A	signal	resembles	a	variable	or	a	condition	in	the	mobile	
wallet	app.		When	signals	are	grouped	together	they	form	a	Bus.		A	Bus	resembles	a	structure	of	data	or,	to	
an	extent,	a	class	since	the	signals	in	a	Bus	resemble	the	variables	or	properties	of	a	class	or	data	structure.		
Certain	busses	in	the	model	also	feature	‘nested	busses’	which	is	again	similar	in	notion	to	that	of	a	nested	
class	or	nested	structure.		For	the	purpose	of	this	project	the	term	data	structure	is	used	but	essentially,	in	
Simulink,	this	is	modelled	as	a	Simulink	Bus.	
	
One	important	concept	which	differentiates	a	signal	from	a	variable	is	the	fact	that	a	signal	is	expected	to	
vary	in	time.		This	means	that	a	signal	is	made	up	of	a	2	dimensional	array	comprising	of	a	value	and	a	time	
value.		([Value1,	Time1],	[Value2,	Time2],	[Valuen,Timen]).			
	
In	the	model	developed,	all	the	data	that	is	fed	into	the	model	is	considered	as	‘constant’	and,	as	such,	the	
data	is	only	initialized	once	prior	to	running	the	model.	 	The	data	is	then	fed	into	the	stateflow	chart	as	
input	data.		Data	and	data	structures	that	the	model	will	process	and	vary	during	runtime	is	copied,	during	
the	initialization	state	(or	in	other	specific	states	if	required),	into	a	local	data	structure	or	an	output	data	
structure.		Input	data	structures	are	read	only	while	local	and	output	data	is	read/write.	
	
Figure	19	summarises	the	bus	names	and	whether	these	sweep	data	as	an	Input,	an	Output	or	Local	data.	
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Annotation:		 I	=	Input,	O=	Output,	L	=	Local	
	

Bus	Name	 Description	
Payment	

Transaction	
Account	

Management	
Token	

Requestor	
Account_Data	 A	structure	holding	all	the	data	related	to	

an	account	(card).			
I,L	 	 I,	L	

Mobile_Device	 A	 structure	 holding	 data	 related	 to	 the	
mobile	 device,	 its	 conditions,	
configuration,	etc.	

I,	L	 	 I,	L	

PDOL	 An	EMV	standard	structure.		The	structure	
is	data	provided	by	the	POS	to	the	mobile	
device.	

I	 	 	

Issuer_Update	 A	 structure	 holding	 data	 used	 during	
issuer	 update	 processing.	 	 An	
Issuer_Update	 structure	 is	 tied	 to	 an	
account	

I,L	 	 	

Transaction_	
Verification_	
Log	

A	Visa	standard	used	by	the	mobile	device	
to	hold	a	 log	of	all	 the	 transaction.	 	The	
structure	 is	 then	 used	 as	 a	 decision	
mechanism	 to	 update	 account	
parameters.		

O	 I	 	

LUK_Database	 A	structure	holding	the	Limited	Use	Keys	
of	a	specific	token.	

I	 	 O	

Account_	
Parameters	

Used	 to	store	keys	related	 to	an	account	
along	with	 thresholds	 and	 configuration	
for	risk	management.	
The	structure	 is	essentially	an	extension	
to	Account_Data	structure.	

I	 I,L,O	 	

Token_Data	 A	structure	that	holds	the	data	related	to	
tokenisation	for	a	particular	account	

	 	 L	

Figure	19	–	InputOutput	Model	

 State	Enumeration	
	
In	order	to	have	an	audit	trail	in	which	state	position	each	of	the	three	processes	operate,	an	enumeration	
class	has	been	created	 for	each	of	the	three	processes.	 	The	class	simply	defines	each	of	 the	state	 in	an	
enumeration.	Enumeration	is	used	to	facilitate	the	understanding	of	the	respective	process	to	a	user.		
	
During	the	execution	of	the	model	by	the	compiler,	each	chart	has	an	output	displaying	the	enumeration	as	
a	means	of	visual	to	a	user	showing	the	state	each	process	is	currently	in.	The	enumeration	for	each	state	
process	is	being	shown	in	Figure	20.	
	
	
Payment	Transaction	Enumeration	–	Example:	
	

	
	
	
	
	
	

Enumeration:	
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Account	Management	Enumeration	–	Example:	
	

Enumeration:	
	

	
	
	
Token	Requestor	Enumeration	–	Example:	
	

	
	

Figure	20	–	Current	State	Output		

 Connective	Junction	
	
The	connective	junction	is	used	to	split	the	flow	of	a	transition	into	different	paths.		This	is	similar	to	an	“If	
then	 else”	 decision.	 	When	 a	machine	 is	 required	 to	 transition	 from	 one	 state	 to	multiple	 states	 the	
connective	junction	is	used	to	decide	(based	on	conditions)	to	which	state	it	will	transition.	Transitions	also	
have	 priorities.	 From	within	 a	 connective	 junction	 conditions	 are	 evaluated	 according	 to	 the	 priority	
(defined	in	numbers	with	1	being	highest	priority).	
	

	

	

	

	

 Payment	Transaction	Process		
	
The	payment	transaction	process	handles	all	the	processing	done	by	the	mobile	device	from	the	point	when	
the	mobile	is	tapped	on	a	POS	until		the	transaction	is	complete	whether	approved	or	declined,	including	
the	possibility	of	a	2nd	tap	used	for	Issuer	update	processing.		The	total	transaction	time	shall	not	exceed	
the	500	milliseconds	(i.e.	0.5	seconds)	[130].		
	
The	Payment	Transaction	Process	chart	has	37	finite	states	representing	all	the	states	the	mobile	device	
could	be	in	during	a	payment	transaction.		This	payment	transaction	process,	throughout	execution,	is	also	
responsible	for	updating	counters	and	the	verification	log	used	in	the	account	management	model.			

Enumeration:	
	
	
	
	

Figure	21	–	Connective	Junction	Example	
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The	main	‘flow’	of	this	process	starts	with	the	user	tapping	the	mobile	phone	on	the	POS.		The	mobile	then	
communicates,	via	NFC,	with	the	POS	up	until	when	the	POS	sends	the	PDOL	data.		An	explanation	of	the	
sequential	steps	can	be	traced	below	in	Figure	22:	
	

	

Figure	22	–	Initiation	of	Payment	Transaction		

The	POS	will	then	provide	a	specific	command	(i.e.	GPO)	which	sends	the	flow	to	either	a	payment	or	a	
second	tap	(i.e.	External	Authenticate	command/Issuer	Update	command).	If	a	payment	is	being	processed	
then	 the	 flow	 is	 split	again	between	an	MSD	payment	 and	a	qVSDC	payment.	 These	are	 the	2	options	
supported	for	a	Visa	transaction.	Further	information	on	the	differences	between	these	2	options	can	be	
traced	in	[148].		The	GPO	command	through	the	Terminal	Transaction	Qualifier	(TTQ)	tag	indicates	which	
mode	is	to	be	selected.		
	
After	 this	stage,	 the	POS	and	 the	Mobile	device	will	agree	on	a	Cardholder	Verification	method	and	 the	
payment	transaction	will	proceed	with	the	mobile	generating	the	signature	for	ODA12,	the	IAD13	and	the	
Application	Cryptogram.		This	data	is	then	transferred	to	the	POS	through	a	series	of	read	records	initiated	
by	the	POS.		If	the	POS	and	the	mobile	device	agree	to	use	CDCVM14	then	the	mobile	must	ensure	that	the	
cardholder	has	been	 already	 verified	 and	 if	not	 ask	 the	user	 to	 go	 through	 the	CDCVM	of	 choice	 (e.g.	
fingerprint).		The	model	does	not	cover	which	method	and	how	such	method	is	implemented	but	one	state	
is	declared	where	CDCVM	occurs.			
	
The	model	supports	cryptogram	generation	for	both	with	and	without	tokenisation.		The	algorithm	used	to	
generate	 the	 cryptogram	 and	 the	 data	 used	 is	 outlined	 in	 Figure	 17.	 	 The	 difference	 between	 using	
tokenisation	and	not	using	tokenisation	is	in	the	LUKs	used.		In	case	tokenisation	is	used	then	the	LUK	is	
obtained	 from	 the	 token	 requestor	while	 if	no	 tokenisation	 is	used	 then	 the	LUK	 is	obtained	 from	 the	
Account	Management	process	through	the	Visa	Cloud	Platform.	 	Furthermore	 if	no	 tokenisation	 is	used	
than	the	PAN	is	used	instead	of	the	tPAN.	 	
	
At	 the	 end	 of	 a	 transaction	 the	 payment	 transaction	 process	will	 update	 the	 respective	 counters	 and	
transaction	verification	log.			As	part	of	the	processing	within	the	payment	transaction	process,	this	model	
will	also	 issue	a	command	to	the	Token	Requestor	process	requesting	to	replenish	the	LUKs	with	every	
transaction.	 	 In	 a	 practical	 implementation,	 a	 set	 of	 keys	 are	 downloaded	 for	 a	 token	 and	 these	 are	
replenished	once	depleted,	but	in	this	model	it	 is	assumed	that	only	one	key	is	downloaded,	stored	and	
replenished.	 	This	 does	 not	 affect	 the	model	 from	 a	 security	 analysis	 point	 of	 view.	At	 this	 stage,	 the	
transaction	is	now	complete.			
	
For	a	detailed	analysis	refer	to	Figure	26,	which	illustrates	a	diagram	of	the	Payment	Transaction	process.	
	

																																																																				
12	Offline	Data	Authentication	
13	Issuer	Application	Data	
14	Consumer	Device	Cardholder	Verification	Method 
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4.3.5.1 CDCVM	
	
The	CDCVM	process	starts	after	the	mobile	device	receives	the	GET	PROCESSING	OPTIONS	command.		The	
mobile	application	uses	the	PDOL	data	obtained	from	the	terminal	and	its	internal	preference	settings	to	
decide	on	using	CDCVM	for	Cardholder	Verification.		If	this	is	the	case,	the	mobile	checks	to	see	if	CDCVM	
has	been	already	performed.		If	CDCVM	has	already	been	performed	then	the	mobile	will	update	the	CTQ	
and	CVR	data	 structures	and	progress	with	 the	 transaction,	 eventually	generating	 the	 cryptogram	and	
providing	the	data	through	a	series	of	read	records	commands.	
	
If	CDCVM	 is	not	yet	performed	 the	mobile	device	responds	 to	 the	GPO	command	with	a	6986	message	
indicating	 to	 the	 terminal	 that	 the	mobile	 device	 is	 not	 a	 ready	 to	 pay	 state.	 	 At	 this	 point	 the	NFC	
communication	with	the	terminal	is	terminated	and	the	mobile	application	instructs	the	user	to	perform	a	
CDCVM	(e.g.	fingerprint	scan).		When	CDCVM	is	ready,	the	mobile	application	asks	the	user	to	re-tap	the	
phone	on	 the	 terminal	and	 the	whole	process	will	start	again	 from	 the	beginning.	 	This	 time	when	 the	
mobile	receives	the	GPO	command,	it	will	decide	to	use	CDCVM	but	it	would	have	been	provided	and	hence	
it	will	progress	with	the	transaction	instead	of	asking	the	user	to	do	a	CDCVM.

4.3.5.2 Issuer	Update	
	
Issuer	update	is	performed	in	a	2nd	tap.		After	a	payment	is	made,	the	terminal	informs	the	cardholder	to	
tap	the mobile for a second time15.	 The first part	of the 2nd Tap	is the same process as that	used	during a
payment	 transaction	 but	 instead	 of	 issuing	 the	 GPO	 command	 the	 reader	 issues	 the	 EXTERNAL	
AUTHENTICATE	 command.	 The Mobile device then verifies that this is	 the first external authenticate
request	 received	 after	 the	 payment	 and	 generates	 a	 cryptogram	 from	 the	 ARPC	 and	ARQC	 in	 the	 last	
payment.	 	This	cryptogram	should	match	the	ARPC	sent	by	the	Issuer	during	the	External	Authenticate	
process.		In	this	operation	the	mobile	device	authenticates	the	Issuer,	ensuring	that	the	request	is	coming	
from	the	genuine	Issuer	rather	than	a	fraudster	trying	to	run	a	script	in	the	mobile	wallet	application.	
	
If	the	authentication	fails	the	Mobile	Device	responds	to	the	reader	with	a	6985	or	6300	response	indicating	
that	this	is	not	the	first	external	authenticate	request	or	the	Issuer	Authentication	failed	respectively.		
	
Finally,	if	the	authentication	of	the	Issuer	is	successful	the	application	counters	are	reset	and	if	provided,	
the	Issuer	script	is	run	or	interpreted.		The	Issuer	script	is	a	set	of	commands,	set	by	the	Issuer,	to	provide	
the	ability	to	the	Issuer	to	update	and	modify	the	parameters	of	the	mobile	application.			

 Token	Requestor	Process	
	
The	Token	Requestor	is	typically	situated	in	a	TEE	or	in	the	Cloud.	However,	other	locations	have	also	been	
specified	in	the	EMV	Payment	Tokenisation	Specification	[25].		
	
The	Token	Requestor	manages	tokens	on	behalf	of	the	HCE	wallet	App.		It	is	important	not	to	mix	up	the	
Token	Requestor	with	the	Token	Service	Provider.		A	Token	Requestor	is	unable	to	generate	tokens	and	it	
can	only	obtain	Tokens	 from	the	TSP.	 	The	 functions	of	the	token	requestor	processes	 in	the	model	are	
listed	below:	

 Provision	new	token/s	for	an	account	upon	enrolling	an	account	with	the	TSP.	
 Safely	store	the	UDK	in	a	token	vault	for	a	token	and	generate	LUKs	with	that	UDK	for	particular	

tokens.	
 Download	the	LUKs	on	the	Mobile	Device	according	so	some	risk	rules	e.g.	setup	a	rule	limiting	the	

maximum	number	of	tokens	that	can	be	added	to	different	devices	for	the	same	card/PAN.	

																																																																				
15 This	is	different	from	the	2nd	Tap	used	during	CDCVM 
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 Manage	the	state	of	the	token	for	cases	such	as	when	a	device	is	lost,	card/account	no	longer	valid,	
payment	card	expired	and	is	replaced.	

 Request	additional	cardholder	verification,	through	the	step-up	authentication	mechanism,	prior	
to	activating	a	token	or	at	some	point	defined	by	a	specific	risk	management	ruleset.		

The	Token	Requestor	makes	use	of	some	account	data,	which	is	passed	securely	from	the	Mobile	Device	to	
the	Token	Requestor.		The	provisioned	token	corresponds	to	a	valid	PAN.	Once	account	data	is	available,	
the	token	requestor	will	ask	the	Token	Service	Provider	to	provision	a	token	and	it’s	UDK.		These	are	stored	
securely	in	a	token	vault.	The	token	requestor	will	then	generate	LUKs	and	download	the	LUKs	onto	the	
mobile	device.		It	will	also	manage	the	state	of	the	token	including	the	possibility	of	suspending	the	token	
if	the	device	is	stolen,	deleting	the	token	or	resuming	it.		A	token	is	put	into	a	suspended	state	if	there	is	a	
possibility	of	finding	a	lost	or	stolen	device	without	the	token	being	compromised.		If	the	device	is	declared	
permanently	 lost	then	the	token	 is	deleted.	 	If	 the	device	 is	 found	then	 the	 token	 is	resumed.	Figure	27	
illustrates	a	diagram	of	the	Token	Requestor	process.	
	
The	model	allows	for	only	one	LUK	to	be	provisioned	on	the	mobile	wallet	(in	the	payment	transaction	
process).		The	model	replenishes	the	LUK	after	each	transaction.			While	this	configuration	is	valid,	typically	
TSPs	provide	a	combinations	of	counters	and	limits	as	an	indication	to	replenish	the	LUK.	Figure	23	below	
consists	of	a	LUK	Configuration	provided	by	VISA	[29]	for	Android	Pay.		Such	configurations	vary	according	
to	the	respective	country.	In	such	a	configuration	the	LUK	has	to	be	replenished	after	15	days	or	after	15	
transactions,	whichever	comes	first.	
	

	 LUK	Parameters	

Issuer	
available
values	for	
current	

STIP	
Values	
for	
Current	

Issuer	
available	
Valid	
values	for	
previous	

STIP	
Values	
for	
Previous	

Comments	

	

Must	 be	 the	
same	 across	
Wallets	

TTL	 15	days	
Time	 to	 live	 in	 days	 after	 which	
replenishment	will	be	triggered	from	
the	device	

Number	 of	
Transactions	
(NOT)	

15	transactions	 NOT	after	which	replenishment	will	
be	triggered	from	the	device	

Figure	23	–	LUK	Configuration	provided	by	VISA	for	Android	Pay	[29]	

4.3.6.1 Enrolment	
	
The	enrolment	process	starts by	first	enrolling	the	device.		During	this	processes	the	TR	register	the	device,	
specifically	the	wallet	application,	and	from	then	onwards	it	will	use	this	information	to	authenticate	the	
mobile	device	when	it	attempts	to	communicate	with	the	TR.		The	next	step	is	for	the	user	to	enrol	a	PAN	
(credit	card).		This	is	done	through	the	Enrol_PAN	state	at	which	point	the	mobile	device	will	initiate	the	
step-up	authentication	mechanism.		The	model	supports	2	types	of	mechanisms:	

 Using	the	mobile	banking	app	as	authentication.	
 Through	an	OTP	provided	by	the	Issuer.	

	
If	the	mobile	banking	app	is	used,	then	the	application	transfers	to	the	mobile	banking	app	and	the	response	
from	the	mobile	banking	app	will	stipulate	whether	the	card	holder	has	been	verified	or	not.	 	If	an	OTP	
password	is	used	then	the	TR	will	ask	the	Issuer	to	issue	a	OTP	to	its	cardholder.	 	The	application	then	
provides	a	way	for	the	cardholder	to	enter	the	OTP.		If	the	OTP	matches	the	OTP	sent	by	the	Issuer	then	the	
cardholder	is	verified.	 	If	all	this	is	successful	then	the	TR	is	provided	with	the	token	data	from	the	TSP.		
This	includes	a	tPAN	and	its	UDK.		The	tPAN	is	passed	over	to	the	device	while	the	UDK	is	safely	stored	in	
the	token	vault.			
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4.3.6.2 LUK	Provisioning	on	the	Mobile	Device	
	
Once	a	PAN	is	enrolled	and	a	token	(tPAN	and	UDK)	is	obtained,	the	next	step	is	to	provision the	Limited	
Use	Keys	for	that	particular	tPAN.		Note	that,	in	terms	of	HCE,	the	token	stored	in	the	TR	is	a	tPAN	and	UDK,	
while	the	tokens	provisioned	on	the	mobile	device	are	tPAN	and	LUK.			
	
The	provisioning	starts	by	the	mobile	device	indicating	to	the	TR	that	a	token is	required.		This	will	put	the	
TR	into	the	provision	token	state.		The	TR	will	generate	a	LUK	using	the	UDK	and	the	tPAN	and	send	the	
LUK	along with	other	information	to	the	mobile	device.		The	TR	also	provides	mechanisms	to	manage	the	
token	after	it	is	issued	including	the	option	to	Delete,	Suspend	and	Resume	a	token.		

 Account	Management	Process	
	
The	Account	Management	process	handles	the	replenishment	of	keys	required	when	tokenisation	is	not	
used.	 	 	Tokenisation	 is	not	 a	 ‘mandatory’	 requirement,	however	 it	 is	 considered	as	a	good	practice	by	
industry	experts	to	be	implemented.			If	tokenisation	is	not	used	then	LUK	are	issued	for	a	PAN	through	the	
VISA	Cloud-Based	Payments	Platform.			
	
Visa	provides	guidelines	and	methods	to	provision	LUKs	used	to	generate	cryptograms	during	transactions.		
These	LUKs	are	‘tied’	to	the	PAN	of	a	specific	card	and	hence	if	a	device	is	lost	or	stolen	a	user	cannot	simply	
change	the	PAN	as	is	done	with	a	tokenized	PAN	hence	the	only	option	is	to	reissue	a	new	card.		The	LUKs	
do	not	need	to	be	replenished	with	every	transaction	and	specific	risk	management	is	applied	and	based	
on	certain	thresholds,	these	keys	are	replenished,	depending	on	the	rules	configured.	
	
The	 Account	 Management	 process	 uses	 the	 transaction	 verification	 log	 provided	 by	 the	 Payment	
Transaction	to	run	the	rules	as	part	of	risk	analysis	process	and	decide	on	when	to	replenish	the	keys.		The	
keys	are	then	provided	back	to	the	Payment	Transaction	process	to	generate	the	cryptogram.		The	“where”	
and	the	“how”	these	LUKs	are	stored	are	outside	the	scope	of	this	model	but	in	practical	implementations	
these	should	be	stored	in	a	TEE	environment.			

4.3.7.1 LUK	Management	
	
The	main	function	of	the	Account	Management	is	to	replenish	LUKs	when	these	expire.		As	shown	above	
this	is	based	on	a	number	of	factors	including	time,	transactions,	total	amount	of	transactions	etc.		This	risk	
analysis	 logic	was	 developed	 in	 a	Matlab	 function	 (i.e.	 Check	Account	 Parameters	 Limits),	which	was	
appended	using	a	connection	point	to	this	model.	This	function	is	fed	data	from	the	Account	Management	
process	and	provides	back	a	Boolean	signal,	indicating,	when	the	LUKs	require	replenishment.		The	Boolean	
signal	is	used	to	transition the	model	into	the	replenishment	state.	This	is	being	illustrated	in	Figure	24.		
	
When	new	LUKs	are	required,	the	mobile	device	will	go	into	the	replenish	account	parameters	state	where	
it	will	communicate	with	the	VISA	Cloud-Based	Payments	Platform	to	download	new	LUKs.	 	During	this	
interaction	it	will	provide	the	Transaction	Verification	Log,	which	is	compiled	at	the	end	of	each	payment	
transaction.		This	transaction	log	and	the	LUK	itself	is	used	to	authenticate	the	mobile	device	with	the	VISA	
Cloud-Based	Payments	Platform.		If	replenishment	is	successful	the	mobile	device	clears	the	counters	used	
in	 the	 risk	analysis	above	and	 the	new	LUK	will	be	used	 to	generate	 the	cryptograms	during	payment	
transactions.			
	
Furthermore,	the	Account	Management	process	is	being	illustrated	in	Figure	28.			
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Figure	24	–	Limit	Checking	as	a	MATLAB	Function	in	Simulink	
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Figure	25	–	Mobile	Device	Model	Chart	
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Figure	26	–	Payment	Transaction	Process	

	

	

													Note:	 	The	connectors	are	only	used	in	the	word	document	due	to	the	limitation	that	the	model	does	not	fit	into	one	page 	
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Figure	26	–Payment	Transaction	Process	(continued)	
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Figure	26	–Payment	Transaction	Process	(continued)	
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Figure	27	–	Token	Requestor	Process	

	
	

	
	 	



71	
	

Figure	28	–	Account	Management	Process	
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5 Security	Analysis	of	an	HCE	Payment	Transaction	
	
In	 this	 chapter,	an	analysis	of	 the	models	developed	 in	Chapter	4	was	performed.	The	purpose	of	 the	
analysis	entails	studying	the	model	states	thoroughly	and	trying	 to	determine	risks	associated	with	 the	
following	 areas:	 customer	 verification	 and	 authentication	 methods,	 tokenization	 and	 the	 impact	 in	
operating	 cryptographic	 functions	 and	 storing	 cryptographic	 keys,	 required	 during	 an	 HCE	 payment	
process,	on	a	mobile	device.	Following	 the	 identification	of	 the	 risks,	possible	countermeasures,	where	
possible,	were	identified.	A	summary	of	the	high	level	risk	assessment	is	provided	in	Section	5.5.		

5.1 Security	 analysis	 of	 customer	 verification	 and	 authentication	
techniques	when	employed	in	HCE	payments	

	
In	Section	3.2.3	several	weaknesses	in	cardholder	verification	methods	have	been	identified.		This	section	
provides	an	analysis	of	possible	risks	and	weaknesses	in	the	implementation	of	these	methods	used	during	
HCE	payment	transactions	and	account	management procedures.		While	traditional	CVM	methods	are	still	
possible	with	HCE	 this	analysis	was	 focused	on	CDCVM	whereby	 the	mobile	device	 is	used	 to	provide	
cardholder	verification	independent	of	the	POS	for	high	value	transactions.	
	
The	acceptance	of	CDCVM	goes hand	in	hand	with	its	ability	to	provide	the	same	fraud	prevention	provided	
by	traditional	methods	like	PIN	authentication.		It	has	been	calculated	that	$0.027	per	transaction	are	lost	
to	fraud	in	signature	based	transactions	while	only	$0.005	per	transaction	are	lost	to	fraud	in	PIN	based	
transactions	[156].		This	is	why	PIN	authentication	gained	significant	acceptance	and	hence	it	is	important,	
for	CDCVM	to	provide,	at	least,	the	same	fraud	prevention	capabilities	of	PIN	based	authentication	to	gain	
acceptance	by	all	stakeholders	in	the	industry.	

 Authentication	vs	Verification	
	
In	security	analysis,	verification	and	authentication	are	marginally	different.	Verification	 is	obtained	by	
verifying	 something	 the	 cardholder	 has,	 for	 example	 a	 national	 identity	 card	 or	 a	 finger	 print.			
Authentication	takes	verification	to	the	next	level	by	challenging	the	cardholder	in	providing	information	
that	the	cardholder	only	should	know,	example	a	pin	or	password.			To	an	extent	this	is	the	reason	why	PIN	
(i.e.	authentication)	provides	better	fraud	prevention	than	signature	(i.e.	verification).			
	
CDCVM	allows	different	methods	to	be	used.		The	list	below	identifies	and	classifies	some	of	these	methods	
under	authentication	or	verification:	

 Fingerprint	–	the	fingerprint	is	something	the	customer	has	hence	it	falls	under	verification.	
 Password/Pin	–	something	the	customer	knows	hence	it	fall	under	authentication.	
 Selfie	Biometric	–	something	the	customer	has	hence	it	falls	under	verification.	

It	is	the	author’s	opinion	that	this	could	be	 ‘a	step	backward’	when	dealing	with	fraud	since	some	of	the	
methods	are	verification	rather	 than	authentication.	 	 In	Section	3.2.3,	 it	has	already	been	outlined	 that	
several	 of	 the	methods	 above	 have	 been	 shown	 to	 be	weak	when	 compared	 to	 a	 PIN	 or	 Password.		
Furthermore,	it	is	also	important	to	note	that	a	password/PIN	can	be	changed	in	case	it	is	breached	but	a	
fingerprint	or	selfie	is	something	the	cardholder	cannot	change.	

 Verification	of	the	POS	during	a	two	tap	transaction	
	
To	utilize	CDCVM,	a	two	tap	approach	can	be	used.	 	The	cardholder	taps	the	mobile	on	the	POS	at	which	
point	the	POS	and	the	mobile	device	decide	that	CDCVM	will	be	used	and	the	mobile	will	ask	the	cardholder	
to	go	through	the	CDCVM	process.			After	successful	verification,	the	customer	will	re-tap	the	mobile	device	
to	proceed	with	 the	payment.	 	The	 analysis	 below	 identifies	 a	weakness	which	 can	 be	 exploited	by	 a	
fraudster	to	aid	in	bypassing	the	authentication	mechanism.	
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1st	Tap	
	
Figure	29	below	shows	 the	communication	between	 the	mobile	device	and	 the	 reader	up	 to	when	 the	
reader	sends	the	Get	Processing	Options	command	to	the	mobile	device.	 	The	following	is	a	step	by	step	
process	of	the	communication	that	occurs	in	the	1st	Tap:	

1. The	mobile	device	receives	the	AID	from	the	reader	and	starts	the	HCE	Wallet	App.	
2. The	mobile	device	request	the	PDOL	content	it	requires	from	the	reader.	
3. The	reader	passes	the	PDOL	data	through	the	Get	Processing	Options.	
4. The	mobile	device	will	determine,	based	on	the	PDOL,	that	the	transaction	will	be	authenticated	

using	CDCVM.		The	mobile	then	checks	to	see	if	it	has	already	obtained	a	CDCVM	from	the	user:	
a. If	 it	 has	 obtained	 a	 CDCVM,	 the	 transaction	 will	 proceed	 as	 usual	 with	 the	 mobile	

generating	the	cryptogram	and	eventually	sending	the	cryptogram	along	with	other	data	
through	a	series	of	read	record	commands.	

b. If	it	does	not	yet	have	a	CDCVM	approval,	it	will	send	a	6986	status	response	 to	the	get	
processing	options	command	[150],	indicating	to	the	reader	that	the	mobile	device	is	not	
in	‘ready	to	pay’	state.			The	mobile	device	will	indicate	to	the	user	to	make	a	CDCVM	and	
afterwards	ask	the	user	to	re	tap	the	mobile	device	on	the	POS.	
	

	

Figure	29	–	Payment	transaction	flow	using	the	Two	Tap	approach	

	
It	is	important	to	note	that	up	to	the	GPO	command	the	mobile	device	would	have	only	received	the	PDOL	
data	from	the	POS.			The	PDOL	content	is	shown	below	in	Figure	30.		The	mobile	device	is	not	required	to	
request	all	the	‘Tags’	but	for	the	purpose	of	this	analysis	we	assume	all	the	data	is	requested.		
	

Tag	 Length	 Data	Element	Name	
9F66	 4	bytes	 Terminal	Transaction	Qualifiers	(TTQ)	
9F02	 6	bytes	 Amount,	Authorised	
9F03	 6	bytes	 Amount,	Other	
9F1A	 2	bytes	 Terminal	Country	Code	
95	 5	bytes	 Terminal	verification	Results	(TVR)	
5F2A	 2	bytes	 Transaction	Currency	Code	
9A	 3	bytes	 Transaction	Date	
9C	 1	byte	 Transaction	Type	
9F37	 4	bytes	 Unpredictable	Number	

Figure	30	–	PDOL	Content	[130]	
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2nd	Tap		

When	the	mobile	is	presented	the	second	time	on	the	POS	(after	a	successful	cardholder	verification)	the	
transaction	will	follow	a	standard	flow	[150].	 	The	mobile	device	can	verify	that	the	PDOL	content	is	the	
same	as	the	original/initial	tap,	received	in	Figure	29	above,	before	proceeding	with	the	transaction.	All	the	
data,	including	the	amount	authorized,	should	not	change	in	the	second	tap	but	it	is	important	to	note	that	
the	unpredictable	number(i.e.	UN)	will	change	as	otherwise	this	would	make	the	UN	predictable	and	prone	
to	other	forms	of	attacks	such	as	relay	attacks.			
	
Possible	Risk:		
Consider	 this	 scenario.	Let	us	 assume	 that	 a	 fraudster	manages	 to	 get hold	of	 a	 stolen	mobile	device.		
Consider	that	the	CDCVM	in	the	mobile	device	uses	a	fingerprint	authentication	method	and	the	fraudster	
has	a	way	of	replicating	the	fingerprint	of	the	legitimate	owner	[126].			It	would	not	be	ideal	for	the	fraudster	
to	use	this	method	in	a	shop	as	the	shop	attendant	would	easily	spot	the	attempted	fraud.		Therefore	the	
fraudster	needs	to	‘execute’	the	authentication	method	prior	to	visiting	the	shop.				

1. The	fraudster	visits	the	target	shop	and	uses	another	rogue	phone	to	buy	a	low	value	item.	 	The	
transaction	 is	approved	but	 the	 rogue	phone	 records	 (i.e.	 sniffed)	all	 the	NFC	 communication.		
Hence	the	fraudster	knows	the	PDOL	data	that	a	particular	POS	in	the	shop	will	provide	apart	from	
the	UN,	the	amount	authorized	and	the	date.			

2. The	fraudster	creates	a	reader	device	using	a	laptop	and	NFC	transceiver	that	is	able	to	mimic	the	
reader	 at	 the	 shop.	 	 The	 reader	will	 provide	 a	 copy	 of	 the	 PDOL	 recorded	 previously	with	 a	
particular	amount	and	date.		The	date	is	adjusted	to	the	date	the	fraudster	will	visit	the	shop	and	
the	amount	is	set	to	a	high	value	item	in	that	shop.	

3. The	fraudster	will	put	the	stolen	device	on	the	rogue	reader	at	which	point	the	stolen	mobile	device	
will	ask	for	a	CDCVM.		The	fraudster	can	now	utilize	a	known	method	to	circumvent	the	CDCVM	
method	at	his	own	pace	and	in	a	private	setting	(e.g.	in	a	car).		For	example,	a	fingerprint	could	be	
lifted	off	a	personal	item,	replicated	and	then	carefully	re-introduced.	

4. After	successful	CDCVM	the	fraudster	will	immediately	visit	the	shop	and	make	the	transaction	on	
the	targeted	POS	for	exactly	the	high	value	amount	provided	in	the	initial	PDOL.		The	mobile	would	
be	in	a	state	where	the	CDCVM	is	provided	and	approved,	the	amount	and	values	of	the	PDOL	match	
and	hence	the	mobile device	will	assume	this	is	the	2nd	Tap.		

Thus	this	shows	us	that	the	mobile	device	is	unable	to	identify	that	the	transaction	had	started	on	a	rogue	
POS	and	completed	on	another	legitimate	POS.	Since	the	PDOL	and	the	amount	matches,	the	mobile	will	
proceed	with	the	transaction.	Obviously	this	attack	relies	on	the	fact	that	the	CDCVM	is	circumvented	in	
some	way	but	the	fraudster	has	all	the	privacy	and	time	available	to	apply	the	technique	while	not	in	the	
shop.	For	example,	the	fraudster	can	use	a	photo	to	provide	CDCVM	for	a	selfie	biometric	in	a	car	while,	if	
the	fraudster	was	in	a	shop	this	would	immediately	be	spotted	as	fraud.		Furthermore,	the	fraudster	can	try	
the	CDCVM	more	than	once	until	it	is	successful	on	the	rogue	reader	if	the	mobile	device	does	not	have	a	
retry	limit.	

Possible	Countermeasure:	
For	security	purposes,	to	solve	this	issue,	another	unpredictable	number	(i.e.	not	related	to	the	UN	that	is	
used	to	generate	the	cryptogram)	should	be	used	and	provided	by	the	POS	to	identify	the	transaction.	This	
way	the	fraudster	would	need	to	know	this	number	prior	to	initiating	the	transaction. Using	the	UN	used	
for	the	generation	of	the	cryptogram	should	be	avoided	as	this	would	introduce	a	possibility	for	mounting	
relay	attacks	since	the	attacker	would	have	a	large	time	window	where	the	UN	could	be	relayed	to	obtain	a	
signature/cryptogram.		Furthermore	a	time	limit	should	be	introduced	such	that	a	second	tap	will	occur	
within	that	time	limit	(e.g.	1	minute).		This	means	the	fraudster	would	have	to	provide	a	CDCVM	within	1	
minute	of	the	initial	tap.			
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 Issues	of	PreAuthentication	
	
With	 CDCVM,	 the	 wallet	 developer	 can	 provide	 the	 option	 to	 the	 cardholder	 to	 provide	 a	 CDCVM	
authentication	before	the	mobile	is	tapped	on	the	reader	[150].	 	This	means	the	mobile	device	would	be	
authenticated	and	be	in	a	state	to	pay	(up	to	a	certain	limit	e.g.	€100)	prior	to	the	amount	of	the	transaction	
being	known	and	the	transaction	would	occur	in	a	one	tap.		If	the	amount	of	the	transaction	is	higher	than	
the	limit	then	a	two	tap	approach	will	be	used.	
			
Possible	Risk:		
Given	that	a	mobile	device	has	been	pre-authenticated	 it	 is	subject	to	a	relay	attack	even	on	high	value	
transactions.	 	Since	no	 feedback	or	authorization	 is	 required	 from	 the	 cardholder	during	 the	payment	
transaction	phase,	a	relay	attack	can	be	mounted	without	the	cardholder	providing	authentication,	as	it	
would	have	already	been	provided.	 	The	 technical	difficulties	 to	achieve a	 relay	attack	 still	apply	 (e.g.	
timing)	but	in	a	card	based	transaction	a	relay	attack	was	only	possible	for	transactions	that	did	not	require	
cardholder	authentication.		The	only	requirement	for	the	fraudster	is	to	have	access	to	a	mobile	phone	in	a	
‘ready	to	pay’	state.			This	is	essentially	an	open	cheque	up	to	a	specific	amount.	
	
Possible	Countermeasure:	
To	mitigate	this	risk,	pre-authentication	should not	be	allowed	at	all,	this	way,	during	a	transaction,	the	
user	is	required	to	provide	authentication,	hence	eliminating	the	possibility	of	a	relay	attack.	

Possible	Risk:	
With	a	pre-authentication	the	‘normal’	flow	is	altered	and	in	this	case	the	cardholder,	can	authorize	without	
even	knowing	the	amount.		Therefore	the	cardholder	is	expected	to	look	at	the	reader	prior	to	tapping	the	
mobile	device	to	be	sure	that	the	amount	one	is	paying	for	is	the	correct	amount.	There	is	a	risk	that	the	
user	overlooks	this	step	or	simply	ignores	the	reader	and	simply	taps	the	mobile	on	the	reader	without	
checking	the	correct	transaction	amount.		
	
Possible	Countermeasure:	
To	mitigate	 this	 risk,	wallet	 developers	 should	 need	 to	 implement	 a	 2nd	 tap	 approach	 even	 in	 a	 pre-
authentication.		The	user	would	first	provide	authentication	(CDCVM),	tap	the	mobile	devices	(i.e.	1st	Tap)	
on	the	POS	and	then	present	the	amount	to	the	user	on	the	screen.	 	 	The	user	makes	sure	the	amount	is	
correct	and	re-taps	(i.e.	2nd	tap)	the	device	on	the	POS.			This	would	ensure	that	the	cardholder	is	aware	of	
the	amount	one	is	about	to	pay	for.	
	
Possible	Risk:	
Pre-authentication	can	also	cause	issues	for	non-repudiation.		If	a	cardholder	provides	pre-authentication	
then	 the	 cardholder	 cannot	 be	 held	 accountable	 for	 the	 purchase,	 which	 happens	 afterwards.	 	 The	
cardholder	 can	 claim	 s/he	was	not	 aware	of	 the	 transaction,	because	he	would	have	 simply	provided	
authentication	beforehand.			

 Sharing	 the	 verification	 database	 between	 Mobile	 Device	 and	 Payment	
Application	

	
In	many	cases,	the	mobile	device	may	be	using	the	same	verification	method	to	authenticate	the	user	(e.g.	
Apple’s	Touch	ID	[118])	for	the	purpose	of	unlocking	the	phone.		Since	mobile	phones	can	be	used	by	more	
than	 one	 person	 (e.g.	mother	 and	 child)	 it	 is	 common	 for	 the	 user	 to	 enroll	 another	 person	 into	 the	
fingerprint	database	(or	database	of	a	particular	method).			
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Possible	Risk:	
If	the	payment	application	shares	the	same	database	than	the	other	person	other	than	the	owner	can	also	
authenticate	as	a	cardholder	and	make	a	transaction.		This	can	create	an	issue	of	unauthorized	payments 	
(i.e.	accountability)	and	also	an	issue	of	non-repudiation.			
	
Possible	Countermeasure:	
The	Issuer	should	explicitly	state	in	its	terms	and	conditions	that	the	cardholder	using	a	particular	device	
should	not	enroll	other	users	into	the	database.		Furthermore	the	cardholder	is	held	accountable	for	any	
transaction	performed	on	the	mobile	device.	

 Shift	of	control	from	Issuer	to	Wallet	App	Owner	
	
Prior	 to	 the	 introduction	of	mobile	devices,	 the	 Issuer	had	 full	control	over	 the	card	as	 the	cards	were	
personalized	and	configured	with	the	Issuer’s	specific	rules	despite	performed	by	the	‘card	perso	bureaus’.	
Thereby	the	Issuer	had	control	over	which	authentication	method	as	well	as	the	cardholder	verification	
method	priorities	to	be	used	with	a	certain	payment	card.		Under	the	HCE	model,	the	control	over	which	
authentication	method	is	used	is	passed	over	to	the	owner	of	the	wallet	application16.		In	certain	cases,	the	
app	is	developed	and	maintained	by	the	Issuer	but	in	other	circumstances	the	app	could	be	developed	and	
maintained	by	other	entities	(e.g.	Google	in	case	of	Android	Pay).			
	
As	shown	in	the	model	in	Section	4.3.5,	the	reader	indicates	to	the	mobile	device	which	method	the	reader	
supports	through	the	PDOL	–	TTQ	–	Byte	1.		The	mobile	device	then	provides	its	chosen	method	through	
the	CTQ	and	CVR	bytes.			
	
Possible	Risk:	
This	 could	 lead	 to	 a	 situation	where	 app	 developers,	 downgrade	 the	 authentication	method	 used	 for	
simplicity	(e.g.	mobile	pattern	over	PIN)	and	Issuers	are	unable	to	‘enforce	and	prioritize’	the	use	of	better	
methods.		Note	that	during	a	transaction	the	reader	is	unaware	of	the	priorities	of	the	Issuer	hence	it	cannot	
enforce	certain	method	over	another. 				

	
Possible	Countermeasure:	
The	Issuer	still	has	the	final	say	and	can	choose	to	decline	a	transaction	if	a	certain	authentication	method	
is	used.	 	However,	this	may	impact	the	financial	institution	business	revenues.	If	possible,	an	agreement	
should	be	reached	between	the	wallet	provider	and	 Issuer	to	 include	the	responsibilities,	 liabilities	and	
prioritized	preferred	methods.	

	
It	is	also	recommended	that	payment	schemes	such	as	VISA	should	be	able	enforce	a	prioritized	system	of	
CDCVM	methods	based	on	the	risk	appetite	of	the	Issuer.		The	app	developer,	subject	to	supporting	certain	
methods,	should	be	required	to	prioritize	one	method	over	the	other	to	minimize	risk	for	the	Issuer.		

5.2 Security	 analysis	 of	 the	 tokenization	 process	 used	 during	 an	 HCE	
payment	transaction	

	
The	analysis	of	 the	 tokenization	process	 in	 this	project	has	been	split	 into	different	sections.		The	 first	
section	deals	with	Token	Generation	 specifically	 the	 generation	 and	 provision	 of	 LUKs	 on	 the	mobile	
device.		The	advantages	and	disadvantages	of	storing	the	TR	in	the	cloud	versus	the	TEE	are	analysed.	Next	
the	enrolment	process	is	analyzed,	specifically	how	the	Issuer	authenticates	the	mobile	device.	In	the	next	
section,	the	risk	analysis	processes	of	the	TSP	was	studied.		During	risk	analysis,	the	TSP	calculates	a	value	
known	as	the	risk	assurance	level	and	in	this	section	possible	improvements	have	been	provided	to	the	risk	
analysis	calculation.	

																																																																				
16 An	Issuer	can	choose	to	decline	a	transaction	with	a	certain	method	but	if	the	issuer	supports	two	methods	A	and	B	
the	issuer	cannot	impose	A	having	a	higher	priority	over	B. 
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Tokens	 used	 for	 contactless	 payment	 transactions	 cannot	 be	 used	 elsewhere	 (e.g.	 in	 online	
payments).		Hence	the	next	section	dealt	with	further	improving	the	token	to	device	mapping	to	further	
ensure	that	tokens	assigned	to	a	device	are	used	within	that	particular	device	to	further	limit	the	portability	
of	the	token.		The	subsequent	section	was	dedicated	to	supply	and	demand	synchronization	between	the	
mobile	 device	 and	 the	 token	 requestor	 and	 finally	 in	 the	 last	 section	 issues	 pertaining	 to	 the	 use	 of	
tokenization	when	making	payments	 in	MSD	mode	were	 identified	and	possible	countermeasures	were	
provided.	

 Token	Generation	
	
As	shown	 in	Figure	17,	 the	TSP	generates	 the	 tPAN	and	 the	 tUDK.	 	These	are	 transferred	 to	 the	 token	
requestor	which	 in	turn	generates	 the	LUK	(Limited	Use	Keys)	 for	the	tPAN.	 	This	 is	why	the	system	 is	
labelled	as	a	‘static	token’	(i.e.	tPAN)	with	dynamic	cryptographic	keys	(i.e.	LUKs).	
	
The	Token	Requestor	 is	a	separate	entity	 from	 the	HCE	wallet	process	and	can	either	be	 located	 in	an	
environment	such	as	the	cloud	or	in	the	TEE	of	the	mobile	device.	From	a	model	point	of	view	there	is	no	
difference	whether	the	TR	is	stored	in	the	TEE	or	the	cloud.	

5.2.1.1 Token	Requestor	–	Cloud	
	
When	the	TR	is	in	the	cloud,	a	secure	link	between	the	TR	and	the	mobile Wallet	App	is	required.		This	is	
particularly	 important	during	enrolment.	 	 	VISA	does	not	specify	how	 the	PAN	 is	entered	but	methods	
include	using	 the	camera	of	 the	phone	by	 taking	a	photo	of	 their	card	or	 type	 their	card	details	on	 the	
application	or	direct	enrolment	through	their	mBanking	[157].	Using	the	camera	and	the	touchscreen	to	
capture	the	card	details	are	potentially	risky	as	the	camera	is	directly	accessible	at	an	application	layer.		
Other	‘security	related’	sensors,	such	as	the	fingerprint	sensor,	are	not	available	at	the	application	layer	but	
are	only	accessible	by	the	kernel	[158].		Given	that	VISA	does	not	specify	the	method	and	how	such	method	
is	implemented,	TRs	are	inclined	to	shift	as	much	processing	to	the	cloud	as	possible.		This	makes	it	easier	
for	the	TR	to	upgrade	and	maintain	the	system.		For	example,	if	the	PAN	is	enrolled	from	a	camera	capture	
then	it	could	be	possible	that	the	image	is	sent	over	the	secure	link	and	processed	at	the	TR’s	cloud	versus	
processing	the	image	on	the	mobile	device.		This	further	outlines	the	importance	of	the	secure	link	between	
the	mobile	device	and	the	TR.			

5.2.1.2 Token	Requestor	–	TEE	
	
When	the	TR	is	situated	in	the	TEE	then	a	secure	connection	is	required	between	the	TR	(i.e.	mobile	device	
TEE)	and	the	TSP	(i.e.	VISA	or	any	entity	acting	as	the	TSP).	 	This	connection	is	far	more	 ‘risky’	than	the	
connection	between	the	TR	and	the	mobile	device	in	the	Cloud	scenario	but	in	this	case the	TSP	declares	
the	type	of	communication	to	be	used	hence	this	is	tightly	‘defined	and	controlled’	by the	TSP.		The	reason	
this	connection	is	risky	is	because	the	TSP	will	pass	the	tUDK,	which	if	compromised	can	be	used	to	generate	
LUKs	which	would	compromise	the	whole	tokenisation	process.	
	
The	connection	between	 the	TEE	and	 the	HCE	Wallet	app	can	be	considered	as	secure	until	 the	mobile	
device	is	not	compromised	(e.g.	device	is	rooted).		The	information	contained	in	the	TEE	is	still	secure	but	
the	communication	between	 the	TEE	and	 the	Wallet	 app	would	be	vulnerable.	 	Hence,	communication	
between	 the	TEE	and	 the	Wallet	App	should	be	secured	 to	ensure	 that	no	 ‘eavesdropping	or	malware’	
process	could	steal	the	LUKs	transferred	between	the	TEE	and	the	Wallet	app.		To	further	ensure	security	
some	 implementations,	such	as	Android	Pay,	are	designed	to	not	allow	payments	if	the	device	is	rooted	
[159].	
	
	
	



78	
	

 Device	authentication	during	enrolment	
	
When	a	PAN	is	enrolled	within	a	wallet,	the	Issuer	or	even	a	TR	[157]	could	set	provisioning	rules	to	verify	
the	cardholder.	 	VISA	calls	this	process	 ‘Step-Up	Authentication’	[157]	and	provides	several	examples	of	
how	this	can	be	done	including	using	an	OTP	and	using	the	mobile	banking	app	of	the	Issuer.		This	processes	
is	outlined	in	the	model	in	the	Token	Requestor	Process	and	shown	in	Figure	27.				During	this	process,	the	
cardholder	verification	‘duty’	is	passed	from	the	Issuer	to	the	mobile	Wallet	app.		Once	a	PAN	is	enrolled	
with	the	TSP	and	verified,	the	wallet	will	verify	the	cardholder	during	the	payment	using	the	‘identity	data’	
provided	during	enrolment	with	the	TSP.	
	
Possible	Risk:	
The	 issue	with	 certain	methods	 is	 that	 the	mobile	wallet	 is	not	 an	 integral	part	of	 the	 authentication.		
Consider	a	situation	where	a	fraudster	has	access	to	a	credit	card	and	the	mobile	device	of	the	cardholder.		
The	fraudster	can	use	his/her	phone	to	enrol	the	card.		His	wallet	will	instruct	the	TSP	to	send	an	OTP	for	
enrolment	and	thereby	the	TSP	will	inform	the	Issuer	to	provide	the	OTP	to	the	cardholder	based	on	his/her	
registered	mobile	device	phone	number.		The	SMS	is	received	on	the	cardholder’s	mobile	device	and	the	
fraudster	simply	copies	the	OTP	on	his	device.		The	PAN	is	now	enrolled	and	from	then	onwards	s/he	is	in	
a	position	to	make	payments	through	tokens	that	are	mapped	on	the	PAN	of	the	victim.			This	risk	becomes	
a	major	problem	if	CDCVM	is	provided	and	the	cardholder	enters	his/her	fingerprint	during	enrolment	thus	
the	fraudster	can	simply	enrol	his/her	fingerprint	during	enrolment.		The	main	issue	of	this	risk	is	the	fact	
that	the	issuer	is	using	the	mobile	device	number	of	the	cardholders	as	a	means	of	verification	but	in	the	
end	the	issuer	is	not	verifying	that	the	card	is	enrolled	on	a	device	with	that	mobile	phone	number.	
	
Possible	Countermeasure:	
To	mitigate	this	risk,	the	mobile	device	should	become	an	integral	part	of	the	authentication,	specifically	
the	sim	card.		 If	the	Issuer	is	verifying	the	cardholder	using	the	cardholder’s	mobile	phone	number,	which	
is	globally	unique,	then	the	mobile	device	using	that	sim	card	should	be	the	only	device that	is	allowed	to	
enrol	that	particular	PAN	and	subsequently	receive	the	tokens	(LUKs)	for	that	PAN.		The	following	process	
identifies	a	possible	improvement	over	the	current	step-up	authentication:	

1. The	cardholder	starts	the	enrolment	on	the	Wallet	HCE	App.	
2. The	 App,	 reads	 the	 mobile	 phone’s	 SIM	 phone	 number	 and	 sends	 the	 number	 to	 the	 TSP.		

Subsequently	the	TSP	sends	this	number	to	the	Issuer	for	verification.	
3. The	Issuer	sends	back	an	OTP	but	the	OTP	is	a	key,	which	will	only	work	on	a	device	having	a	sim	

card	with	the	cardholder’s	phone	number	recorded	also	with	the	Issuer.			
4. This	OTP	key	 ‘checking’	happens	once	with	every	 transaction	and	 the	software	checks	 that	 the

phone	has	network	connectivity	to	ensure	that	the	sim	card	has	not	been	cloned.	
	
This	ensures	that	the	scenario	identified	does	not	happen,	and	secondly,	the	Wallet	verifies	that	the	phone	
being	used	 for	the	 transaction	belongs	to	the	cardholder	(i.e.	carries	a	SIM	with	the	cardholder’s	phone	
number).	
	
If	the	mobile	banking	app	is	used	as	an	authentication	mechanism,	then	this	is	considered	as	a	safe	method,	
being	that	the	mobile	banking	app	communicates	directly	with	the	HCE	Wallet	App,	as	long	as	the	Issuer	
provides	a	secure	way	to	ensure	the	mobile	banking	app	 is	only	used	and	 installed	on	the	cardholder’s	
device.	

 LUK	location	risk	analysis	
	
Once	the	LUK	is	‘replenished’	on	the	mobile	device	it	is	either	stored	within	the	HCE	wallet	App’s	memory	
or	in	the	TEE.		Storage	in	the	TEE	is	more	secure	than	the	wallet	application	but	not	all	devices	provide	a	
TEE	or	certain	devices	might	not	be	trusted	by	the	Issuer	or	simply	the	developer	of	the	wallet	app	decides	
not	to	use	this	storage	mechanism.			
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Possible	Risk:	
One	issue	that	was	noted	during	the	development	of	the	model	is	the	fact	that	the	TR	is	requested	to	provide	
information	about	how	the	token	(i.e.	tPAN	and	tUDK)	will	be	stored	[153]	(e.g.	in	the	cloud	or	TEE)	but	
there	is	no	requirement	for	the	TR	to	provide	information	on	where	the	LUKs	for	that	token	will	be	stored	
eventually.		Hence	a	TR	can	specify	the	cloud	as	storage	during	the	provisioning	of	the	token	but	eventually	
the	LUKs	are	stored	in	the	wallet	application.		This	means	that,	during	a	transaction,	the	location	of	the	LUK	
cannot	be	factored	in	during	risk	analysis	by	the	card	network	or	TSP.			

	
Possible	Countermeasure:	
During	enrolment	of	a	PAN	on	the	mobile	device,	the	mobile	wallet	app	provides	information	to	the	TR	of	
where	it	intends	to	store	the	LUKs	(i.e.	App	or	TEE).		The	TR	will	then	pass	on	this	information	to	the	TSP	
and	hence the	TSP	would	be	in	a	position	to	make certain	risk	analysis	based	on	the	storage	mechanism	
used	 when	 receiving	 a	 payment	 from	 that	 PAN.	 	 This	 is	 in	 line	 with	 EMV	 Payment	 Tokenisation	
Specification’s	Assigned	Assurance	Level	value17.		The	EMV	specification	refer	to	the	storage	of	the	Token	
at	 the	TR	 since	 it	 is	 the	TR	 that	 communicates	with	 the	TSP.	 	This	 should	be	updated	 to	 also	 include	
consideration	about	the	storage	of	the	LUK	on	the	mobile	device. 	

 Token	to	Device	Mapping		
	
During	a	transaction,	the	LUK	is	used	as	the	key	to	generate	the	transaction	cryptogram	which	is	passed	
over	for	authorization.			The	TSP	will	‘de	tokenize’	the	cryptogram	and	eventually	pass	it	over	to	the	Issuer	
for	authorisation.		This	process	is	no	different	from	a	regular	contactless	transaction	but	it	does	not	prevent	
a	fraudster	from	stealing	the	token	(tPAN	and	LUK)	and	using	it	elsewhere	for	low	value	payments	that	do	
not	require	online	authorization.	

	
Possible	Risk:	
The	issue	with	this	process	comes	from	the	fact	that	EMV	systems	have	been	designed	for	card	payments	
and	HCE	 has	 been	 ‘fitted’	 into	 the	 infrastructure.	 	 Tokens	 are	 in	 no	way	 ‘tied’	 to	 a	 device,	 during	 a	
transaction.	 	Even	if	a	unique	deviceID	is	passed	to	the	TR	during	enrolment,	it	is	not	passed	to	the	POS	
during	 a	 transaction	 and	 furthermore	 the	 TSP	 does	 not	 have	 information	 that	 ties	 a	 token	with	 this	
deviceID.		This	information	is	held	by	the	TR	and	hence	the	TSP	can	only	provide	assurance	of	a	valid	token	
but	cannot	provide	assurance	that	the	token	originated	from	the	cardholder’s	device	which	was	originally	
the	receiver	of	the	LUK	from	the	TR.		If	a	fraudster	manages	to	access	the	storage	within	the	wallet	app	and	
‘steal’	the	LUKs,	then	one	is	in	a	position	to	make	a	payment	from	another	device	and	the	TSP	is	unable	to	
identify	such	fraud.	

	
Possible	Countermeasure:	
To	mitigate	this	risk	the	TSP	should	have	access	to	a	unique	deviceID	from	the	TR.		This	will	allow	the	TSP	
to	 verify	 that	 the	 token	 came	 from	 the	 cardholder’s	 device.	 	 The	 deviceID	 could	 be	made	 up	 of	 an	
unpredictable	number	that	is	passed	as	part	of	the	cryptogram18/dynamic	CVV19	data.			This	way	a	fraudster	
would	be	unable	to	identify	it.		Hence	during	a	payment	transaction,	the	TSP	would	pass	the	deviceID	stored	
in	 its	 database	 to	 the	 Issuer	 and	 the	 Issuer	 can	 verify	 that	 the	 deviceID	 used	 to	 generate	 the	
cryptogram/dynamic	CVV	is	the	same	as	that	provided	by	the	TSP.		This	ensures	that	the	token	is	mapped	
to	the	device	and	in	case	the	token	was	stolen	or	moved,	it	would	be	unusable,	subject	that	the	deviceID,	a	
unique	number,	is	not	easily	guessed	or	stolen.			Currently	the	EMVCo	specification	allow	for	tokens	to	be	

																																																																				
17 The	Assigned	assurance	level	consists	of	a	baselines	that	is	an	integer	value	between	0	and	99	that	representing	the	
confidence	 level	 of	 the	payment	 token	 to	PAN	 to	 the	 cardholder	 and	 the	 cardholder’s	 account	 to	 determine	 how	
trustworthy	the	payment	token	is	[171] 
18 Applies	for	qVSDC 
19 Applies	for	MSD  
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mapped	to	a	particular	method	of	payment	(e.g.	a	specific	token	range	can	only	be	used	 for	contactless	
transactions)	but	the	token,	once	provisioned	on	a	device	is	not	mapped	to	that	particular	device.	

 LUK	Supply	and	Demand	Synchronisation	
	
Based	on	the	model	developed,	the	mobile	device	can	request	any	amount	of	LUKs	from	the	TR.			The	VISA	
tokenisation	specifications	and	requirements	there	is	no	requirement	from	the	TR	to	provide	information	
to	the	TSP	on	the	amount	of	LUKs	issued	and	the	TSP	is	not	required	to	provide	information	to	the	TR	about	
the	LUKs	that	have	been	used	up	[152].	The	impact	is	that	the	TR	is	not	aware	of	how	much	of	the	LUKs	
issued	have	been	used.	
	
Possible	Risk:	
This	could	lead	to	a	large	amount	of	LUKs	being	issued	by	the	TR	stored	on	a	mobile	device	increasing	the	
risk	and	the	cost	of	such	risk	should	these	LUKs	be	leaked	or	compromised.		After	all	the	concept	of	a	LUK	
is	only	valid	if	the	actual	keys	are	limited.			This	risk	can	arise	from	different	situations:		

1. Given	that	mobile	wallet	app	developers	want	to	provide	the	best	experience	to	 the	cardholder,	
the	developers	would	want	to	have	a	large	pool	of	LUKs	to	ensure	that	the	user	has	a	LUK	available	
even	during	long	periods	without	internet	activity.	

2. If,	in	the	future,	a	fraudster	is	able	to	overcome	the	cryptographic	measures	used	within	EMV,	then	
the	fraudster	would	be	in	a	position	to	obtain	a	large	pool	of	tokens	and	keys	to	mount	the	attack.	

Possible	Countermeasure	
To	mitigate	this	risk,	a	synchronisation	mechanism	is	required	between	the	Wallet	app,	the	TR	and	the	TSP.		
The	TR	would	replenish	a	certain	amount	of	LUKs	to	the	mobile	device	and	when	the	TSP	informs	the	TR	
that	a	certain	amount	of	LUKs	have	been	used	the	TR	will	allow	the	mobile	device	to	request	more	keys.		
This	synchronisation	mechanism	allows	the	TR	to	have	assurance	that	the	device	stores	a	limited	amount	
of	LUKs.		The	Visa	Cloud-Based	Payments	platform,	which	is	used	in	case	no	tokenisation	is	used,	allow	the	
mobile	device	to	upload	the	Transaction	Verification	Log.	Such	log	is	updated	after	each	transaction.		This	
log	and	the	ATC	can	be	used	to	ensure	that	certain	amount	of	LUKs	can	be	used.		Hence	this	strategy	can	be	
implemented	with	the	TR,	subject	that	the	TR	can	verify	that	the	ATC	is	valid	through	the	TSP.	

 Issues	of	Tokenization	in	MSD	Mode	
	
While	VISA	is	trying	to	phase	out	MSD	mode	it	is	still,	at	the	time	of	writing,	supported	and	used	by	many	
Issuers	 especially	 in	 areas	where	many	 terminals	 do	 not	 yet	 support	 qVSDC	mode.	 	 	 In	 MSD	mode,	
tokenisation	does	not	solve	the	replay	attack	due	to	way	the	dynamic	CVV	is	generated	[130].		This	issue	
has	been	outlined	by	S.	Mendoza	[129].	
	
In	MSD	mode,	the	mobile	device	will	prepare	all	the	data	required	and	send	the	data	to	the	terminal	during	
the	READ	RECORD	series	of	commands.	 	All	the	data	is	static	data	except	for	the	dynamic	CVV	in	case	of	
MSD	verification	value.			The	algorithm	to	generate	this	verification	value	is	detailed	in	[130].		The	algorithm	
is	based	on	an	encryption,	using	Triple	DES	and	the	LUKs	as	encryption	key.			The	data	encrypted	is	static	
data	and	the	Application	Transaction	Counter	(i.e.	ATC).				

	
Possible	Risk:	
This	means	that	a	fraudster,	equipped	with	a	mobile	device	acting	as	a	reader,	can	simulate	a	POS	terminal	
and	thereby	collect	both	the	tPAN	and	the	dynamic	CVV	for	a	specific	ATC	value created	with	a	valid	LUK	
for	the	tPAN.		The	fraudster	can	then	visit	a	shop,	make	a	purchase	and	pay	using	the	values	collected	with	
his	mobile	device.		Note	that	the	amount	of	the	purchase	is	not	part	of	the	dynamic	CVV	hence	the	fraudster	
can	make	any	purchase	amount	as	long	as	it	is	under	the	stipulated	limits	for	MSD	mode.		The	transaction	
will	be	made	online,	since	all	MSD	mode	transactions	have	to	be	made	online	[160]	but	all	the	information	
will	be	valid	and	hence	it	will	not	be	detected	as	fraud	subject	that	the	fraudster	is	able	to	provide	a	valid	
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signature	(cardholder	verification).	The	ATC	will	not	be	good	for	the	next	transaction	and	hence	the	stolen	
dynamic	CVV	will	only	be	good	for	one	transaction.			

	
The	main	issues	that	make	such	an	attack	possible	are:	

 The	mobile	device	cannot	authenticate	the	POS	reader	to	ensure	that	it	is	truly	legitimate.			
 The	dynamic	CVV	 algorithm	 is	not	 a	 ‘challenge-response’	 algorithm.	 	 If	 the	 algorithm	were	 to	

include	the	unpredictable	number	(UN)	provided	by	the	terminal	then	the	dynamic	CVV	produced	
will	be	tied	to	that	UN.	
	

Possible	Countermeasure:	
To	solve	this	issue,	the	dynamic	CVV	algorithm	should	include	an	unpredictable	number	provided	by	the	
terminal.		Such	a	countermeasure	is	costly	for	card	schemes	as	it	would	entail	that	all	current	contactless	
cards	that	support	MSD	would	have	to	be	updated	or	changed	to	support	the	new	algorithm.	

	
Another	 countermeasure	 could	be,	a	 challenge	 response	mechanism	 can	be	used	 to	enable	 the	mobile	
phone	to	verify	that	the	POS	is	legitimate.		The	mobile	provides	a	challenge	to	the	terminal,	the	terminal	
signs	the	challenge	with	its	private	key	and	sends	the	signature	and	the	certificate	of	the	key	pair.	 	The	
mobile	verifies	the	certificate	with	the	CA	and	then	verifies	that	the	POS	is	in	possession	of	the	private	key	
by	using	the	provided	public	key	of	the	terminal.		This	way	the	mobile	device	is	assured	that	the	terminal	
is	legitimate. If	a rogue POS or reader is	used	the mobile device would	not provide the dynamic CVV and	
thus	decline	to	transact.		

It	is	also	recommended	that	MSD	mode	is	phased	out	and	qVSDC	mode	is	used	instead.20	

5.3 Analysis	of	the	impact	in	operating	cryptographic	functions	and	storing	
cryptographic	 keys,	 required	 during	 an	 HCE	 payment	 process,	 on	 a	
mobile	device	

	
Unlike	physical	cards,	mobile	devices	are	subject	to	attacks	that	can	lead	to	leaks	of	highly	sensitive	data	
such	 as	 cryptographic	 keys.	 	HCE	Wallet	 developers	 have	 to	 account	 for	 such	 risk	 and	 use	 adequate	
procedures	to	ensure	that	sensitive	data	is	stored	safely	and	used	in	a	manner	where	 it	does	not	make	it	
easy	for	an	attacker	to	access	them.		In	this	section,	first	an	analysis	of	the	importance	of	the	TEE	for	storing	
and	operating	cryptographic	functions	is	provided.		The	next	section	focuses	on	the	implication	of	storing	
the	RSA	Key	used	during	ODA	and	eventually	in	the	last	section	an	analysis	of	the	issues	in	using	LUKs	for	
authentication	with	online	services	is	performed.			

 Preventing	access	to	the	LUK	through	the	TEE	
	
In	the	current	system,	as	shown	in	Figure	29,	the	cryptogram	generation	is	done	after	the	GPO	command	is	
received	from	the	POS	reader.		At	this	point	the	mobile	device	has	all	the	information	required	to	build	the	
cryptogram.	 	 	 Currently,	 the	 cryptogram	 is	 generated	 in	 the	 actual	 HCE	 payment	 wallet	 (i.e.	 build	
cryptogram	state	in	Figure	26)	based	on	the	specification	set	out	in	VMCPS	[130].			
	
Possible	Risk:	
This	means	that	the	LUK	is	used	in	the	HCE	Wallet	App	to	generate	the	cryptogram	and	hence	if	the	mobile	
phone	is	compromised	then	the	LUKs	stored	in	the	App’s	key	store	would	become	accessible.	
	
Possible	Countermeasure:	
To	mitigate	the	risk,	a	requirement	should	be	set	such	that,	the	cryptogram	generation	mechanism	should	
be	shifted	from	the	Wallet	App	into	the	TEE	environment.	 	The	LUKs	are	stored	in	the	TEE	and the	HCE	

																																																																				
20 At	the	time	of	writing	this	report,	VISA	had	started	the	phase	out	of	MSD,	but	MSD	was	still	being	used. 
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wallet	application	would	provide	the	data	obtained	about	the	transaction	 from	the	POS	to	the	TEE.	 	The	
TEE	would	generate	the	cryptogram	and	return	back	the	generated	cryptogram.		This	means	that	in	case	of	
a	compromised	phone,	the	fraudster	would	be	unable	to	get	access	to	the	LUK	even	if	the	phone	is	rooted	
but	it	would	only	allow	the	fraudster	to	make	use	of	such	cryptogram	generation	mechanism.		Hence	the	
fraudster	 would	 have	 to	 transfer	 the	 transaction	 data,	 most	 importantly	 the	 unpredictable	 number	
provided	by	the	terminal,	onto	the	device,	generate	the	cryptogram	and	 transfer	back	the	data	towards	
his/her	device	creating	a	relay	attack	scenario.			

	
This	raises	the	debate	whether	the	TR	should	reside	in	the	Cloud	or	in	the	TEE.		Certainly	in	this	case,	storing	
the	TR	 in	 the	TEE	would	be	a	better	option	as	essentially	 the	LUKs	do	not	need	 to	ever leave	 the	TEE	
environment	while	if	the	TR	is	in	the	cloud,	the	mobile	device	would	need	to	transfer	the	LUKs	from	the	
cloud	and	store	 them	 in	the	TEE.	Notwithstanding,	the	mobile	device	would	still	need	to	download	and	
store	the	UDK	from	the	TSP	in	case	the	TR	is	situated	in	the	TEE	but	this	would	only	occur	once	during	
enrolment	and	subsequently	when	tPAN	expires	whilst	if	the	TR	is	in	the	cloud	it	would	have	to	transfer
LUKs	every	time	they	are	depleted.	

 Offline	Data	Authentication	(ODA)	RSA	Key	Storage	
	
Another	 factor	worth	considering	in	this	analysis	is	the	Offline	Data	Authentication	signature	generated	
during	a	transaction	which	requires	ODA	support.		ODA	is	common	in	fast	throughput	scenarios	such	as	at	
transit	gates and	theatres.		VISA	in	VMCPS	defines	it	by	stating:	“ODA	requires	that	the	Mobile	Application	
contain	an	RSA	key	to	generate	the	fDDA	signature	–	The	certificate	and	signature	information	is	then	used	
by	the	reader	(POS	Terminal)	to	verify	that	the	Mobile	Application	is	genuine”	[130].		
	
Possible	Risk:	
Since	the	aim	of	ODA	is	to	allow the	reader	to	authenticate	the	mobile	application,	the	RSA	key	cannot	be	
‘tokenized’.	 	Hence	 the	RSA	key	will	not	change	during	 the	 lifetime	of	 the	application	and	 it	should	be	
protected	with	the	highest	protection	possible.		If	a	mobile	device	does	not	have	a	TEE	or	the	wallet	does	
not	support	the	TEE,	then	the	RSA	key	has	to	be	stored	in	the	application’s	memory. 	This	is	a	high	risk	as	
it	would	be	accessible	in	a	compromised	phone.			Note	that,	although	payment	accepted	with	ODA	is	limited	
to	low	value	transaction,	a	large	scale	breach	involving	multiple	mobile	phones	would	result	in	huge	losses.	
	
Possible	Countermeasure:	
To	minimize	this	risk,	Card	Schemes	should	require	that	the	RSA	key	is	stored	in	the	TEE	thereby	reducing	
the	risk	of	the	key	being	known	in	case	a	mobile	phone	is	breached.		Currently	the	specifications	[149]	(i.e.	
requirement	4.4)	declare	the	storage	and	acquisition	of	the	RSA	Key	as	‘out	of	scope’	and	allow	the	mobile	
wallet	developer	to	choose	the	storage	mechanisms	as	long	as	it	is	deemed	secure.		

	
If	TEE	storage	is	used	then	the	SHA-1	value	can	be	generated	in	the	Wallet	Application	but	its	value	is	then	
passed	to	the	TEE	to	generate	the	signature.		Note	that	Android’s	hardware	backed	keystore	[114]	already	
provides	support	for	RSA	signature	generation.		

5.3.2.1 Further	Risk	Analysis	in	ODA	
	
Visa	extended	the	Issuer	Application	Data	with	the	following	criteria:	information	about	the	cryptogram,	
the	type	of	CVM	used	for	authentication,	the	Digital	Wallet	Provider	ID	and	the	consumer’s	device	state.		
The	consumer	device	state	(CVR	Byte 5)	is	used	to	show	the	following	information	in	VMCPS	[130]:	

 The	mobile	device	is	in	debug	mode.	
 The	mobile	device	is	rooted.	
 Whether	the	mobile	application	is	hooked	(e.g.	using	Substrate	framework).	
 If	any	code	modification	occurred.	
 Whether	the	mobile	phone	has	data	connectivity.	
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 Whether	the	phone	is	genuine	or	an	emulator.	
	
Possible	Risk:			
A	mobile	device	that	has	been	rooted	or	hooked	has	a	high	probability	of	malware	installed	on	the	device.		
Currently	the	IAD	data	is	passed	over	to	the	Issuer	but	the	terminal	does	not	run	any	risk	analysis	on	this	
information	during	an	offline	transaction.			
	
Possible	Countermeasure:			
The	IAD	information	can	also	be	added	to	the	ODA	signature	and	hence	the	terminal	would	then	be	in	a	
position	 to	 run	 risk	 analysis	 on	whether	 it	 should	 approve	 or	 reject	 a	 particular	 offline	 transaction.	
Payments	made	from	a	device	that	is	rooted	or	hooked	should	not	be	accepted.	

 Issues	 of	 using	 LUKs	 for	 authentication	 to	 the	 TR	 and	 the	 VISA	 Cloud	
Platform	

	
With	or	without	tokenization	the	mobile	device	still	requires	some	form	of	interaction	with	a	cloud	platform	
to	download	the	Limited	Use	Keys.		In	case	tokenization	is	not	used	than	the	LUKs	will	be	downloaded	from	
the	Visa	Cloud-Based	payments	platform	or	any	TSP	cloud	platform.		If	tokenization	is	used	then	the	LUKs	
will	be	downloaded	from	the	Token	Requestor.	 	In	both	cases,	these	platforms	need	to	authenticate	the	
mobile	device	in	some	way.		This	authentication	is	crucial	as	essentially	it	is	the	master	key	to	obtain	LUKs	
for	a	particular	PAN	or	tPAN.	

For	 interaction	with	the	Visa	cloud-based	payment	platform	a	cryptogram	 is	generated	and	used	as	the	
authentication	mechanism.	 	The	 cryptogram	 is	generated	by	applying	a	MAC	over	account	parameters	
including	the	Sequence	Counter	and	the	transaction	log.		This	MAC	is	then	encrypted,	using	a	Triple	DES	
algorithm	with	the	Limited	Use	Key	as	the	encryption	key	[130].	This	means	that	an	attacker	with	access	to	
the	LUK,	Sequence	Counter	and	the	transaction	log	can	impersonate	the	mobile	and	gain	access	to	the	VISA	
cloud	platform	and	thereby	having	the	possibility	to	generate	and	download	new	LUKs.	 	The	same	risk	
applies	when	authenticating	to	a	TR.			

Possible	Risk:	
If	a	fraudster	has	access	to	a	LUK	or	any	key	used	to	authenticate	the	mobile	to	the	TR	then	the	fraudster	
would	be	in	a	position	to	authenticate	to	the	TR	and	request	more	LUKs.		Note	that	the	term	‘Limited	Use’	
relates	to	the	fact	that	the	LUK	will	expire	in	time	or	after	a	certain	amount	of	transactions.		If	with	such	a	
key	further	keys	can	be	downloaded	then	its	value,	in	terms	of	risk	is	very	high	and	rather	than	a	limited	
use	key	it	would	be	considered	as	a	‘Master	Key’	to	obtain	further	keys.	

Possible	Countermeasure:	
This	point	leads	to	the	need	for	a	safe	and	secure	storage	of	such	keys	both	at	rest	and	in	transit.			It	should	
be	a	requirement	that	any	key	used	to	authenticate	to	online	platforms	such	as	the	VISA	Cloud	Platform	or
a	TR	should	be	stored	in	the	TEE.		If	a	TEE	is	not	available	or	not	supported	then	Whitebox	Cryptography	
could	be	used	to	hide	these	keys	in	the	wallet	application’s	memory.	

5.4 Other	generic	issues	to	the	use	of	mobile	phones	for	payments	
	
In	addition,	to	the	risks	identified	as	part	of	the	security	analyses	there	are	also	other	risks.			These	risks	
are	not	based	on	 the	model	but	are	generic	 issues	 that	arise	 from	using	 the	mobile	phone	 for	payment	
applications.	 	The	 following	risks	are	not	based	on	any	particular	implementation	but	might	be	used	by	
fraudsters	as	an	aid	to	activate	the	risks	mentioned	in	Section	5.	
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 Phishing	and	social	engineering	
	
An	attacker	through	social	engineering,	attempts	to	 lure	a	cardholder	with	the	aim	to	disclose	sensitive	
payment	related	data	or	to	convince	the	cardholder	to	replace	a	legitimate	application	with	a	fake	one.				

 Installation	of	rogue	and	malware	applications		
	
The	 installation	 of	malware	 and	 rogue	 application	 can	 assist	 fraudsters	 in	mounting	 remote	 attacks.		
Techniques	such	as	memory	scraping	and	remote	rooting	provide	the	fraudster	with	the	ability	to	copy	and	
upload	areas	of	memory	in	the	mobile	phone	that	can	later	be	analysed	with	the intention	to	steal	sensitive	
information	such	as	PANs,	tokens	and	LUKs.	

 Reverse	engineering	of	payment	application	and	mobile	operating	system	
	
Applications	are	downloaded	 from	app	stores	 in	 the	 form	of	a	package.	 	Most	 importantly	 the	package	
contains	the	compiled	application.	 	Attackers	can	use	special	tools	to	decompile	the	application	with	the	
intention	to	understand	how	the	application	works	and	in	which	place	in	memory	it	is	storing	the	sensitive	
information	 including	 hard-coded	 passwords,	mobile	 pattern	 and	 fingerprint	 authentication	 template	
database	and	PINs.	 	This	 is	one	of	the	reasons	why	a	TEE	should	be	set	as	a	mandatory	requirement	for	
payment	applications.	

 Denial	of	service	attacks	and	data	connectivity	compromise		
	
In	Section	3,	several	studies	were	presented	on	DDOS	attacks	on	the	NFC	interface.		It	was	shown	that	these	
can	only	be	mounted	at	close	range	and	thus	the	risk	emanating	from	a	DDOS	attack	is	unlikely	to	occur.	
Notwithstanding,	 if	 the	HCE	payment	wallet	application	makes	use	of	 tokenisation,	particularly	using	a	
Cloud	TR,	a	DDOS	can	be	mounted	on	the	TR	and	hence	cardholders	would	be	unable	to	replenish	tokens	
and	LUKs.	This	may	also	effect	the	cardholder	ability	to	enrol.		

 Problems	related	to	the	use	of	biometrics	
	
The	software	capturing	the	selfie	may	struggle	under	certain	conditions	such	as	in	poor	lighting	ambient,	
face	is	positioned	in	a	tilted	position,	facial	expressions,	age	factors	such	as	wrinkles	or	when	objects	partial	
cover	 the	 face	 such	 as	when	wearing	 sunglasses,	hats,	 scarves	 and	makeup.	 Such	 factors	 also	 lead	 to	
misidentification	of	the	cardholder	and	thus	resulting	in	denied	access	to	the	mobile	device.	

 Privacy	
	
The	collection	of	biometric	data	could	also	give	rise	to	privacy	issues	especially	if	the	image	collected	would	
be	used	 for	other	than	 the	 intent	purpose	(i.e.	 for	authentication),	 for	example,	abusing	of	such	data,	to	
present	marketing	material	associated	with	that	particular	image. In	addition,	the	collection	of	millions	of	
individuals	information	maybe	a	goldmine	for	attackers.	Thus,	proper	measures	such	as	encryption	and/or	
anonymize	the	data	should	be	applied.	This	also	leave	a	room	for	discussion	to	define	the	responsibility	of	
the	biometric	service	whether	it	is	the	Issuer,	the	mobile	device	manufacturer	or	the	user.		
	
The	industry	as	well	as	cardholders	should	ensure	that	robust	standards,	specifications	and	best	practices	
are	in	place	to	support	HCE	and	the	mobile	payment	ecosystem	in	order	to	mitigate	against	any	inherent	
risks.	The	standards	and	specifications	shall	cover	security	controls	and	measures	 in	 the	areas	such	as	
communications	between	 the	payment	application	and	 the	cloud,	device,	and	application	and	payment	
credentials	 to	protect	 the	confidentiality,	integrity	and/or	availability	of	 information.	A	 risk	 assessment	
should	be	performed	on	a	continuous	basis	by	all	the	mobile	payment	ecosystem	parties	to	prevent	any	
risks	emanating	from	unintentional	acts	or	deliberate	actions.	
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5.5 Summary	of	Analysis	and	Main	Findings	
	
In	HCE,	particularly	with	 the	use	 of	 tokenisation	 and	 CDCVM,	 cardholder	 verification	 responsibility	 is	
shifted	 from	 the	 Issuer	 towards	 the	mobile	device.	 	Most	of	 the	methods	used	 for	verification	 such	as	
fingerprint	and	biometrics	have	been	proven,	by	researchers	to	be	weak.		Notwithstanding	these	methods	
provide	more	convenience	and	ease	of	use	for	the	card	holder	and	thus	issuers	and	card	networks	are	still	
in	favour	of	using	these	methods,	striking	a	balance	between	security	and	convenience.		As	shown	during	
this	analysis,	 it	is	 important	to	minimize	loopholes	to	reduce	the	possibility	of	fraud.	 	Using	the	current	
methods	it	has	been	shown	that	a	fraudster	can	attempt	fingerprint	spoofing	prior	to	visiting	a	shop	making	
it	impossible	for	the	shop	attendant	to	spot	the	fraud.		Furthermore,	the	methods	have	to	support	the	typical	
payment	flow	whereby	a	cardholder	provides	authentication	after	the	payment	is	known	rather	than	at	the	
beginning	of a	transaction	ensuring	that	the	customer	is	aware	of	the	amount	s/he	will	be	authorizing.				
	
Some	of	 the	CDCVM	methods	share	the	 identification	templates	with	the	mobile	device	(e.g.	 fingerprint	
template	database	is	used	to	unlock	the	device	and	to	make	a	payment).		Some	mobile	phone	users	might	
enrol	 the	 fingerprint	of	more	 than	one	user,	example	enrolling	a	child	 to	be	able	 to	unlock	and	use	 the	
mother’s	phone.		This	raises	issues	for	non-repudiation	and	accountability	of	a	transaction.		Issuers	should	
ensure	that	the	payment	application	accepts	the	fingerprint	of	the	cardholder	only	rather	than	allowing	all	
the	users enrolled	in	the	mobile	phone’s	fingerprint	database	to	authorize	during	a	transaction.			
	
The	use	of	HCE	 shifts	 control	over	 the	 ID&V	method	used	 from	 the	 Issuer	 towards	 the	mobile	wallet	
developer.	 	The	Issuer	has	control	over	which	methods	are	used	but	may	not	prioritize	certain	methods.		
Furthermore,	if	CDCVM	is	used	then	the	wallet	developer	has	full	control	over	the	method	used.		This	might	
bring	 certain	 risk	 if	 the	wallet	 developer	 decides	 to	 downgrade	 the	 CDCVM	method	 for	 convenience	
purposes,	to	satisfy	the	cardholder	thereby	reducing	the	security	of	the	application.		Such	risk	is	more	for	
wallet	app	such	as	Android	Pay	rather	than	Issuer’s	proprietary	ones.	
	
The	 second	 section	of	 the	 analysis	dealt	with	 tokenization.	 The	 shift	 from	 static	 a	 static	PAN	 and	key	
towards	tokenization	limits	the	effects	of	a	stolen	PAN	but	given	the	mobile	device	is	a	connected	device	it	
is	 prone	 to	many	more	 network	 related	 attacks	 then	what	 a	 simple	 physical	 payment	 card	 could	 be	
subjected	too.		Most	importantly	is	the	fact	that	the	mobile	device	could	be	compromised	through	malware,	
or	similar	malicious	software.		Such	attacks	can	be	replicated	on	a	very	large	scale	especially	through	the	
use	of	social	media	and	other	social	sharing	networks.			Hence,	it	is	of	high	importance	that	the	tokenized	
values	are	safely	stored	in	a	manner	where	a	compromised	phone	would	not	leak	these	values,	even	if	these	
values	 have	 a	 limited	 use.	 	 Tokenization	 limits	 the	 risk	 for	 the	 cardholder,	 considering	 that	 only	 one	
payment	is	made	with	a	stolen	token,	but	for	the	Issuer	the	risk	would	still	be	high	if	potentially	a	large	
number	of	tokens	and	keys	are	stolen.	
	
When	using	Tokenization,	the	wallet	application	needs	a	connection	to	a	Token	Requestor	service	to	be	
able	to	replenish	tokens	when	these	are	depleted	or	expired.	 	One	key	risk	identified	is	the	fact	that	the	
limited	use	keys	are	being	used	as	a	means	of	authentication	of	the	mobile	device	to	the	Token	Requestor.		
This	gives	rise	to	a	discussion	on	how	‘Limited	Use’	are	these	keys	since	they	can	be	used	to	obtain	further	
keys.		Thus	it	is	important	to	store	these	keys,	safe,	in	a	way	that	ensures	the	keys	are	not	exposed	even	if	
the	phone	is	compromised,	rooted	or	hooked.	
	
Unlike	iOS	(Apple),	Android	OS	is	developed	by	Google	but	used	by	many	vendors	of	mobile	devices.		The	
vendors	decide	the	type	of	hardware	used,	including	the	processor.		This	means	that	a	wallet	application	
can	be	installed	on	different	devices	with	varying	levels	of	security	hardware	(i.e.	with	or	without	a	TEE).		
Furthermore,	since	the	OS	itself	is	freely	available,	several	tools	can	be	used	to	root	the	device,	even	by	non-
technical	users	 rendering	 the	device	 less	 safe	 and	more	prone	 for	malware	 installations.	 	 The	EMVCo	
provides	a	token	assurance	level	value	but	the	criteria	on	which	this	value	is	calculated	does	not	factor	the	
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hardware/software	properties	of	the	mobile	device.		For	better	risk	analysis,	the	hardware	and	software	
properties	such	as	whether	the	mobile	is	rooted,	availability	of	the	TEE,	etc.,	should	be	sent	to	the	TR	and	
become	part	of	the	formula	used	to	calculate	the	token	Assurance	Level.		This	way,	high	value	transaction	
on	non-reputable	or	rooted	hardware	will	not	be	allowed	limiting	the	risk	for	the	Issuer.	
	
Another	point	raised	during	the	analysis	of	tokenization	is	the	fact	that	tokens	are	not	device	bound.		This	
means	if	a	token	is	stolen	from	a	device	it	is	free	to	be	used	on	another	device.		The	EMVCo,	allows	tying	a	
token	to	a	particular	method	such	as	a	token	that	can	only	be	used	for	a	contactless	payment	and	cannot	be	
used	for	online	payments	but	the	token	is	not	tied	to	the	device	it	was	enrolled	to.		This	risk	is	particularly	
high	in	MSD	payments	where	the	dynamic	CVV	does	not	include	any	data	provided	by	the	terminal,	not	
even	the	amount	of	the	transaction.	 	 	This	means	a	stolen	token	can	simply	be	used	on	another	mobile	
device	to	make	a	payment	for	any	amount	as	long	as	it	is	under	the	 limit.	 	 	A	method	whereby	a	unique	
device	ID	becomes	part	of	the	signature,	has	been	proposed	as	a	countermeasure	to	this	risk.	
	
The	final	point	raised	in	the	analysis	of	tokenization	is	the	requirement	of	a	synchronization	mechanism.		
With	current	methods,	 the	TR	provides	 tokens	 to	 the	mobile	device	but	 the	TR	does	not	have	a	way	of	
identifying	if	the	tokens	provided	have	been	used.		Hence	a	mobile	device	can	request	a	replenishment	even	
if	the	current	token	pool	has	not	yet	been	depleted.		To	ensure	that	a	device	only	contains	a	limited	amount	
of	tokens,	a	synchronization	mechanism	 is	required	whereby	the	TR	can	identify,	through	the	TSP,	how	
many	tokens	have	been	used	from	a	particular	device.		Again	this	is	why	the	previous	point,	token-device	
mapping,	 is	 an	 important	 requirement.	 	 This	 synchronization	mechanism	will	 create	 a	 feedback	 loop,	
between	the	TR,	mobile	device	and	the	TSP.	
	
In	the	last	section	of	the	analyses,	the	implications	in	storing	cryptographic	keys	and	running	cryptographic	
functions	on	a	mobile	device	was	analyzed.	The	main	outcome	of	this	section	was	the	requirement	of	a	TEE	
in	the	mobile	device	to	store	the	keys	and	operate	cryptographic	functions	in	the	TEE.		Both	LUKs	and	the	
RSA	key	used	during	Offline	Data	Authentication	should	be	stored	in	the	TEE.		It	is	the	author’s	opinion	that	
although	 LUKs	 are	 ‘limited	 in	 use’	 it	 is	 not	 enough	 to	warrant	 storing	 the	 LUK’s	 in	 the	 HCE	 wallet	
application’s	memory	 due	 to	 the	 impacts	 of	 a	wide	 breach	 and	 the	 fact	 that	 LUKs	 provide	 access	 to	
download	further	keys.	
	
Overall	 it	 is	 the	author’s	opinion,	 that,	 to	achieve	a	secure	HCE	based	payment	system,	 four	 important	
requirements	have	to	be	met:	
	

i. A	TEE	is	required	on	the	mobile	device.		The	TEE	provides	a	safe	storage	for	keys	in	a	way	where	
a	fraudster,	through	a	compromised	phone,	can	use	the	key	but	cannot	gain	access	to	the	key.		This	
is	required	to	store	the	LUKs	and	the	RSA	Key	used	during	Offline	Data	Authentication.		If	a	TEE	is	
not	 available	 then	 techniques	 like	white	 box	 cryptography	 can	 be	 used	 to	 store	 the	 keys	 in	
application	memory.	

	
ii. If	a	TEE	becomes	a	requirement	then	it	is	the	author’s	opinion	that	the	TR	should	also	be	stored	

in	the	TEE.		This	is	based	on	the	following	facts:	
a. A	key,	typically	the	LUK,	is	required	to	authenticate	to	the	TR.	 	This	is	a	 ‘master’	key	to	

obtain	further	LUKs.		The	risk	value	of	such	a	key	is	similar	to	the	tUDK	stored	within	the	
TR	in	the	cloud.		Thus	the	TR	can	be	situated	in	the	TEE	as	the	LUK	used	to	access	the	TR	
carries	the	same	level	of	risk	as	the	tUDK.	

b. A	secure	connection	is	required	between	the	TR	and	the	HCE	wallet.		If	the	TR	is	in	the	
TEE	then	no	data	is	passed	over	the	internet	as	it	would	be	a	direct	connection	from	the	
HCE	Wallet	App	to	the	TEE.	 	This	reduces	the	risk	of	attacks	on	data	in	transit	between	
the	TR	in	the	cloud	and	the	HCE	Wallet	App.	
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c. No	 need	 to	 store	 a	 set	 of	 LUKs	 on	 the	mobile	 device.	 	The	 TR	 in	 the	 TEE	would	 be	
developed	to	generate	LUKs	on	the	 fly	during	a	transaction	and	subsequently	generate	
the	application	cryptogram	and	send	it	to	the	HCE	Wallet	Application.		This	way	the	LUKs	
will	never	leave	the	TR,	within	the	TEE.	

	
iii. A	strong	way	of	uniquely	identifying	a	mobile	device	is	required.		This	will	be	used	to:	

a. Authenticate	the	device	during	cloud	services	communication.		
b. Map	tokens	to	that	particular	device	thereby	limiting	the	chances	of	that	token	to	be	used	

elsewhere	or	on	other	devices.	
c. Since	the	Issuer	uses	the	mobile	phone	number	to	ID&V	the	cardholder	during	enrolment,	

the	mobile	phone	number	should	become	part	of	the	Mobile’s	unique	Identity.	
	

iv. A	closed	loop	supply-demand	synchronization	is	required	to	keep	track	of	issued	tokens	(tPAN	
and	LUKs).		Token	requestor’s	should	only	generate	and	issue	new	LUKs	to	a	Wallet	if	they	have	
confirmation	that	previously	issued	LUKs	have	expired.	

	
Furthermore,	for	HCE	to	be	successful	it	depends	on	the	level	of	trust	between	all	the	stakeholders	involved	
during	 the	enrolment,	provisions	and	 the	 lifecycle	management	of	a	 token.	This	 is	potentially	achieved	
through	ongoing	due	diligence,	agreed	 terms	and	conditions	and	ensuring	that	security	mechanisms,	as	
proposed	in	this	section	and	by	industry	good	practices,	are	in	place.		
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6 General	Conclusion	

6.1 Summary	
		

The	aim	of	this	project,	overall,	was	to	review	how	HCE,	the	supporting	technologies	and	processes	are	
implemented	to	make	up	a	secure	electronic	mobile	payment	method.	

The	evolution	of	HCE	has	only	 just	started	and	by	 time	 it	will	go	 through	a	series	of	refinements.	 	The	
technology	will	stabilize	by	time	and,	as	more	deployments	are	carried	out,	its	weaknesses	are	identified	
and	mitigated.	 	During	 the	 course	 of	 this	project,	 a	number	of	 standards	 and	 specifications	 related	 to	
contactless	payments	and	HCE	have	been	published	and/or	updated	by	industry	expert	bodies.			HCE	is	also	
empowering	various	bodies	to	work	together	to	deliver	and	strengthen	adequate	security,	interoperability	
and	integrity	of	the	payments	ecosystems.		

The	aim	of	this	project	was	achieved	through	a	set	of	objectives	described	below:	

i. Review	relevant	existing	literature	on	NFC	technology	and	HCE	payment	implementations	

HCE	relies	on	different	technologies	and	as	such	the	first	objective	of	this	project	was	to	review	existing	
literature	related	to	these	technologies.		At	the	physical	layer,	HCE	relies	on	NFC	and	hence	the	first	part	of	
the	analysis	was	 focused	on	attacks	on	NFC.	 	It	was	 immediately	clear	that	controls	at	higher	 levels	are	
required	to	countermeasure	the	weaknesses	at	the	physical	layer.		The	next	step	was	to	review	the	attacks	
at	 the	application	 layer	 including	attacks	on	 the	POS	and	 the	payment	 infrastructure	and	subsequently	
attacks	on	the	cryptography	and	key	management	used	in	contactless	payments.	

The	analysis	was	then	focused	on	known	weaknesses	in	the	hardware	and	software	that	make	up	an	HCE	
payment	wallet.		These	included	the	kernel,	the	operating	system	and	secure	memory	areas	within	a	mobile	
device.	 	HCE	 also	 relies	on	different	 authentication	methods	 such	 as	biometric	methods	hence	known	
attacks	 on	 these	methods	were	 outlined	 too.	 	 To	 conclude	 the	 section	 a	 review	 on	 the	 tokenization	
infrastructure	and	its	weaknesses	outlined	to	date	was	provided.	

Within	the	same	section,	a	review	of	two	possible	HCE	implementations	was	provided	along	with	a	list	of	
the	advantages	and	disadvantages	of	each	implementation.		Overall	a	thorough	review	of	the	weaknesses	
associated	with	HCE	has	been	provided.	

ii. Model	the	HCE	payment	transaction	process	flow	as	well	as	the	tokenisation	process	using	
formal	methods	

A	finite-state	machine	model	of	an	HCE	payment	application	was	developed.		The	model	was	based	on	the	
specifications	and	requirements	provided	by	VISA.		The	model	was	implemented	using	Stateflow	which	is	
a	tool	provided	by	Matlab	within	Simulink.		The	model	defines	a	finite	set	of	states	and	transitions	between	
different	states	during	a	payment	and	during	network	communication	with	several	online	services.		

The	design	of	the	model	resembles	a	typical	wallet	application	with	different	processes	running	in	parallel.		
The	model	was	split	into	three	processes;	the	Payment	Transaction	responsible	for	the	NFC	communication	
with	the	POS	during	a	payment,	the	Account	Management	process	responsible	 for	storing	and	updating	
credentials	and	the	Token	Requestor	responsible	for	generating	and	replenishing	tokens	and	LUKs	on	the	
mobile	device.	

In	this	project,	the	model	served	as	a	tool	to	identify	weaknesses	and	possible	countermeasures	at	a	later	
stage	in	this	study.		Specific	conditions	can	be	simulated	by	altering	the	input	data	to	simulate	conditions	
that	can	occur	in	a	payment	transaction	or	during	communication	with	online	services	such	as	during	token	
replenishment.	
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iii. Analyze	the	security	aspects	and	weaknesses	within	the	elements	that	make	up	an	HCE	
payment	scheme	and	EMV	payment	tokenization	infrastructure	

To	tackle	this	objective	the	payment	processes	were	split	into	different	sub-processes.		For	example,	the	
cardholder	authentication	process	was	isolated	and	analysed.		Each	sub-processes	was	then	subjected	to	
different	conditions	within	the	allowances	of	the	standards	and	specifications.		The	finite	state	model	was	
used	to	simulate	how	the	payment	wallet	behaves	in	certain	conditions	and	as	a	verification	tool	to	verify	
the	existence	of	a	weakness.	

The	first	part	of	the	analysis	was	focused	on	cardholder	verification.	 	The	issues	identified	were 	mostly	
related	to	the	implementation	of	CDCVM	where	the	mobile	device	is	used	for	cardholder	verification.		The	
second	section	of	the	analysis	was	focused	on	tokenization.				Different	issues	were	identified	starting	from	
the	 enrolment	process,	 the	 replenishment	process	up	 to	when	 the	 token	 is	used	during	 a	 transaction.		
Further	analysis	was	done	on	the	efficacy	of	the	risk	analysis	done	by	the	TSP	and	portability	of	a	token.			

The	 third	section	 in	 the	analysis	was	aimed	at	credentials	storage	and	 their	use	during	a	payment	and	
during	communication	with	online	services.		The	analysis	highlighted	the	importance	of	safe	storage	even	
when	tokenization	is	used.			

The	last	part	of	the	analysis	was	focused	on	generic	issues	that	have	to	be	considered.		The	aim	here	was	to	
identify	and	define	issues	that	come	part	in	parcel	with	the	use	of	smartphones,	software	and	new	methods	
of	authentication	(biometric).	

iv. Conduct	a	high	level	risk	assessment	on	the	identified	threats	and	how	certain	controls	can	
be	applied	to	mitigate	certain	risks	

	
The	work	on	this	objective	builds	on	the	outcome	of	the	third	objective.		For	each	weakness	identified	the	
risk	was	outlined	by	providing	a	scenario	and	conditions	 required	 for	 the	 risk	 to	occur.	 	 For	each	 risk	
identified	 a	 countermeasure,	where	 possible,	was	 provided.	 	 It	 is	 important	 to	 note	 that	 some	 of	 the	
countermeasures	provided	rely	on	the	availability	of	certain	techniques	and	technologies	that	are	currently	
not	yet	developed	or	available.		These	have	been	mentioned	as	possible	areas	of	further	research	in	Section	
6.2.	
	
I	believe	the	project	has	achieved	the	objectives	set	and	the	foreground	generated	in	this	project	serves	as	
a	 reference	 for	 future	work	on	 the	subject.	 	 I	believe	 the	main	 findings	of	 this	work	can	be	used,	as	a	
reference	to	develop	tighter	controls	to	further	improve	the	security	in	HCE	based	payments.			I	would	also	
have	 preferred	 to	 also	 extend	 the	 scope	 of	 this	 project	 to	 include	 security	 analysis	 on	 other	 parties’	
involvements	such	as	Merchants,	Acquirers,	Payment	network	providers	and	Issuers.		This	may	be	another	
consideration	that	I	may	decide	to	explore	in	the	future	when	time	permits.	

I	have	 found	this	project	challenging,	 interesting	and	I	have	enjoyed	 it	throughout.	The	project	covered	
several	phases:	research,	model	development	and	security	analysis	to	name	a	few.	The	modules	that	I	have	
took	 during	 my	 MSc,	 particularly	 “An	 Introduction	 to	 Cryptography”,	 “Security	 Testing	 Theory	 and	
Practice”,	“Computer	Security”	and	“Security	Management”	were	an	invaluable	source	of	information	and	
guidance	while	undertaking	this	project.			

This	project	strengthened	my	knowledge	about	electronic	payment	schemes	and	the	security	techniques	
used	to	protect	them.		Furthermore,	through	this	research	it	was	interesting	to	observe	how	information	
security	is	a	necessity	in	shaping	current	and	future	technology.	
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6.2 Areas	of	Further	Research		
	

During	 the	 security	 analysis	 in	 Section	 5,	 several	 weaknesses	 have	 been	 identified.	 	 A	 number	 of	
countermeasures	for	such	weaknesses	have	been	provided	but	a	number	of	these	rely	on	the	availability	of	
certain	techniques	that	are	currently	not	yet	implemented	or	available.		The	following	are	the	areas	where	
further	research	would	be	required:	

Mobile	Device	Unique	Identification	

One	of	the	requirements	for	a	number	of	countermeasures	listed	in	Section	5	is	a	way	to	uniquely	identify	
a	mobile	device.	 	Current	methods	such	as	using	 the	mobile’s	 IMEI	have	been	proven weak	since	such	
identification	 can	 be	 spoofed.	 	 	To	 provide	 further	 security,	 some	 form	 of	 identification	which	 is	 not,	
relatively	easy,	to	change	from	within	a	rooted	device	and	during	transit	is	required.		Currently,	an	attacker,	
through	malware	running	at	root	level,	on	a	rooted	mobile	device,	can	change	most	of	the	unique	IDs	on	
the	mobile	device.			

A	possible	 technique	 could	 involve	 some	 form	 of	 globally	 unique	 ID	which	 is	hard	 coded	 in	 the	TEE.		
Therefore,	 this	can	be	 integrated	as	part	of	 the	cryptographic	 functions	without	 the	need	 for	 the	 ID	 to	
actually	leave	the	TEE	in	plaintext.		It	is	the	author’s	opinion	that	further	research	on	this	subject	is	required	
to	enable	better	authentication	and	mapping	of	credentials	to	a	device	to	 further	limit	the	portability	of	
tokens,	and	credentials	used	during	a	transaction.	

API	provided	by	card	scheme	for	TEE	functions	

Currently,	HCE	Wallet	Application	developers	are	provided	with	requirements	and	specifications,	but	none	
of	them	are	detailed	enough	to	specify	how	certain	functions	and	processes	are	to	be	implemented	on	the	
mobile	device.	 	It	is	also	difficult	to	verify	and/or	certify	such	 ‘correct	implementations’	especially	if	the	
code	for	the	application	is	not	available	or	provided.	

It	 is	 the	author’s	opinion	 that	an	 industry	body,	such	as	VISA	and	other	card	payment	schemes,	should 	
provide	an	API	(Library)	to	HCE	developers.	This	way	the	card	scheme	has	assurance	that	keys	are	stored	
safely	and	cryptographic	functions	are	implemented	correctly	within	the	TEE.		This	API	can	utilize	the	TEE	
directly	or	else	utilize	the	OS’s	API,	such	as	Android’s	Trusty	OS.	 	The	API	could	have	functions	to	store	
and/or	 replenish	 tokens,	generate	 the	Application	Cryptogram	and	generate	 the	signature	 in	an	offline	
transaction.	

Specifications	for	evaluating	biometric	ID&V	methods	

Different	 biometric	 ID&V	methods	 have	 been	mentioned	 and	 for	 the	majority	 of	 them	 a	 number	 of	
weaknesses	and	attacks	have	been	identified	by	academics	and	researchers.			Still,	at	the	time	of	writing,	no	
specification	has	been	proposed	by	the	industry	on	acceptance	of	an	ID&V	method.		While	this	opens	up	
new	opportunities	of	innovation	in	the	field,	it	is	the	author’s	opinion	that	some	form	of	baseline	acceptance	
metrics	should	be	developed.	 	Any	method	used	 for	HCE	should	pass	 these	baseline	 tests	before	being	
approved	for	use	in	HCE.			
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8 Appendix	

8.1 Appendix	1	–	History	of	Contactless	Payments	Timeline	
	

The	industry	has	evolved	from	contactless	EMV	card	payments,	to	mobile	NFC	payments	using	secure	elements	to	HCE	payments. 	
	

Month	 Year	 Event	 Details	

September	 1898	 Early	 development	 of	 contactless	
technology		

Early	development	of	contactless	technology	by	Nikola	Tesla.	He	invented	a	tele-automation	system	
using	remote	control	technology	to	control	a	miniature	boar	at	Madison	Square	Garden	in	New	York	
City	without	touching	the	devices	directly	[161].	

March	 1997	 Speedpass	key	fob	
Mobil	Oil	Corp	gas	stations	offered	contactless	payment	devices	known	as	Speedpass.	The	device	is	a	
key	fob	which	is	a	cryptographically	enabled	capable	of	responding	to	a	challenge	response	protocol,	
whereby	customers	in	United	States	could	pay	for	fuel	at	participating	Exxon	and	Mobil	stations	[7].	

June	 1997	 NFC	first	patent	 NFC	patent	awarded	to	David	Andrew	White	and	Adrian	Marc	Borrett	(Patent	WO9723060)	[162].	

February	 2003	 NFC	first	prototype	
Nordea	Bank	AB,	a	financial	services	group	and	Luottokunta,	specialising	in	card	payment	services	
created	a	prototype	device	that	was	capable	of	making	payments	using	NFC	technology	[8].	

March	 2004	 NFC	Forum	founded	in	2004	

NFC	Forum	standards	body	was	founded	in	2004	with	the	aim	to	advance	the	use	of	NFC	technology	
and	to	create	standards	in	the	mobile	industry	for	interoperability	from	different	manufacturers	and	
service	providers.	Participating	members	included	Nokia,	Philips	and	Sony	established	the	Near	Field	
Communication	Forum	[8]	.	

January	 2007	 Nokia	6131	handset	-	NFC	enabled	

The	 Nokia	 6131	 was	 the	 first	 mobile	 phone	 to	 incorporate	 NFC.	
In	London	from	late	2007	heading	into	2008,	500	Londoners	were	given	this	device	to	be	used	for	
their	travelling	substituting	the	Oyster	Card.	Such	phone	was	also	used	to	purchase	items	as	if	the	
customers	had	a	debit	card	[8].	

August	 2007	 Tap	and	Go	 Barclaycard	introduced	the	first	contactless	cards	in	the	UK	in	2007	[7].	

March	 2008	 Eat	restaurant	chain	
EAT	was	the	first	retailer	in	the	UK	to	accept	contactless	payments.	Customers	were	able	to	pay	for	
transactions	of	£10	from	EAT	retailer	by	tapping	MasterCard	PayPass	or	Visa	payWave	cards	against	
the	POS	[7].	

	N/A	 2009	 Host-NFC	chip	standardization	

NFC	Forum	decided	in	2009	to	standardise	the	Host-NFC	chip	interface	so	that	device	manufacturers	
could	 switch	 suppliers	 more	 easily.	 Before	 that,	 those	 interfaces	 were	 proprietary	 by	 each	
manufacturer	and	therefore	different	[163].	NFC	Forum	chose	at	that	time	to	create	its	own	protocol,	
NFC	Controller	Interface	(NCI),	rather	than	rely	on	the	Host	Controller	Interface	(HCI)	as	used	in	a	
Single	Wire	Protocol	(SWP)	by	the	European	Telecommunications	Standards	Institute	(ETSI)	[163].	
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Month	 Year	 Event	 Details	

April	 2009	 Nokia's	first	SIM-based	NFC	device	 The	first	SIM-based	NFC	device	issued	by	Nokia	-	6212	Classic	[164].	

January	 2011	 First	 Contactless	 mobile	 phone	
payments	

In	Europe,	Barclaycard	 teamed	up	with	Orange	 to	 launch	Europe's	 first	contactless	mobile	phone	
payments.	The	system	went	 live	 in	 the	second	quarter	of	2011.	A	 limit	up	 to	a	value	of	£15	was	
imposed	on	purchases	when	using	this	type	of	payment	[7].	

September	 2011	 Google	Wallet		

Contactless	 payments	 using	 mobile	 NFC	 devices	 started	 with	 Google	 Wallet	 in	 2011.	 Google	
demonstrated	the	Google	Wallet	application	at	a	press	conference	in	May	26,	2011.	This	system	was	
initially	implemented	using	an	SE-based	model.	Customers	could	make	payments	by	simply	tapping	
the	phone	on	any	PayPass-enabled	terminal	at	checkout.	The	app	was	released	in	the	United	States	
on	September	19,	2011.		Google	Wallet	supports	payment,	loyalty,	money	transfer,	offers,	and	online	
order	tracking.	[10].	

June	 2012	
Contactless	 payment	 limit	 in	 UK	
raised	to	£20	

Contactless	payment	limit	in	UK	increased	to	£20	[165].	No	pin	or	signature	to	authorise	payment	is	
required	within	this	limit	band.	

August	 2012	 Simply	Tapp	using	Secure	Element	

SimplyTapp	and	Bankinter	S.A	became	the	very	early	pioneers	in	software	secure	element	(HCE)	to	
introduce	this	technology	to	pay	with	your	phone.	SimplyTapp	had	the	 first	trials	 in	August	2012	
whilst	Bankinter	S.A	in	April	2013	[163].	
	
At	 this	stage,	adoption	still	was	slow	due	 to	 limited	merchant	acceptance	and	mobile	NFC	device	
availability.	

December		 2012	
London	 Underground	 introduces	
contactless	payments	

Contactless	payments	introduced	on	London	transport	such	as	tube	or	busses	[166].	

October	 2013	
Google	 released	 First	 HCE	
architecture	in	Android	4.4	KitKat.	

Google	released	HCE	architecture	in	Android	4.4	KitKat	for	secure	NFC-based	transactions	[167].	

February	 2014	 Visa	payWave	and	MasterCard		
Visa	 and	 MasterCard	 announced	 that	 they	 will	 be	 supporting	 HCE	 for	 secure	 NFC	 payments	
transactions	[11]	[12].	

April	 2014	 Apple	Pay	

Apple	Pay	was	launched	by	Apple	Inc.	in	April	2014	in	the	United	States	and	in	October	in	the	United	
Kingdom.	The	implementation	is	based	using	traditional	device-based	Secure	Element.	It	does	not	
use	HCE	technology	[168].	
	
The	launch	of	Apple	Pay	in	October	2014	gave	mobile	NFC	reignited	interest	in	contactless	payment.	

April		 2014	 Google	 stopped	 supporting	 the	
Secure	element	Model	

In	April	14,	2014,	Google	stopped	supporting	the	SE-based	version	and	started	supporting	host	card	
emulation	(HCE)	[9].	

March		 2015	 Android	Pay	 Google	announced	Android	Pay,	a	platform	supporting	HCE,	tokenized	card	numbers,	and	NFC	[10].	
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March		 2015	 Samsung	Pay	
Samsung	Pay	was	introduced	in	the	United	States	and	Korea	[10].	Customers	in	United	States	could	
make	contactless	payments	using	 the	same	 traditional	mag	stripe	POS	devices	without	NFC	 [10]	
though	the	use	of	Magnetic	Secure	Transmission	(MST).	

September	 2015	
Contactless	 payment	 limit	 in	 UK	
raised	to	£30	

Contactless	payment	limit	in	UK	rose	to	£30	[165].	

May		 2016	
Barclays	 to	 launch	 contactless	
payment	app	for	Android	phones	

First	private	Android	contactless	mobile	payment	platform	launched	in	the	UK	by	Barclays.	Barclays	
will	have	their	own	app	service.	This	will	allow	customers	to	use	their	mobile	device	to	“wave	and	
pay”	 in	environments	such	as	shops,	restaurants	and	across	 the	London	 transport	network.	Such	
service	will	be	in	direct	competition	with	Google's	Android	Pay	service	[169].	

June	 2016	 Microsoft	Wallet	 Introduction	of	Microsoft	Wallet	in	U.S.A	operable	with	Lumia	950,	950	XL	and	650	on	Windows	10	
operating	system	[13].	

August		 2016	
EMVCo	to	certify	mobile	devices	for	
NFC	and	HCE	payments	

EMVCo	has	introduced	a	formal	industry	testing	(i.e.	EMVCo’s	Level	1	specification)	and	certification	
process	for	contactless	mobile	payment	device	both	secure	element	(SE)	and	host	card	emulation	
(HCE)	based	services.	The	specification	defines	the	physical	characteristics,	radio	frequency	interface	
and	transmission	protocol	between	credit	and	debit	cards	and	a	payment	terminal	[170].	

	

	
	 	


