
How long does it take to get owned?
David Wardle

Technical Report

RHUL–ISG–2019–4

27 March 2019

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX
United Kingdom

Student Number: 100862122
David Wardle

How long does it take to get owned?

Supervisor: Jorge Blasco Alís

Submitted as part of the requirements for the award of the
MSc in Information Security

at Royal Holloway, University of London.

I declare that this assignment is all my own work and that I have acknowledged
all quotations from published or unpublished work of other people. I also declare
that I have read the statements on plagiarism in Section 1 of the Regulations
Governing Examination and Assessment Offences, and in accordance with
these regulations I submit this project report as my own work.

Signature:

Date:

 i

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr Jorge Blasco Alís. Not only

did he come up with the fantastic idea for this project, he has provided a lot of support and

guidance during the course of it. Thank you.

Thank you too to Liam, Marcos, Nick and my wife, Lucy, for taking the time to proofread

this report and for all of their helpful feedback.

Finally, thank you to my family for their patience over these last few months.

This project is dedicated to the memory of my Father.

 ii

This page intentionally left blank

 iii

Executive summary

This report investigates the use of stolen credentials; more specifically measuring the time

it takes for them to be used after they have been leaked. By way of a literature review and

technical research, it begins by looking at the concept of digital identity and the use of

honeypots in information security. It then presents the different approaches and techniques

that can be used to monitor access to an online account. It also describes the methods

adopted by cybercriminals to illegally share personal data including passwords.

The report continues by presenting a framework that was designed to create fake online

identities along with an infrastructure to monitor their activity. The design was

implemented using a combination of manual processes and software developed for this

project. The implementation was tested by publishing the credentials for eleven fake

identities on paste websites. Over the course of six weeks, five events of unauthorised access

were recorded, with the fastest occurring just 34 minutes after the leak.

The report concludes by discussing the results of the experiment, recommending

improvements that can be made to the framework and proposing opportunities for future

work.

 iv

This page intentionally left blank

 v

Table of contents

Acknowledgements ... i

Executive summary .. iii

Table of contents ...v

List of tables .. vii

List of figures ... viii

List of acronyms .. x

1 Introduction .. 1

1.1 Objectives and scope ... 2

1.2 Methodology .. 3

2 Background ... 5

2.1 Identity .. 5

2.2 Honeypots .. 10

2.3 Monitoring unauthorised access to online accounts .. 11

2.4 Illegal sharing of personal data ... 16

3 Design .. 21

3.1 Honey identity ... 21

3.2 Selecting web services for a digital footprint .. 24

3.3 Monitoring infrastructure .. 30

4 Implementation .. 31

4.1 Related work .. 31

4.2 Creating the honey identity ... 34

4.3 Monitoring infrastructure .. 38

4.4 Architecture.. 43

5 The experiment .. 45

5.1 Setup ... 45

5.2 Pastes... 48

5.3 Publishing the credentials .. 53

5.4 Initial observations .. 53

5.5 Unauthorised access ... 55

5.6 Additional leaks .. 57

 vi

5.7 More unauthorised access ... 60

5.8 Summary .. 64

6 Discussion .. 65

6.1 The experiment ... 65

6.2 Future work ... 69

7 Conclusion.. 75

8 Bibliography .. 79

Appendix A Further examples of monitoring alerts ... 85

Appendix B Source code ... 89

Appendix C Paste files... 111

 vii

List of tables

Table 2.1: Different types of Identity defined in [9] ... 6

Table 2.2: Categories of digital personae from [10] .. 7

Table 2.3: Terminology used by the Internet Society [11] ... 7

Table 2.4: Breakdown of source of credential leaks [27] .. 18

Table 3.1: The shortlisted web services .. 23

Table 3.2: Review of the shortlisted web services .. 25

Table 4.1: VPS specifications ... 43

Table 5.1: The timeline of the experiment ... 45

Table 5.2: The initial honey identities created for the experiment ... 46

Table 5.3: Different formats of pastes ... 50

Table 5.4: The published pastes .. 53

Table 5.5: The final honey identity ... 58

Table 5.6: The final two pastes .. 59

Table 5.7: All of the monitoring alerts in the observation period .. 64

Table 5.8: Summary of intruders and time it took to get owned.. 64

 viii

List of figures

Figure 2.1. From "I" to "Me" [12] ... 8

Figure 2.2. Partial identities of Alice [13] .. 9

Figure 2.3: An example of a 2FA verification SMS from Airbnb ... 11

Figure 2.4: An example of a new login notification email from Twitter 12

Figure 2.5: A screenshot showing recent login activity on a Gmail account 13

Figure 2.6: A screenshot showing recent activity on Netflix .. 14

Figure 2.7: Example of a database dump paste [32] .. 19

Figure 2.8: Example of an email and password pair paste [32] ... 19

Figure 2.9: Example of a log paste [32] .. 19

Figure 3.1: Design for the creation of a honey identity ... 22

Figure 3.2: Basic design of login monitoring infrastructure ... 30

Figure 4.1: Overview of the implemented honey identity framework 35

Figure 4.2: Overview of the monitoring infrastructure for new logins 39

Figure 4.3: The honeytoken architecture ... 41

Figure 5.1: Email and password pairs easily found on Pastebin ... 50

Figure 5.2: A chart showing the number of views for each paste ... 54

Figure 5.3: New login notification email from Google.. 56

Figure 5.4: Email containing the 2FA SMS verification message from Dropbox 56

Figure 5.5: User agent and IP address for the first intruder ... 57

Figure 5.6: More user-friendly display of the same information ... 57

Figure 5.7: The contents of paste 7 ... 58

Figure 5.8: The contents of paste 8 ... 58

Figure 5.9: Updated chart showing the number of views for each paste 59

Figure 5.10: New login notification email from Dropbox... 60

Figure 5.11: Another new login notification email from Dropbox .. 61

Figure 5.12: The IP address and browser details for intruder #3 ... 61

Figure 5.13: User agent and IP address for the intruder #4 .. 61

Figure 5.14: User-friendly display of the same information .. 62

Figure 5.15: Google search activity by intruder #4 .. 62

Figure 5.16: Location and browser details of the final intruder... 63

Figure 5.17: An extract of a log file showing intruder’s activity on the website 63

 ix

Figure 6.1: A map showing the reported locations of the intruders .. 66

Figure 6.2: Results of a search for an intruder's IP address on Spaumhaus 66

Figure 6.3: A public Twitter profile showing the "born" date... 71

Figure 7.1: A warning that is now displayed on GitHub .. 76

 x

List of acronyms

2FA Two factor authentication

API Application programming interface

APT Advanced Persistent Threat

AWS Amazon Web Services

CAPTCHA Completely Automated Public Turing test to tell Computers and

Humans Apart

CPU Central processing unit

CSO Chief Security Officer

DNS Domain Name System

GDPR General Data Privacy Regulation

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

IMAP Internet Message Access Protocol

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

OSINT Open-source intelligence

POP3 Post Office Protocol version 3

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

Tor The Onion Router

UI User interface

URL Uniform Resource Locator

VPN Virtual Private Network

VPS Virtual Private Server

1

1 Introduction

News stories regarding major data breaches have become a regular occurrence in recent

years. Last year saw over 53,000 security incidents leading to 2,216 confirmed data breaches

according to a report conducted by Verizon [1]. Another recent survey found that 26% of

Americans, an estimated 64 million adults, received a breach notification in 2016 [2]. Uber,

Equifax, CarPhone Warehouse, Wonga, Ticketmaster, and Yahoo are just a few examples of

well-known companies who have acknowledged a large data breach in the last two years

[3]. The stolen datasets, many containing sensitive information such as passwords, are often

subsequently made publicly available on the Internet.

A leaked password can have serious consequences if it is re-used across a number of

different services. Studies suggest that users struggle to cope with the cognitive burden of

remembering a large number of complex passwords and so re-use the same password across

most of their accounts. Research, conducted in 2017, found that 38% of users re-used a

password on at least two different services [4]. Another recent study put this figure at 67%

[5], and the numbers are only increased once partial re-use is considered [4], [5].

Credential stuffing has become a serious threat. This attack automates the process of logging

into another (“un-breached”) website using stolen credentials and is one of the most

common techniques used to a take control of a user account. An attacker can then syphon

the compromised account of its stored value, financial information and other personal

information [6]. Mitigation techniques (such as password managers and multi factor

authentication) have failed to achieve mass adoption. It is no surprise that Alex Stamos, the

outgoing Facebook CSO, believes that the re-use of passwords is the number one cause of

harm on the internet [7].

In this project, the credentials for eleven fake identities were published online, mimicking

the approach used by cybercriminals to share illicit data. The use of these credentials was

then monitored for a period of six weeks to answer the question: how long does it take to get

owned?1

1 Owned is a slang term for being hacked.

2

1.1 Objectives and scope

The ultimate goal of this project was to measure how long it takes for stolen credentials to

be used once leaked. To achieve this goal, the following objectives were set:

1. Understand the concept and make up of a digital identity.

2. Analyse the different techniques available to monitor access to a web-based account.

3. Propose a framework to:

a. Generate fake digital identities (“honey identities”).

b. Monitor access and usage of these honey identities.

4. Conduct an experiment using a prototype implementation of the framework to:

a. Generate a number of honey identities.

b. Publish their credentials online.

c. Monitor access over a period of time.

By completing these objectives, it was hoped to gain a better understanding of how

cybercriminals make use of stolen credentials and the potential damage that can be caused

by password re-use.

The scope for this project was defined by several constraints. The web services chosen to

make up the honey identity were limited due to various ethical, practical and technical

reasons. The credentials for the accounts were leaked rather than waiting for them to be

exposed in a data breach. Furthermore, only one avenue of publishing the credentials (paste

websites) was used in the experiment phase. Finally, due to the time restrictions of the MSc,

the observation period for monitoring access was limited to just over six weeks.

3

1.2 Methodology

The nature of this project needed an approach that used several different methods to fulfil

the objectives. These included:

• Literature review. It was important to gain a better understanding of several

background topics (Chapter 2). It was also vital to look at related work and see how

others had approached similar experiments (Chapter 4).

• Implementation research. This covered research into techniques that could be used

to monitor access of a web account (Chapter 2), selecting appropriate web services

based on a defined criterion (Chapter 3), software tools to be used during the project

and other design considerations (Chapter 4).

• Implementation. The most time-consuming part of the project was the development

of a prototype framework and monitoring infrastructure designed in this project

(Chapter 4).

• Experiment. The developed framework was used to create a number of identities,

publish the credentials and monitor access over a period of six weeks. The

experiment is presented in Chapter 5 and the findings are discussed in Chapter 6.

4

This page intentionally left blank

5

2 Background

This section introduces four key areas of this project: the building blocks of (digital) identity;

the use of honeypots in information security; the various methods that can be used to

monitor unauthorised access to online accounts; and the illegal sharing of stolen credentials.

2.1 Identity

In order to create a fake identity, a basic understanding of “Identity” in the digital age was

first required. In other words, what attributes and components are needed to make a fake

identity?

The majority of research involving the concept of “digital identity” falls into two distinct

topics: (social) psychology and privacy. Surprisingly, there is no common terminology when

discussing personal data; even the phrase “digital identity” has several contrasting

definitions. Indeed, there is research that discusses the different terms used and proposes

new models [8]. Whilst it is out of the scope of the project to come up with a new meaning,

it is worthwhile to briefly look at some prominent publications from both categories.

2.1.1 Psychology

From the psychological point of view, identity is the basis for an old philosophical question:

“Who am I?”. Rodogno looked at this question in his paper discussing the effect of the

Internet on Personal Identity [9]. He identified six overlapping types of identity; shown in

Table 2.1.

When it comes to online activities, the same person may have distinct and conflicting online

and offline identities. It is not the case of a single identity having different attributes but of

complete identities in the plural. However, the fake identities created for this project exist

purely in databases; there is no real person behind them. For that reason, the definition of

“Passport Identity” is the most relevant one for our purposes.

6

Type Definition

Passport Identity A Customs Officer at Immigration will want to know who I am.
Presenting my passport provides information about my
appearance, name, sex, date of birth, nationality, and place of
residence. This personal information is sufficient for our
common purposes.

Numerical Identity Using the example of a talented musician and professor, who
after having a devastating stroke, can no longer play an
instrument and struggles to remember even his closest friends.
Is this pre-stroke person the same as the post-stroke one? This is
another long-established philosophical question referred to as
the re-identification or persistence question.

Attribution Identity What are the conditions under which various psychological
characteristics, experiences, and actions are properly attributable
to some person? This is called the characterization question.

Social Function Identity Someone introducing them self as “the repairman” when you
are expecting someone to fix your washing machine would be
sufficient information about that person’s identity for your
common purposes.

Attachment Identity More in line with what people consider to be a “deeper”
understanding of personal identity. It may have little in
common with one’s social role and points to things to which we
are attached – things that we care about or matter to us.

Table 2.1: Different types of Identity defined in [9]

2.1.2 Privacy

Psychological reports can help one understand the deeper meaning of “Identity”, but they

do not provide guidance to the attributes that make up an identity. For the purpose of this

project it is, therefore, better to look at the topic from a Privacy point of view.

The concept of a “digital persona” was introduced by Roger Clarke in 1994 [10]. He

proposed the following definition:

a model of an individual's public personality based on data and maintained by

transactions, and intended for use as a proxy for the individual.

Clarke identified a number of key characteristics of digital personae leading to several

different categories. Like Rodogno, Clarke states that one person may have many digital

personae in order to present themselves in a different way to different people or the same

person at different times. These definitions are summarised in Table 2.2.

7

Category Description

Informal persona A persona based on human perception

Formal persona A persona constructed on the basis of accumulations of structured
data

Projected persona A persona controlled by the individual it is associated with

Imposed persona A persona controlled by someone other than the individual it is
associated with

Passive persona A persona that comprises of data alone

Active persona A persona that has some capacity to act, on behalf of, or in
substitution for, the individual it is associated with, cf. a software
agent

Public persona A persona that presents a commonly-held, composite image of a
person who is presumed to be well-known (e.g. Marilyn Monroe,
Marshall McLuhan) or of an archetype (e.g. “action man”, “drug
mule”, “psychopath”)

Table 2.2: Categories of digital personae from [10]

Using Clarke’s definitions, it may be more appropriate to describe the fake identities in this

project as “passive digital personae”. However, this does not go any further in providing

the building blocks than the psychological research.

The Internet Society [11] is an international campaign group working towards the goal of an

open, secure and trustworthy Internet. The terminology in their literature (Table 2.3) is

rather different from that of Clarke’s.

Concept Definition

Identity Complete set of characteristics that define you. E.g. Name, nicknames,
birth date, and any unique characteristics that combine to make you
who you are.

Identifier A way of referring to set of characteristics. E.g. Your email address
(myID@me.com) or username (RaulB) or an account number. Usually
an ‘index’ to other data held about you.

Partial identity A subset of the characteristics that make up your identity.
E.g. Demographic information about you or any purchase history is
stored in your account at a website

Profile Information collected by others about your actions and characteristics.
E.g. A search your conducted for “discount shoes” or a list of websites
visited. Your profile may also be based on inference data. For instance,
a service provider has a certain number of data points, they will use
those as the basis to infer other things about you.

Persona A partial identity created by you to represent yourself in specific
situation. E.g. a social network account or your online blog

Table 2.3: Terminology used by the Internet Society [11]

8

The International Telecommunications Union (ITU) is the United Nations agency for

information and communication technologies. They published a report in 2006 called

“digital.life” in which they looked at the “digital individual” from a security and privacy

point of view [12]. Again, the terminology that the ITU use differs from that discussed above.

Digital Identity refers to the online representation of identity. More

specifically, it refers to the set of claims (in their digital form) made about a

user or another digital subject.

Digital claims are sets of data, also known as attributes or identifiers. Attributes can include

a name, phone number, bank balance, but also past purchases or employment records

(Figure 2.1). They can be static (such as place of birth) or dynamic (such as employer’s name).

Figure 2.1. From "I" to "Me" [12]

Different digital identities exist in a specific context and the context will determine which

subset of attributes are required. This is known as a “partial identity” and is close to the

Internet Society’s definition of the same term. Figure 2.2 shows examples of the many partial

identities of Alice. She may share her name and address with both her health care provider

and employer, but only the former will know her blood group and health status.

9

Figure 2.2. Partial identities of Alice [13]

The ITU terminology offered the most helpful guidance for this project, providing examples

of the different attributes that can be used as digital claims. However, in the Internet age, it

is almost impossible to quantify or define the huge number of data points that comprise

personal information [14].

2.1.3 The terminology used in this project

It is important not to get side-tracked about the differences in terminology used across the

different research in different contexts. Since there are no universally accepted definitions,

it is often simply the personal preference of the author.

A more simplistic definition, offered by the authors of a patent for managing digital identity

information, may be the most appropriate for this project [15]:

The summation of a person’s personal data.

This can be complemented with the term “digital footprint” [8]:

Data descriptive of an individual, laid down by that individual as a result of

using, or being observed by, computing devices.

In other words, the personal data that comprises one’s digital identity leaves a digital

footprint when it is used on a computer (or, in this case, a website).

10

The design of a fake digital identity and its encompassed digital footprint will be discussed

in detail in the next chapter.

2.2 Honeypots

The fake identities served as a trap aimed at detecting unauthorised access to various web

services; in other words, they were a honeypot. Such a concept has been widely used as a

network defence since the early 1990s. However, it wasn’t until 2003 when Spitzner [16]

introduced the widely accepted formal definition:

A honeypot is a security resource whose value lies in being probed, attacked or

compromised.

Today, there are a vast number of honeypot tools that offer a variety of different services

such as detecting malware and thwarting spam. They are often used to complement other

security resources such as Intrusion Detection Systems and firewalls [17].

The use of honeypot accounts was in the news recently when, during the 2016 French

presidential elections, a 9 GB collection of emails from Emmanuel Macron’s party were

posted online. However, it quickly turned out that the majority of this information was fake,

and part of a strategy to protect against an Advanced Persistent Threat (APT). To slow down

the attack, Macron’s team flooded phishing attacks with fake data to hide the credentials of

any users that may have been tricked. Additionally, they also planted the credentials for a

number of honeypots accounts. These accounts contained a number of fake documents to

not only create a large amount of disinformation when they were eventually leaked but also

to help identify the hackers. [18]–[20]

Spitzner also proposed the term “honeytoken” for a honeypot which is not a computer. They

can take the form of any digital entity such as a credit card number, Word document, URL

or a special login. The different formats all have the same concept: their value lies in the

unauthorised use of that resource [21].

11

2.3 Monitoring unauthorised access to online accounts

In order to construct a honeypot account, it is crucial that the website offers functionality

that can be used to monitor the access and activity of that account. In this section, a number

of different possible techniques are discussed independent of any actual web service. It is

often the case that a single method will only provide a limited amount of information

regarding any unauthorised access. However, a combination of several could provide

enough detail to formulate a picture of the intruder1 and their motives.

Two Factor Authentication – SMS Verification

Two Factor Authentication (2FA) is an authentication mechanism that has been adopted by

many websites to increase login security. SMS verification is the most common, albeit least

secure, form of 2FA [22]. At its most basic, a text message containing a verification code will

be sent to the user when they try to log into the site. Knowledge of this code proves

possession of their mobile phone and, along with the valid password, thus greater

confidence in the user’s identity. An example of this kind of text message is shown in Figure

2.3.

Figure 2.3: An example of a 2FA verification SMS from Airbnb

Receiving one of these notifications will demonstrate that valid credentials have been used

which would be sufficient for the purposes of this project. However, there are several

limitations to this approach. Firstly, since an intruder would not be able to receive the text

message then they would not gain full access to the account. This means that it would not

be possible to gain an insight into the intruder’s motives through their activity within the

1 A number of different terms were considered to describe those who use stolen credentials, such as cybercriminal,
miscreant, attacker and credential seeker, but it was felt that intruder was most appropriate.

12

account. Additionally, the actual contents of the message would not provide any useful

information, such as an IP address, that could be used to link the attacker to other incidents.

New login notification

When a user logs into their account for the first time from a new device and/or location, an

email is sent to the user containing information regarding this login. The amount of

information in the email will vary according to the service but often contains a minimum of

the time and device details. Whilst this alert can be useful for monitoring access to an

account, it does not provide any indication of further activity other than the validation of

the credentials. Figure 2.4 displays a screenshot of this type of email.

Figure 2.4: An example of a new login notification email from Twitter

Login history/recent activity

Similarly, a web service will often have a special page that allows the user to audit recent

logins and active sessions. Initial tests showed that the information provided was more

detailed than that in a new login email. For example, Dropbox displayed the IP address of

the user on this page but did not include it in the email. However, like the notification emails,

the amount of information varied between services. One major downside of using these

pages for monitoring is that one would need to log in on a regular basis, or after a separate

13

alert, and manually check for unauthorised activity. An example of the login history on a

Gmail account is shown in Figure 2.5 and further examples can be found in Appendix A.

Figure 2.5: A screenshot showing recent login activity on a Gmail account

Credential check

A study looking at the effect of leaked credentials for Gmail accounts identified account

hijacking as a common behaviour of intruders. They describe this as the process of changing

the account’s password to lock the legitimate owner out of the account [23].

If an account is hijacked, it will prevent the use of some monitoring techniques discussed in

this section and others could be disabled by the intruder. Even so, it is in itself a sign of

unauthorised access. Sometimes the service provider will email the account owner

whenever the password is changed however this is not always the case. Furthermore, this

email cannot be relied upon as the email account may have also been compromised by the

same intruder. A better method would be to check that the credentials are still valid on a

regular basis.

A big drawback of this technique is that it would provide no information about the intruder

and only then if they change the password. For this reason, it should only be used as a last

resort when it is not possible to use any other monitoring technique.

14

Account activity

Due to the nature of a honeypot account, any activity within it can be classified as

unauthorised. Messaging services such as email and Twitter, have a natural log of activity

in the form of sent/received messages. Financial services will store a record of all

transactions. Other services, such as media streaming and e-commerce, keep a log of activity

to improve their service and personalise recommendations. Whilst account activity may not

provide IP/location information, it can provide a crucial insight into the motives of the

cybercriminals.

In addition to “Hijackers”, Onaolapo et al devised three other categories of attackers:

Curious, Gold diggers and Spammers [23]. By analysing account activity, it may be possible

to expand on these categories and even propose new ones for different types of services. It

could well be the fact that different types of services may have different trends. For example,

one would expect that on a paid-for streaming service, such as Netflix, an intruder would

hope that their activity went unnoticed rather than hijacking the account. Figure 2.6 displays

an example of activity history on this service.

Figure 2.6: A screenshot showing recent activity on Netflix

An aspect that is unique to a compromised email account is the possibility to gain access to

other services without knowledge of a valid password by resetting the password. Not only

would the presence of such an email indicate access to that account, which could be

considered a separate way of monitoring access, it also presents a clear picture of the

intruder’s intentions.

15

Data request

Under the General Data Privacy Regulation (GDPR), individuals have the right to request

access to all data that a business may have relating to that individual. That data could

include useful information relating to logins and activity. However, since the fake identities

are not real entities, there would be ethical concerns in making a request of this nature. For

that reason, a manual data request was not considered for the purposes of this project.

In some cases, a service provider may offer a “data download” functionality that allows a

user to download a copy of all their personal data stored by that service. Given that this is a

feature of the website rather than the use of an individual’s legal rights, there would be no

ethical concerns to using it. However, this would be a reactive measure taken to gain further

information of a breach and could not be used as the sole technique.

Honeytokens

The concept of honeytokens was introduced in Chapter 2.2. Honeytokens can be used as a

monitoring technique as long as a service has the functionality to store data that can only be

viewed by the logged-in user. This is a big advantage above previously mentioned

techniques as it does not rely on the infrastructure provided by the service. Furthermore,

any honeytoken would remain active even if an account is hijacked.

A basic honeytoken could be the credentials for another monitored account hidden within

messages. Access to this second honeypot account would signify that the honeytoken,

assuming the credentials cannot be obtained elsewhere, had been used and in turn that the

honey identity’s account had been accessed.

The main shortcoming of this approach is that it requires the intruder to “trigger” the

honeytoken (i.e. make use of it). If they do not find it, or have no interest in it, then the access

to the account could go unnoticed.

Custom scripts

It may be possible to develop custom scripts that can run on the web services to monitor any

activity. In the aforementioned study focussed on Gmail accounts [23], the researchers

created a tool that would track emails being viewed, starred or sent. The script, embedded

in a hidden Spreadsheet, marked all emails as unread and unstarred when it initialised. It

would then run once an hour and look for any emails that were not in this baseline state.

16

However, the researchers noted that whilst quite powerful, Google App Script is fairly

limited and cannot provide location information.

During the investigation phase of this project, it was rare to find a service that allowed

custom scripts to be executed. It is often an unnecessary feature and would present a clear

security risk to the service provider.

Partnership

One final option would be to form a partnership with a service. In fact, this may be the only

option when it is simply not feasible to create a honeypot account, for example an online

bank account. This would lead to several possibilities such as:

• Bulk creation of honeypot accounts

• Additional monitoring techniques

• More detailed logging information

Prior to the commencement of the project, several prominent websites and online financial

institutions were contacted. Although several expressed interest in the project, none were

willing to form a partnership.

Nine different methods for monitoring access to an account have been presented in this

section. It is often the case that a website will only offer one or two of these options. Any of

the techniques could be used as the basis of a honeypot account. Nonetheless, a minimum

of login notification email or the presence of a login history page was required for the

honeypot accounts created in this project. The full criteria for selecting suitable websites,

along with the chosen services, are discussed in the next chapter.

2.4 Illegal sharing of personal data

The final topic area to introduce is the illegal sharing of stolen personal data including

credentials. Over the past decade, the releases of usernames and passwords (credential

dumps) have become a popular shared commodity, especially within underground

communities. Cybercriminals share credential dumps in order to prove technical capability,

enhance their reputation, and demonstrate legitimacy with criminal groups. They use three

17

main techniques to collect these credentials: phishing, malware, and database compromises

[24].

The “darknet” refers to the anonymous communication provided by crypto-networks such

as “The Onion Router (Tor)”. Tor is free software that effectively allows for anonymised

browsing and thus protects the user’s privacy. This is in contrast to the “deepnet” which

refers to portions of the open Internet (the “Clearnet”) that are not indexed by search engines

[25]. The darknet has become widely used for illegal activity leading to it being discussed in

many news stories. However, Nunes et al [25] state that there is actually little hacking

activity on the darknet. On darknet markets, only a small fraction of products (13%) are

related to malicious hacking.

Butler et al [24] state that as stolen credentials are published, they are slowly distributed

across the Internet, usually to hacking forums before appearing on public paste sites. Troy

Hunt [26], who operates a data breach notification website, agrees that few data breaches

are released on the darknet and any that are will eventually end up on the Clearnet.

Forums are user-centric platforms with the sole purpose of enabling discussion with like-

minded individuals. Underground forums (also known as blackhat, hacker, or carding

forums) are forums that focus on illegal activity and operate on both the darknet and

Clearnet. Shakarian et al [27] observed that the majority of English-language forums are only

accessible through the Tor-network whereas forums for Russian speakers are more often

hosted on the surface layer Internet. Access to these forums can vary heavily – some allow

anyone to register whereas others will require an invitation code, payment, or even an

interview. English speaking forums contain feature boards concerned with financial fraud,

hacking, information security, and the release of credential dumps and personal data.

In the first longitudinal measurement study of the underground market for stolen

credentials, Thomas et al [28] assess the risk it poses to millions of users. The authors looked

into forums that trade credentials exposed via data breaches along with phishing kits and

keyloggers. They developed an automated framework to monitor blackmarket actors and

stolen credentials. Over the period of a year from March 2016, they managed to identify over

1.9 billion usernames and passwords exposed by data breaches however they emphasise

that this is just sample of underground activity.

18

Shulman [29] discovered that stolen webmail accounts were more valuable than those for

other services. This is because they may allow further compromises through password

recovery features. Of these, Gmail accounts were the most expensive, fetching up to $80 in

comparison to $1.50 for a Hotmail account. Whilst those figures may have changed since

2010, the high value of webmail credentials are echoed by DeBlasio et al [30].

Thomas et al [28] created a framework to identify and source credential leaks. A breakdown

of their results can be seen in Table 2.4. Most public leaks are small with 48% containing

fewer than 1,000 credentials.

Source Candidate documents Confirmed leaks Credentials extracted

Paste sites 3,317 1,666 4,855,780

Search index 26,208 1,304 10,856,227

Public forums 1,921 557 107,343,690

Private forums - 258 1,799,553,568

Table 2.4: Breakdown of source of credential leaks [28]

Malderle et al refer to a service or storage location where credential dumps are traded as a

data sink. They state that a data sink can be public, semi-public or closed for a special group

of users. Paste sites are an example of a public data sink and used by cybercriminals to either

distribute their stolen data leaks or advertise them by sharing a sample of the leak to prove

their value [31]. These sites are services that allow users to store and share plain text (such

as snippets of code). Most allow users to post anonymously which has given rise to the

sharing of credential dumps. There are some common patterns of pastes that may appear

on these kinds of sites [32].

Database dumps normally take the form of scripts that can be used to restore the entire

database structure. They will often contain the password which may be secured using a

cryptographic hash. An example is displayed in Figure 2.7.

19

Figure 2.7: Example of a database dump paste [32]

Email and password pairs are simple lists containing credentials consisting of a username

(or email address) along with a plain text password. Figure 2.8 shows an example of email

and password pairs.

Figure 2.8: Example of an email and password pair paste [32]

Logs and code blocks take a variety of different forms and may be anything from

compromised system logs to code.

Figure 2.9: Example of a log paste [32]

The pastes could also be a seemingly random list of email addresses without any context.

These could be completely innocent but may also indicate a serious data breach.

In the experiment phase of this project, paste websites were used to publish the credentials

for various honeypot accounts belonging to the fake identities. The contents of the pastes

were based on ones that can easily be found on those sites and are described in more detail

in Chapter 5.

20

This page intentionally left blank

21

3 Design

This chapter describes the design of the honey identities and monitoring infrastructure

using knowledge gained from the previous chapter. The implementation of a framework to

create honey identities and the monitoring infrastructure is discussed in Chapter 4.

3.1 Honey identity

A new term was coined for this project: honey identity. This can be described as a collection

of personal data used to create a number of accounts (or a digital footprint) whose value lies

in being attacked or compromised. Therefore, a honey identity should have two key

properties:

• A potential intruder should not be able to identify it as a honeypot and thus avoid

it;

• Equally, it should entice any potential intruders.

To gain the first property, it is necessary to use realistic attributes to make up the identity.

The attributes should be different for each honey identity to ensure that they cannot be

identified if there is more than one in the same dataset. A simple way to achieve this would

be to develop a database of possible values and then randomly select from it. Given the

nature of randomness, some form of quality control may be required to ensure that the

combination of attributes still looks “real”, for example a character with the same first and

last name may stand out.

The second property is more difficult to achieve. Indeed, future use of honey identities could

help to identify contributing factors. As stated in Chapter 2, stolen credentials are traded on

underground markets and forums. It was speculated that creating a digital footprint

consisting of accounts for several high-value websites would make the honey identity

“desirable” to cybercriminals. However, there is limited research available on the price of

stolen credentials and the data that is available is often out of date.

The most recent figures available have been collated by Top10vpn.com. The website, who

review VPNs and other Privacy tools, has created a “Dark Market Index”; showing the price

of stolen credentials for many popular websites. The prices were calculated by taking an

average of the advertised sale price for hacked accounts across three big darknet

22

marketplaces over the period of a week [33]. However, it did not consider the validity of the

credentials. A shortlist of suitable websites was created by selecting those with the highest

prices in each category.

Whilst the figures provided by Top10vpn.com were a suitable starting point, it would be

inadequate to rely solely on their research, so it was decided to also consider other popular

websites. The shortlist was supplemented with several English language websites that had

a high Alexa Rank (www.alexa.com). Alexa is a web traffic analytics company which

publishes a daily list of the top million websites. The final shortlist of 30 websites is

displayed in Table 3.1.

The design for creating a new honey identity is presented in Figure 3.1. Another aspect that

would aid both properties would have been for the honey identity to have an active online

presence. Several social media networks were on the shortlist, but it would not have been

feasible to regularly post new content due to the amount of time available for this project.

Figure 3.1: Design for the creation of a honey identity

23

Service Domain Category Price (£) [33] Rank1

Paypal paypal.com Finance 279.94 68

eBay ebay.com Shopping 26.2 37

Apple ID apple.com Entertainment 10.98 74

Amazon amazon.com Shopping 6.78 11

British Airways britishairways.com Travel 6.73 4531

Netflix netflix.com Entertainment 5.99 34

Spotify spotify.com Entertainment 5.69 123

Airbnb airbnb.com Travel 5.66 364

Uber uber.com Travel 5.02 1315

Facebook facebook.com Social network 3.74 3

Deliveroo deliveroo.com Food delivery 3.74 18821

Skype skype.com Communication 3 505

Groupon groupon.com Shopping 2.99 633

Outlook live.com Email 2.37 17

Booking.com booking.com Travel 2.25 101

Plenty of Fish pof.com Dating 2.24 1004

Match.com match.com Dating 2.24 1759

TripAdvisor tripadvisor.com Travel 1.87 204

LinkedIn linkedin.com Social network 1.49 52

Yahoo yahoo.com Email 1.2 6

Twitter twitter.com Social network 1.2 10

Instagram instagram.com Social network 0.92 14

Google google.com Email 0.75 1

YouTube youtube.com Entertainment - 2

Reddit reddit.com Social network - 16

GitHub github.com Software - 73

Pinterest pinterest.com Social network - 76

Adobe adobe.com Software - 87

Soundcloud soundcloud.com Social network - 110

Dropbox dropbox.com Software - 132

Table 3.1: The shortlisted web services

1 on July 2nd 2018: https://toplists.net.in.tum.de/archive/alexa/alexa-top1m-2009-07-02.csv.xz
In cases of multiple domains (e.g. .com and .co.uk), the rank of the highest placed domain was used.

24

3.2 Selecting web services for a digital footprint

The final websites were chosen from the shortlist based on the following criteria:

• Ethical and practicability constraints. It would be against ethical guidelines to break

the terms and conditions of a service. Some services state that they must be informed

if an account is compromised and many of them specifically forbid the creation of

fake/false accounts altogether. There may also be certain other restrictions that mean

the service would be impractical, such as requiring valid billing details.

• The availability of the monitoring techniques discussed in Chapter 2. At a minimum,

login notification emails or a login history page should be present.

• The possibility to automate registration and certain monitoring techniques. In this

case, the presence of a CAPTCHA was noted however the absence of one did not

necessarily mean that it was possible to automate.

A summary of the findings can be seen in Table 3.2. Please note that monitoring techniques

were not investigated for some services that forbid fake accounts. Furthermore, services

with obvious practical constraints, such as banking, were not even considered.

3.2.1 Chosen web services

Eight of the shortlisted websites met the defined criteria, from which six were chosen to

form the digital footprint. Yahoo and Pinterest were not selected as preference was given to

similar websites. This section provides a brief introduction to each chosen service along with

details of any reported data breaches and the available monitoring techniques.

Gmail (www.google.com/gmail/)

Google is one of the most popular email providers with over 1.4 billion accounts [34]. Whilst

the project is focussed on the email service, a Google account offers a whole suite of

applications including word processing, spreadsheets, video chat and social network. A

Google account can also be used on YouTube, the video sharing platform.

Gmail was chosen over Yahoo email for this project as their platform offers the chance to

test almost every monitoring technique mentioned in Chapter 2 including the use of custom

scripts. Whenever there is a login from a new location or device, an email is sent to the

25

Service Allow
fakes

2FA SMS Login
email

Login
history

CAPTHCA
free

Paypal ✗ - - - -

eBay ✗ ✓ ✗ ✗ ✗

Apple ID 1 ✓ ✓ ✓ ✗ ✗

Amazon 1 ✓ ✓ ✗ ✗ ✓

British Airways ✗ - -

-

Netflix 2 ✗ ✗ ✗ ✓ -

Spotify ✗ ✗ ✗ ✗ ✗

Airbnb ✗ ✓ ✗ ✓ -

Uber 2 ✗ - - - -

Facebook ✗ ✓ ✓ ✓ ✗

Deliveroo 2 ✗ - - - -

Skype 3 N/A N/A N/A N/A N/A

Groupon ✗ - - - -

Outlook ✗ ✓ ✓ ✓ ✓

Booking.com ✓ ✓ ✗ ✗ ✓

Plenty of Fish ✓ ✗ ✗ ✗ ✓

Match.com ✗ - - - -

TripAdvisor ✗ - - - -

LinkedIn ✗ ✓ ✗ ✓ ✓

Yahoo ✓ ✓ ✓ ✓ ✓

Twitter ✓ ✗ ✓ ✓ ✓

Instagram ✓ ✓ ✗ ✓ ✓

Google ✓ ✓ ✓ ✓ ✗

YouTube 3 N/A N/A N/A N/A N/A

Reddit 4 ✓ ✓ ✗ ✗ ✓

GitHub ✓ ✓ ✓ ✓ ✓

Pinterest ✓ ✗ ✓ ✓ ✓

Adobe 1 ✓ ✓ ✗ ✗ ✓

Soundcloud ✓ ✗ ✗ ✗ ✗

Dropbox ✓ ✓ ✓ ✓ ✗

Table 3.2: Review of the shortlisted web services

1Terms state that the service provider must be immediately notified in the account is compromised
2 Registration requires valid payment details
3 Registration is for an account with parent service provide (Microsoft and Google, respectively)
4 2FA verification code is sent by email rather than SMS

26

user for further review. This email cannot be disabled, and more information about any

login can be gathered from a recent activity page. There is an additional page showing a log

of certain other types of activity involving other Google tools (e.g. search). Google also offers

the ability to increase login security with 2FA through SMS, a smartphone app or a physical

token (security key).

It is possible to easily monitor the email activity by configuring the account to forward all

incoming messages to a separate email account. At the same time, outgoing email can be set

up to send using a different SMTP server. This means that even if the messages are deleted

then there will still be a record of them. It is harder to check whether emails have been

viewed since it is possible to mark as unread. One possible option would be to hide

honeytokens within select emails. If they are subsequently triggered, then this would

indicate the message had been read. However, this relies on the intruder finding these

emails and then using the tokens.

Unique to Google is the ability to use custom scripts for additional monitoring as mentioned

in 2.3. Google Apps Script is a scripting language based on JavaScript that can be used to

automate and enhance functionality across the Google Apps suite. In combination with the

login notification and history page, this can be used to provide further information about

any account activity such as viewed emails [23].

Dropbox (www.dropbox.com)

Dropbox provides cloud storage and file sharing services to over 500 million users [35].

Dropbox offers a free basic package with paid for options available to increase storage size

and extra functionality.

The company was the victim of a significant hack in 2012. It was initially reported that only

email addresses were stolen. However, almost four years later, it was revealed to have been

a lot more serious and included password hashes for over 68 million users. It was of interest

that the hack is rumoured to have been due to the re-use of a password that had been leaked

via a data breach from LinkedIn, a social network platform [36].

Dropbox will email the user whenever a there is a login from a new location or the account

is synced to a new device. This notification is optional but enabled by default. Further

information can be viewed on a “Security” page that shows current web sessions and synced

27

devices. There is also an option to enable 2FA using text messages or the mobile app. Whilst

they do not provide a full log of user activity, one can plant honeytokens into uploaded

documents and track new uploads.

Dropbox’s paid-for plan allows for the batch creation of accounts and provides a full audit

log. However, since the cost is per user, this approach would not scale well for a large

experiment.

Twitter (www.twitter.com)

Founded in 2006, Twitter is a social networking platform with over 335 million active users

worldwide [37].

Earlier this year, Twitter disclosed that there was a software bug that exposed plain text

passwords. The company stated that there was no indication of a breach or misuse [38]. In

2013, Twitter acknowledged that hackers may have gained access to around 250,000

accounts including usernames, email addresses and password hashes [39].

As with Dropbox, an email is sent whenever there is a login from a new location by default.

There is also an option to enable SMS 2FA. Whilst there is no page displaying login history1,

it is possible to obtain this information through an automated data request feature. It would

be easy to track the account’s activity by simply subscribing to their Twitter feed.

Additionally, honeytokens can be embedded in private messages.

Apple ID (appleid.apple.com)

Apple ID is the single sign-on service used by Apple to authenticate devices, e-commerce

and other services. Their terms and conditions state that any unauthorised activity must be

immediately reported to Apple. Despite this, Apple ID was chosen due to its high value in

Top10vpn.com’s Dark Web Market Index [33]. 2FA was enabled on any account created

thereby preventing full access to it. Any text message will indicate a breach, and despite the

absence of location information, this could be used as the basis of a honeytoken.

There have been no reports of Apple ID having suffered a data breach. However, in 2014,

over 100 celebrities had private photos stolen from the platform. The thefts were made

possible through targeted phishing attacks rather than any breach of Apple’s systems. In the

1 There is a page showing logins from apps but this does not include web browsers.

28

subsequent aftermath, Apple strengthened the security of their systems and enabled certain

security features by default [40].

Instagram (www.instagram.com)

Instagram is a photo and video sharing social network. It was launched in 2010 and bought

by Facebook two years later for approximately $1 billion. It is reported to have over 800

million active users [41].

Last year, a bug allowed email addresses and contact details for millions of users to be

revealed. This bug was then used to extract the personal data for thousands of celebrities

which were subsequently listed for sale on a special website [42].

Like Twitter, it is possible to follow account activity through a public feed. There is a page

displaying login history, however the information is extremely limited; showing just the

time and date of login. The automated data download does not provide any further details

on the logins. Instagram provides the option of 2FA through SMS only.

Despite the limited monitoring options, Instagram was chosen as it was a good proof-of-

concept for automated registration and credential checking. Any credentials for this service

could also be used as a honeytoken.

GitHub (www.github.com)

GitHub, also chosen as a good example of automation, is a web-based hosting service for

software version control. It was recently announced that Microsoft had reached an

agreement to acquire GitHub for $7.5 billion [43].

The company seems to take a proactive approach to security: monitoring user accounts,

identifying new attack vectors and offering a bug bounty [44]. Whilst there have been no

reports of a data breach for GitHub, it has been the source of several high-profile incidents.

This was not due to any failings by the company but rather customers storing secret

information in their code repositories. In the high-profile case of Uber, their GitHub account

was hacked allowing the hackers to view AWS credentials contained within a private

repository which, in turn, led to a large data breach [45].

29

There is a page displaying active sessions and a history of security events. It is also possible

to enable 2FA through SMS or a smartphone app. Fake source code could be created

containing honeytokens or as a means to leak credentials for other honey identities.

3.2.2 Private server

In addition to the above web services, it was decided to set up a private server for a website

and email. With full control over the server, including source code and access logs, the

generic monitoring techniques discussed previously were not as critical.

A website was developed for a fictional financial company called “ISG Project”

(www.isgproject.org). The main purpose of the website was to provide a level of

authenticity to the honey identities and to frame the leaking of credentials as the result of a

hack on the website. Each honey identity would have a public profile page as well as their

own account on the website.

An email server was also configured, and each honey identity was given an @isgproject.org

email address. In addition to IMAP and SMTP, a webmail system was installed for easier

access. A link to the webmail was added to the website.

The configuration of the server and a look at the risks associated are discussed in the next

chapter.

3.2.3 Types of honey identity

Some of the services (Apple ID, Instagram and GitHub) were chosen despite their limitations

as they offered a proof-of-concept monitoring technique. For this reason, it was not

necessary to create accounts on these services for all of the generated honey identities. The

different levels of honey identity are briefly discussed in this section.

Full and Partial

A honey identity that had online accounts with all six of the chosen web services was

referred to as a full honey identity. A partial honey identity had (at least) accounts for the

“ISG Project” website and email, and Dropbox.

Validation

One honey identity was needed to validate the framework and ensure that the monitoring

30

techniques were operating as expected. This identity’s credentials would not be published

but instead they would be used on a regular basis to trigger the various alerts.

Control

Another identity was required as a control measure; each account was created with a unique

and strong password. Like the validation user, its credentials were not to be published. Any

activity from this honey identity would indicate a flaw in the framework or that one of the

services had separately been compromised.

3.3 Monitoring infrastructure

The various monitoring techniques used for each of the chosen web services have already

been discussed, however only the 2FA SMS verification message and new login email would

send an actual alert upon unauthorised access. It is important that any alerts were

immediately viewed and acted upon to gain as much information about the intruder as

possible, as displayed in Figure 3.2. Additionally, there is a risk that, if an email account is

compromised, then any security-related emails could be deleted by the intruder. To mitigate

this risk and make it quicker to check the email accounts there were two options:

• Use a single email client to fetch the email for every honey identity;

• Or more simply, configure each account to forward all new email to a single email

address.

Furthermore, the credential checking and login activity page methods would be time-

consuming if performed regularly and/or on a large scale. Tasks like these can be automated

through the use of special software.

Figure 3.2: Basic design of login monitoring infrastructure

31

4 Implementation

This chapter presents the related work that has guided some of the implementation choices.

It then goes on to describe the development of the honey identity framework and the

monitoring infrastructure. It also details the architecture used during this phase of the

project.

4.1 Related work

There were two projects, found during the literature search, that influenced decisions made

during the implementation of the framework. These studies are summarised in this section.

4.1.1 What Happens After You Are Pwnd : Understanding The Use Of Leaked

Account Credentials In The Wild [23]

In the research that most closely resembles this one, Onaolapo, Mariconti and Stringhini [23]

conducted a study to gain an understanding of how cybercriminals make use of stolen

webmail credentials. They designed a system to monitor the activity of Gmail accounts,

manually created 100 accounts and published the credentials online using three different

methods. Over the period of seven months, they logged and analysed the activity of their

honey accounts. There was access to 90 of the honey accounts during the time period and

they identified four types of activity. They categorised these activities as “Curious”, “Gold

diggers”, “Spammers” and “Hijackers”. With the exception of credentials leaked via

malware, the majority of initial access to the honey accounts was within two months.

Honey account setup

The researchers had to manually create all of their honeypot accounts. They commented that

Google rate-limits the creation of new accounts from the same IP address by requesting

phone verification and that this limited the number of accounts that they could create to 100.

They used random combinations of popular first and last names when creating the accounts.

The accounts were populated with emails from a public dataset to give the impression that

they were corporate users. To make the contents of the emails more believable, some aspects

such as recipients, timestamps and company names were changed. The accounts were set

up so that all outgoing email would be sent to a special “sinkhole” SMTP server, ensuring

32

that all outgoing email would go undelivered. This mitigated the risk of the accounts being

used to send spam emails and subsequently being disabled by Google.

Leaking credentials

The credentials were leaked with the following split: 50 on paste websites (pastebin.com,

pastie.org, p.for-us.nl and paste.org.ru); 30 on underground forums

(offensivecommunity.net, bestblackhatforums.eu, hackforums.net and

blackhatworld.com); and 20 using virtual machines infected with malware.

Monitoring infrastructure

In order to monitor activity on the honey accounts, they wrote basic software using Google

Apps Script. The scripts would send notifications any time an email was opened, sent or

“starred”. Whilst powerful, they found that Google Apps Script did not provide enough

information (such as IP addresses). They thus created external scripts that would log into

each honey account and parse information from a recent activity page. In order to further

similar research, they released the source code1 for their system.

Differences

The main difference between this project and their research was the number of honey

accounts for each identity. Onaolapo et al limited their research to a single email provider.

By having more accounts, this provided the opportunity to investigate the effects of

password re-use. As such, in this project it was necessary to develop a larger infrastructure

to monitor all of the different web services. Whereas Onaolapo et al conducted their

experiment over a longer time period and investigated other methods for leaking the

credentials.

4.1.2 Tripwire: Inferring Internet Site Compromise [30]

DeBlasio et al [30] described a prototype system, called Tripwire, where they created special

email accounts to use when they registered for a website account. Their idea was that any

access to these email accounts could indicate a data breach from that website. In a year-long

study, monitoring over 2,300 websites, they detected 19 compromises. Whilst these accounts

1 https://bitbucket.org/gianluca_students/gmail-honeypot

33

were created to detect a breach rather than operate as a honeypot, there was a lot to be learnt

from their methodology and framework for creating fake user profiles.

Identity creation

The researchers wanted to ensure that their accounts were not easily distinguishable from

organic ones. All of their identities had full names, addresses, phone numbers, dates of birth,

employers, etc. Most of the details were created using a third-party service1. The phone

numbers were ones that were under their control and not used more than once on each

particular website. They also used a methodical approach for creating usernames and

passwords. The researchers conducted the experiment in partnership with an unnamed

email provider, this allowed them to easily create thousands of email accounts with their

generated credentials. Like the above project, all of the accounts were configured so that any

outgoing email would go undelivered.

Automated registration

To automate account registration, they developed a web crawler using PhantomJS, a

scriptable, headless web browser based on the WebKit engine. The crawler located

registration forms, filled them out and submitted them. In order to avoid bot detection, they

utilised a CAPTCHA solving service and a small network of web proxies. Finally, any

incoming email was evaluated for verification links. The source code for the crawler has

been published along with anonymised login data2.

Detecting compromise

The email provider reported all successful login activity for their honey accounts on a

regular basis throughout their study. The researchers used the assumption that any

successful login would have been the result of an attacker having stolen credentials from the

registered website.

Differences

There were several differences between this project and their research. Most importantly the

goals of each were very different. The goal of Tripwire was to detect breaches in third party

websites whereas the main objective of the framework in this project was to monitor access

1 https://www.fakenamegenerator.com/
2 https://github.com/ccied/tripwire

34

to honey accounts. Tripwire took great care in protecting the credentials and waited for a

website to be hacked. They formed a partnership with an email provider who provided a

report of any unauthorised access. This meant that they did not need to create a monitoring

infrastructure. Finally, given the number of honey accounts that they created, they had to

rely on automation a lot more than this project.

4.2 Creating the honey identity

The two main processes in the framework for creating a honey identity are:

• Generating the appropriate digital claims.

• Creating the digital footprint by registering this new identity on select web services.

An overview of the implemented framework is shown in Figure 4.1

4.2.1 Generating digital claims

As mentioned in Chapter 2, digital claims are sets of attributes that help to make up the

digital identity. It would be nearly impossible, and also unnecessary, to create every

attribute for the honey identity. It was sufficient to generate only the metadata that was

needed for the chosen web services. Only the following were required by all of the

registration forms:

• First name

• Last name

• Password

• Email address

Additionally, some web services asked for gender, date of birth and a profile photo after the

account was created. It was decided to generate these as well to enhance the authenticity of

the honey account.

A simple program was developed to produce all of these attributes. The various steps of this

tool are described in this section. The source code can be seen in Appendix B along with all

other code written for this project.

35

Figure 4.1: Overview of the implemented honey identity framework

First name and last name

Whilst it would be straightforward to create a database containing a set of popular names

and randomly select from it, there are several third-party services available that could be

used to save time. uinames.com was chosen as the API was easy to use and the quality of

the data seemed to be most appropriate for the purposes of this project. One advantage that

uinames.com had over similar tools was the ability to select a region. This meant that it was

simple to generate names that seem “normal” in England. It also provided the opportunity

to quickly change the country which would be advantageous for future experiments. In

addition to a name, the API also returned the gender, date of birth and a profile photo.

After the attributes have been fetched from the uinames.com API, the program displays

them to the user along with an acceptance prompt. If the name does not look authentic, or

it was too similar to other names, then it can be re-generated before proceeding to the next

step.

Password

The value of the honey identity lies in it being attacked or compromised, therefore, the

password should not be a strong one. However, the password cannot be too weak as it risks

being rejected during registration. A weak password may also look suspicious to any

potential intruder.

36

A file was created containing passwords that, it was believed, would be sufficient for most

websites’ requirements, but any corresponding hash value would still be vulnerable to an

offline dictionary attack. To make this file, a popular password list was first downloaded1.

This list consisted of the 10,000 most common passwords found in a collection of credential

dumps. The top 1,000 passwords were discarded and only those that were exactly nine

characters long were kept from the remaining as a study stated that it was the average

password length [5]. The resulting file contained a list of 898 candidate passwords. The

honey identity generator loaded this file and randomly selected one of the passwords.

Email

Every honey identity required an email account for registration on most websites, the

exception being those that provided an email service. The creation of a Gmail account could

have been the first step in the next stage however it was decided to use the “ISG Project”

email as the primary email. There were three big advantages for this approach: the accounts

could be created programmatically; more information could be gathered about any

unauthorised activity (by analysing log files); and, collectively, it provided a level of

credibility to the credential leaks.

The program created an email account using the data from the previous steps. The username

was a combination of the first and last name. To give the impression that the email account

was an active one, it was populated with the same public dataset2 that Onaolapo et al used

in their study [23]. Likewise, the content of the emails was modified to replace names, dates

and locations. An additional script was used to update the timestamps of the emails every

day so that they always had a recent date.

As well as the email, an account was created on the “ISG Project” website for the honey

identity. A profile page was manually created for it in the next stage.

Output

Once the honey identity had been created, the various attributes were saved to a JSON file

to aid the next phase.

1 https://github.com/danielmiessler/SecLists/blob/master/Passwords/darkweb2017-top10000.txt
2 https://www.cs.cmu.edu/~./enron/

37

4.2.2 Creating the digital footprint

After the honey identity was generated, its details could be used for the registration of

several websites and thus build a small digital footprint. The project’s aim was to automate

as much of this stage as possible. The Tripwire web crawler was not used as it was based on

deprecated tools and, in fact, the authors posted a message discouraging use on the source

code repository. Therefore, a modern suite of software tools for browser automation,

Selenium1, was used as the basis of a simple tool.

The tool was coded with a generic approach in mind but did not use heuristics to

automatically determine the various registration fields. Instead it loaded two JSON files

containing the honey identity attributes from the previous stage and pre-defined website

configuration. The latter file was used to map the correct metadata to its respective field on

the registration form. The program would then load a web browser in the background, visit

the page containing the registration form, complete and submit this form, and report if there

were any errors. A screenshot was taken of the final view so that a successful registration

could easily be confirmed. The source code for this program can be seen in Appendix B

along with the configuration files for Instagram and GitHub. The script did not try to resolve

any errors that could be encountered when trying to register (e.g. unavailable username or

invalid password) however this could be added in the future.

Unfortunately, most of the selected websites used anti-bot technology such as Google’s

ReCAPTHA to prevent automated registration. Whilst there are tools2 and methods

available to bypass these measures, this was outside the scope of the project. Therefore, it

was necessary to manually create accounts for our honey identities on Gmail, Dropbox,

Apple ID and Twitter.

Finally, many websites require the email address used during registration to be validated.

They do this by sending an email containing a unique URL to visit. DeBlasio et al created a

tool that would automate this process but noted that it proved problematic in practice [30].

In this project, all emails were forwarded to a single mailbox and so it was easy to manually

verify the registrations.

1 https://www.seleniumhq.org/
2 http://www.deathbycaptcha.com/ or https://de-captcher.com/

38

4.3 Monitoring infrastructure

The various monitoring techniques used for each of the chosen websites was discussed in

Chapter 3. This section describes further configuration and tools that were used to enhance

the monitoring infrastructure. Figure 4.2 shows how the various services interact within the

infrastructure.

4.3.1 Email

All “ISG Project” and Gmail email accounts were configured so that incoming email was

automatically forwarded to the same bespoke email account. This email account was created

solely for the purpose of receiving these emails and is referred to as the “alert” address. This

meant that any login notification email could be viewed without the need to regularly check

the individual accounts.

Additionally, email accounts were set up so that all outgoing mail was sent to a Mailtrap

mailbox rather than the designated recipient. This, in turn, could be configured to forward

all mail to a separate email address. The combination of both rules permits one to easily

monitor all email activity.

4.3.2 2FA – SMS Verification

It was noticed that the SMS messages for 2FA did not contain any account identifier.

Furthermore, some of the services would not allow the same mobile phone to be used on

multiple accounts. For these reasons, it would be necessary for each honey identity to have

their own phone number. On a small scale, it may be feasible to purchase a low-cost phone

on a pay as you go contract however this would quickly become expensive and difficult to

manage.

Twilio is a service that allows users to programmatically send and receive text messages.

For a low monthly cost, it is possible to create phone numbers and, with a simple webhook,

set them up to forward any received messages to the alert email. Unfortunately, during

initial testing, the messages from several websites were not received. It could be that there

was a fault on the service side but more likely the number was identified as not being “real”.

This meant that this technique was only available for Dropbox and Apple ID.

39

Figure 4.2: Overview of the monitoring infrastructure for new logins

4.3.3 Automation

In order to gain further information about the attacker’s location, it would often be necessary

to view the login/activity history pages whenever there was a new login. For a large-scale

experiment, this could be time-consuming and would require the observer to react instantly.

A better approach would be the one taken by Onaolapo et al [23]; develop a script to

periodically login into the account the scrape and parse the information on these pages. Such

a script was not developed given the size of the experiment in this project, but it would be

necessary for any larger ones.

40

The script proposed above would perform a check of the credentials whenever it logged into

the website. This could easily be adapted or separated so that it sent an email if the login

failed. A prototype program was developed to perform this “heartbeat” functionality on

Instagram; the source code for which is in Appendix B.

4.3.4 Honeytokens

Two types of honeytokens were designed for the use in the experiment. The first was simply

the login credentials for a web service account that would trigger a notification, for example

the 2FA verification SMS from Apple. The second was a PHP script hosted on the web server

that would send an email whenever it was loaded before redirecting the user to an error

page. The server was then configured so that any URL ending with .pdf or .doc would load

the PHP script. This meant that it was easy to create new URLs that could easily be used to

identify the correct honeytoken (e.g. https://isgproject.org/this-is-in-the-

report.pdf).

Another possibility that was strongly considered, but ultimately discounted for

practicability issues, was the use of credit card numbers. Through the use of virtual or pre-

paid credit cards, it may be possible to safely hide the card details within a document or

email. Using the app-based bank, Monzo (www.monzo.com), as an example, the user receives

an in-app notification any time the card details are used. Crucially, the notification is still

sent even if the transaction fails due to lack of funds. However, the account would require

real details and so this approach could have a negative impact on the holder’s credit rating.

Canarytokens (www.canarytokens.org)

Canarytokens is a tool, created by Thinkst, that simplifies the process of generating

honeytokens as well as embedding them in files. The tool offers several different formats,

relevant to this project are as follows:

• A simple web URL such as

http://canarytokens.com/szqma2v42usrxvqsc18vkm6zy/admin.php;

• An image that can be embedded on a webpage or in an email;

• A Microsoft Word document;

• An Acrobat Reader PDF document;

• A QR code;

41

• Secret keys for Amazon Web Services; and

• A special URL that redirects a different (real) web page. During the redirect,

JavaScript is used to probe the browser and gather more information about the

visitor.

When creating a Canarytoken, one can set an email address for notification and a note to

that can be used to identify the token. A token is triggered by visiting the URL (or opening

a document which in turn requests the URL) and an email is then sent containing a

minimum of the IP address and browser User Agent. Whilst similar basic functionality was

created in just a few lines of PHP, Canarytokens has additional advantages in that it stores

a history of all trigger events that can be viewed from a web console.

Another benefit of using Canarytokens over regular honey tokens is that some of the formats

can trigger without any further interaction. However, if the attacker has a firewall enabled

to monitor their outgoing traffic then this trigger could easily be prevented. Furthermore, in

initial testing, it was noted that a warning was displayed when opening a Canarytoken

contained within an Adobe PDF document. Likewise, a token embedded in an Adobe PDF

or Microsoft Word document would not trigger unless the document was opened using

Acrobat or Word.

Figure 4.3: The honeytoken architecture

42

Figure 4.3 shows the architecture for the honeytokens and Canarytokens. The two formats

were used equally where most appropriate. They were inserted into the contents of email,

private messages and documents.

4.3.5 Server

Having complete control over the server hosting the website and email allows for a greater

depth of monitoring tools and access to the log files.

On the “ISG Project” website, a security plugin1 was installed. This plugin provided a full

list of successful and failed logins along with other audit tools. This was enhanced using a

hook to record the actual password used in cases of failed logins. A separate script was

written to record all of the user’s activity once they had logged into the website. In addition,

Google Analytics and access logs were used to gain an insight into any impact that the

publication of credentials may have had on the website.

The webmail was configured to log all user activity including failed logins. Like the website,

this was enhanced to store the password used in unsuccessful logins. A plugin was also

developed for the webmail system so that an alert email was sent whenever there was a

successful login.

Since it was also possible to use the email account via POP3 and IMAP, a script was written

to scan the log files for any successful logins. This script could be improved by keeping track

of logins and sending an email whenever there was a new one. The source code for this

script can be seen in Appendix B.

4.3.6 Recording activity

Finally, it was important to keep an accurate log of any unauthorised access and activity. In

the event of a login notification, as much information as possible about the intruder was

gathered. All of the details about the event were then stored in a spreadsheet.

1 https://en-gb.wordpress.org/plugins/sucuri-scanner/

43

4.4 Architecture

Most of the software in this project was written using Python 3. This programming language

was chosen as it is versatile and has a vast library of useful functions. PHP was used for the

honeytokens, webhooks and WordPress plugins. All of the source code can be viewed in

Appendix B.

In addition to a development machine, two virtual private servers (VPSs) were acquired for

the period of the project1. The specifications for each VPS are shown in Table 4.1. The first

VPS was used to host the website and email server. A script was used to speed up the set-

up of the server2. This configured the email server and installed several open source tools

such as webmail and an admin console. The nginx configuration was then modified to add

an additional virtual host for the website. The website was powered using WordPress and

a bespoke theme created for the fictional financial company, ISG Project.

Thinkst, the developers of Canarytokens, provide a free hosted solution however the

generated URLs (canarytokens.com) give a clear indication as to their true nature.

Fortunately, the source code is open source and a Docker configuration is available that

makes it easy to set up the service on a private server3. Whilst this could have been achieved

on the same VPS as the website and the email, it was decided that they should operate on

separate servers. This meant that if there was any downtime, for whatever reason, on the

web server, the Canarytokens were unaffected and vice versa.

VPS #1 VPS #2

Purpose Website and email Canarytokens

OS Ubuntu 16.04.4 x64 Ubuntu 16.04.4 x64

RAM 1 GB 1 GB

HDD 8 GB 25 GB

Host Amazon Web Services Digital Ocean

Table 4.1: VPS specifications

1 To facilitate marking of this project, the servers will remain online until November 2018
2 https://docs.iredmail.org/install.iredmail.on.debian.ubuntu.html
3 https://github.com/thinkst/canarytokens-docker

44

A few third-party services were used as part of the framework:

• Mailgun (www.mailgun.com) is a transactional email service. This was used by

Canarytokens and bespoke monitoring tools to send email alerts. For the project

requirements, the free package was suitable, but all recipient email addresses

needed to be previously verified.

• Mailtrap (www.mailtrap.io) is a tool designed to allow SMTP to be tested in a

development environment without sending real emails. All honey identity email

accounts were configured to send using Mailtrap to ensure that all outgoing emails

would go undelivered and mitigate the risk of the accounts being used to send spam.

Again, this is a free service, but a monthly payment would be required if there was

a lot of outgoing email or additional features were required.

• Twilio (www.twilio.com) allows developers to programmatically send and receive

text messages with phone numbers available for a number of countries. It was used

to create additional mobile phone numbers that could be used to receive 2FA

messages and forward these messages to an email account. Twilio costs $1/month

for each phone number and $0.0075 for every received SMS. However, they offer a

free trial that provides one free phone number and $20 credit.

• uinames.com (www.uinames.com) is a simple tool, aimed at UI designers, to generate

fake names for use in their design mockups. This is a free service and was used to

generate the names for the honey identities.

4.4.1 Risks

The presence of the two public facing servers invited a level of risk. A successful hack would

not only impact the findings in this project but potentially endanger other individuals. Any

server that is online is exposed to attack and the presence of leaked credentials may increase

this (unwanted) attention. Best practice was followed in the configuration of the servers to

minimise the risk of a successful breach including, but not limited to, auto updates,

restricting traffic to HTTP(S) and email ports, and the use of intrusion prevention software.

45

5 The experiment

This chapter summarises the experiment that was conducted to test the implementation of

the framework and the monitoring infrastructure. In total, seven different pastes were

published on three separate occasions. Since the results from the initial pastes affected the

design of the final two, the different stages and events of the experiment are discussed in

chronological order. The dates of these, excluding any results, are displayed in Table 5.1.

Dates Event

June 2018 Creation of the honey identities, pastes and other set up

July 3rd - 5th 2018 Publication of the first four pastes

July 3rd 2018 Start of the observation period

July 18th 2018 Publication of the fifth paste (purposefully delayed)

August 6th - 7th 2018 Creation and publication of two additional pastes

August 14th 2018 End of the observation period

Table 5.1: The timeline of the experiment

5.1 Setup

This section discusses the creation of the honey identities along with other necessary

preparation. It also presents the various threats to the validity of the experiment that were

recognised.

5.1.1 Honey identities

Initially, twelve honey identities were generated for use in this experiment. Due to time

constraints and the manual process involved in registering for the majority of the chosen

services, it was not feasible to create the full honey identity in all cases. As such, only one

full honey identity was created as a proof-of-concept along with nine partial honey

identities, one validation honey identity and one control honey identity. The attributes for

all of these honey identities are displayed in Table 5.2.

46

Table 5.2: The initial honey identities created for the experiment

5.1.2 Further preparation

The honey identities were configured for monitoring as described in Chapters 3 and 4. All of

the accounts had a Dropbox account. A shared folder was created using honey identity #1’s

account and all of the identities, with the exception of the control one, were given access to

this shared folder. This folder contained a number of dummy files including two files

containing Canarytokens. The Dropbox account for honey identity #1 was configured so that

2FA SMS verification was enabled. This was to prevent the contents of the shared folder

from being edited.

Several of the partial honey identities had an account with one other web service with the

aim that these logins could serve the purpose of honeytokens. These honeytokens were

stored in documents on their Dropbox account. Additionally, an email containing a

honeytoken or Canarytoken URL was sent to the primary email account of each honey

identity.

Validation

A scheduled task was created to automatically send an email to the validation honey identity

every day; this email should, in turn, be forwarded on to the alert email address. In addition,

1 This password was weakened prior to its publication

Title First name Last name Gender Date of Birth Password Type

1 Ms Emma Fields Female 06/06/1982 tacobell1 Full

2 Ms Amelia Coleman Female 05/12/1981 love4life Partial

3 Mr Charles Sutton Male 20/02/1984 baseball2 Partial

4 Mr Jamie Baker Male 28/01/1982 tacobell1 Partial

5 Mr Brian Peterson Male 29/05/1986 mountain1 Partial

6 Ms Gracie Lewis Female 19/12/1982 twilight1 Partial

7 Mrs Charlotte Baker Female 15/10/1983 jeremiah1 Partial

8 Mr Dylan Watson Male 26/10/1985 arsenal 1 Partial

9 Mr Alex Baker Male 12/01/1990 thomas123 Partial

10 Ms Isabel Griffiths Female 13/03/1990 garfield1 Partial

11 Mr Randy Day Male 02/04/1989 babyphat1 Validation

12 Mr Luke Scott Male 01/05/1997 <redacted> Control

47

once every week, a valid login was carried out on all of this identity’s accounts and its

honeytokens were triggered. A different Virtual Private Network (VPN) was used every

time these checks were carried out to ensure that the login was from a new location.

Control

When registering for websites using the control honey identity, different strong passwords

were used for each service. The passwords for the “ISG Project” website and email were

manually changed since these were set by the honey identity generator program.

Breach notification

As an additional monitoring technique, the domain isgproject.org was registered on a

breach notification website, Have I Been Pwned? (www.haveibeenpwned.com). This service

would send an email whenever it discovered an email address belonging to the domain in

a data breach, including those on paste websites.

5.1.3 Threats to validity

It was felt necessary to create a fictional company to provide the honey identities, and the

publication of their credentials, a level of believability. However, it was acknowledged that

a minimal amount of Open Source Intelligence (OSINT) would have revealed that the

company did not exist. There was no listing of the company within Companies House, a

WHOIS search divulged the domain name was less than a year old, the website source code

showed that it actively discouraged search engines, and clearly the name of the company

was a slight giveaway. This may have deterred some potential intruders from validating the

leaked credentials.

It was also accepted that using the Enron dataset to populate the email accounts may have

introduced bias into the results. Even with modifications, it would have been possible to

locate the true source of the emails. However, there was not sufficient time to create a new

email dataset and it would have only become apparent after access had been gained to the

account.

On 29th June 2018, a week prior to the publication of the credentials, the website experienced

an unsuccessful brute force attack. This is form of attack is a common occurrence on websites

powered by WordPress and other content management systems [46]. Whilst this could be

48

an interesting topic for further research, it presented a threat to the project since most of the

accounts had weak passwords. Access gained to the website through this method would not

be relevant to the experiment. To reduce the number of these attacks, a WordPress plugin1

was installed that would identify and block brute force attempts. Since the website was not

indexed by any search engines, it is probable that the site was discovered by someone

conducting a mass scan of the Internet. At that point in time, visiting the server’s IP address

in a web browser would have redirected the user to the domain name. The web server’s

configuration was changed so that any subsequent visitors to the IP address would see an

error page instead.

5.2 Pastes

It was decided to publish the credentials for the honey identities using paste websites.

Onaolapo et al had great success with leaking the credentials through these websites; 80%

of all unique accesses were within 25 days and the majority were within a few days of the

leak. In comparison, the figures drop to 60% and 40% for accounts leaked to underground

forums and malware respectively [23].

Even so, the use of underground forums, malware and phishing were still considered as an

additional means to leaking the credentials. However, the forums would require a level of

interaction, and other social hurdles, to avoid suspicions; malware would require suitable

samples and the use of multiple Virtual Machines; and phishing would also require sample

emails for the appropriate websites. The amount of time required for each setup, along with

the longer observation period necessary, would have been too much for the tight timescales

set by the MSc project.

A preliminary trial of Paste websites was carried out by posting a Canarytoken, in the form

of AWS keys, onto Pastebin (www.pastebin.com) without any explanation2. The

Canarytoken was triggered after just two days and continued to be triggered on a regular

1 https://jetpack.com/support/security-features/#protect
2 https://pastebin.com/ax50RTR4

49

basis between December 2017 and May 20181. This test reinforced the decision to use paste

websites as the means for leaking the credentials.

5.2.1 Design

This section presents the different formats of paste used to leak the credentials. Several

different types were used to test whether complexity of the format, placement of the

credentials and the use of weaker password hashes would affect the use of the credentials.

Each paste contained just one or two valid credentials. This meant that it was easy to link

any event of unauthorised access to the specific source paste.

All of the pastes were based on ones that were easily found using Pastebin’s search

functionality and designed to frame a hack of isgproject.org as the source of the data

breach. It was hoped that this would provide a level of authenticity to the pastes and also

avoid the risk of falsely attributing the data breach to a service provider.

Plaintext passwords

Research into password dumps and leaked databases is a common, but controversial,

practice amongst security professionals. Even though the datasets are publicly available,

they often contain sensitive data and should be treated accordingly. It was necessary to

investigate the structure of real password dumps in order to construct fake ones for the

experiment. These pastes were easily found using the search functionality on the Pastebin

website however no data from any of them was used. Figure 5.1 shows a partially redacted

example of plaintext passwords that can be found using the search term “Spotify” on

Pastebin.

However, it was decided to disregard the most common type of paste: an email and plaintext

password pair. To construct an authentic looking paste, hundreds of pairs would be needed.

It would be conceivable to generate random email addresses but, if realistic, this too could

actually result in legitimate ones. Even though the password would be invalid, there is still

a risk that these addresses could be spammed or targeted for phishing attacks. Furthermore,

the presence of a plaintext password means that it would be easy for a potential intruder to

1 http://canarytokens.org/history?token=h77sepcrv158gju2pqktcx3i7&auth=8679dab6e54e3ccd6f415219eddca82f

50

validate the data. Whilst a high failure rate may be common for these kinds of pastes, a

single valid pair amongst lots of failures would be suspicious.

It is important to explicitly state that none of the credentials found during the research were

used in this experiment, nor were any validated.

5.2.2 Paste content

Six different pastes were initially created for the experiment. All of these files can be seen in

full in Appendix C. The real pastes that formed the basis for each is displayed in Table 5.3.

Paste Format Example URL

1 Database dump https://pastebin.com/08e9jtPF

2 Database query https://pastebin.com/w6Xufi7B

3 SQL injection https://pastebin.com/8Hm99dKu

4 Slexy https://slexy.org/view/s2uh5WjJnT

5 Vulnerability scanner https://pastebin.com/j2zPXX2q

6 Dropbox links https://pastebin.com/iBe2xhhS

Table 5.3: Different formats of pastes

Figure 5.1: Email and password pairs easily found on Pastebin

51

Paste 1

The content of this paste was based on a SQL (database) dump of the user table from the

WordPress website. The real administrator account was removed along with the validation

and control honey identities. It was further modified by randomly changing several

characters in the password hashes for all but two of the users. Finally, to give the impression

that the website was much older than in reality, the timestamps were changed.

WordPress uses a key stretching algorithm, Portable PHP password hashing (phpass)1, to

create the password hashes. Prior to publishing the paste, a password cracking tool called

Hashcat2 was used in an attempt to recover the passwords along with a popular wordlist.

However, after several hours, it had failed to recover any of the correct passwords. Whilst

this was not an accurate or thorough test, it was decided to further weaken one of the

passwords to one that appeared in a top 207 probable password list3. Further

experimentation suggested that this may have been unnecessary as it was discovered that a

dedicated phpass cracking tool4 could recover both of the passwords in under five minutes

using the same wordlist.

Paste 2

The second paste took the form a screen scrape of a database query to show the contents of

the WordPress user table. As well as the modifications made to paste one, the hashes were

changed to the result of a different hashing technique, salted MD5. WordPress utilised this

method until version 2.5 but still supports it for backwards compatibility.

Paste 3

This paste was designed to look like the results of an SQL injection attack on a bespoke

website. In this case, all of the data was fabricated, and the passwords were displayed as

simple MD5 hashes.

Paste 4

Paste 4 was identical to paste 2 with the exception of the valid credentials. It was however

published on a different paste website, Slexy (www.slexy.org).

1 http://www.openwall.com/phpass/
2 https://hashcat.net/hashcat/
3 https://github.com/danielmiessler/SecLists/blob/master/Passwords/probable-v2-top207.txt
4 https://github.com/micahflee/phpass_crack

52

Paste 5

The last two pastes were different from the previous ones in that they contained links to the

credentials rather than the credentials themselves.

The content of paste 5 used a report from a vulnerability scanner, WP Scan1, to display a link

to a database backup of the website. The user table had been heavily modified as per paste

1 and the password hashes were changed to use the same hashing method described for

paste 2. Only one valid login was contained within the dump. A script was written so an

email would be sent if the file was downloaded. The publishing of this paste was delayed in

order to see if it would be discovered naturally.

Paste 6

The final paste consisted of five links to Dropbox shared folders. Whilst four of the links

were invalid, the third URL was for a “Private” folder stored within one of the honeypot

identities. This folder was set up to contain several personal but not necessarily sensitive

documents (e.g. photos) to give it the appearance of a real folder. Amongst the files was an

Excel document containing the login details for the honeypot identity’s “ISG Project” email

and Gmail account – in this case, different passwords were set for each email account. Due

to the potential ease of access, if discovered, the posting of this paste was also delayed.

5.2.3 Changes to honey identity email dataset

Four of the pastes contained a pair of valid credentials. This led to the possibility that a single

intruder could access email accounts for both honey identities. This would immediately

reveal the true nature of the accounts since the email dataset was identical for all of them.

Whilst this would still be a record of unauthorised access, it is likely that the intruder would

abandon their attack and it would not be possible to analyse any potential activity.

Therefore, specific emails from each pair were removed so that each had completely

different inboxes.

1 https://wpscan.org/

53

5.3 Publishing the credentials

The first four pastes were published over the course of two days at the start of July 2018.

They were posted at different times during the day to reduce the possibility of the same

person finding all of the pastes. Paste 5 was not published for reasons that are discussed

later in this Chapter. Paste 6 was published a fortnight after the initial pastes. The URLs of

the pastes are displayed in Table 5.4 along with the time and date they were published.

Paste
Honey
identities URL

Date
(2018) Time

1 8, 9 https://pastebin.com/RM6rxpFt 1 3rd July 17:23

2 2, 10 https://pastebin.com/JR8aKJzQ 4th July 09:38

3 5, 6 https://pastebin.com/kqe9wxL5 4th July 23:00

4 4, 7 https://slexy.org/view/s20aJqpU4f 5th July 14:30

5 3 N/A N/A N/A

6 1 https://pastebin.com/Pi6qePvr 18th July 11:30

Table 5.4: The published pastes

5.4 Initial observations

This section discusses the visibility of the different pastes along with any affect that their

publication had on the website.

5.4.1 Paste views

The number of page views is displayed on Pastebin for all public pastes. By periodically

checking the experiment’s pastes, it was possible to keep track of the number of visits. Figure

5.2 shows the view counts after five minutes, one hour and one day. It was noted that after

24 hours, the number of subsequent views for each paste was negligible.

The results for pastes 1 and 2 were almost identical. Paste 6 received a similar number of

views in the first five minutes however after that it continued to be viewed at a steady rate.

This is likely due to it being easier to find in the search.

1 The first paste was published with a setting to expire after one month and so this URL is no longer valid. All
subsequent pastes did not have this setting to facilitate marking of this project.

54

Paste 3 received substantially more traffic. A security researcher’s Twitter bot, @dumpmon,

spotted the paste and posted the URL in a tweet1 just three minutes after it had been

published. An email from Have I Been Pwned? alerting to the presence of an isgproject.org

email address was received at the same time. It’s likely that other tools could have also

noticed it.

Figure 5.2: A chart showing the number of views for each paste

The visibility of the paste on search engines was also monitored. However, it should be

noted that the status was slightly inconsistent; results would disappear from the index only

to return the next day. Pastes 1 and 2 took three days to appear on the Google search index

(which powers the Pastebin search functionality) however they could be found using

DuckDuckGo’s search (www.duckduckgo.com) on the same day. Conversely, paste 6

appeared in Google’s index within 24 hours but took over three days to be indexed by

DuckDuckGo.

Slexy does not display page views so it was not possible to monitor paste 4. It was spotted

by another Twitter bot running similar code to the @dumpmon2. However, the page was not

indexed by either Google or DuckDuckGo during the observation period.

1 https://twitter.com/dumpmon/status/1014630727592357892
2 https://twitter.com/ecohostile/status/1014864220838510592

55

5.4.2 Web server traffic

The website and webmail were monitored to see if the presence of the pastes resulted in an

increase of activity. Both access logs and search engine visibility were taken into

consideration however it should be noted that it is impossible to verify any traffic was

related to the pastes.

Soon after the first paste was published, the domain started to appear on a variety of

websites that display the DNS history for domains. It is possible that these sites parse pastes

to look for valid domains, but it is more likely that they had simply discovered the website

prior to the changes on 29th June 2018.

On 9th July 2018, the website became unresponsive due to excessive CPU usage. The server

was rebooted, and the CPU usage returned to normal levels. Later that day, the website

received a spike in traffic according to Google Analytics. Strangely all these visits were for

the same 404 error page (www.isgproject.org/isgproject.org/) only and referred by

visitorjam.com (which redirected to Google landing page). A further investigation of the

access log revealed whilst these 404 visits had different IP addresses, they all had the same

user agent. This would suggest that they originated from a web crawler or a bot. A WHOIS

search revealed that visitorjam.com was owned by Pingl (www.pingl.net); a site that offers

a service to spam analytics reports.

In the subsequent weeks, “legitimate” traffic to the website remained low according to

Google Analytics, however, examination of the access logs revealed that the site was being

scanned for vulnerabilities, and by security researchers, at least once a day.

5.5 Unauthorised access

A total of five events of unauthorised access were observed during the experiment. This

section describes the first of these events, with the remainder discussed in 5.7.

5.5.1 Intruder #1 – 18th July 2018 at 12:04

The first instance of unauthorised access occurred on 18th July 2018 at 12:04 using the

credentials leaked via paste 6. This was only 34 minutes after the paste had been published.

56

The security event was alerted by a new login notification email from Google (Figure 5.3).

This was immediately followed by an email containing a 2FA SMS verification code from

Dropbox (Figure 5.4)

Figure 5.3: New login notification email from Google

Figure 5.4: Email containing the 2FA SMS verification message from Dropbox

As a reminder, the source paste contained a link to a shared folder on Dropbox which

included a spreadsheet displaying the passwords for both Gmail and “ISG Project” email.

The latter password had been used for all of this honey identity’s other accounts.

The Gmail inbox comprised of a single unread email containing a honeytoken URL. There

was no evidence to suggest that the intruder viewed this email. The intruder1 then tried to

1 Since the intruder did not gain full access to the Dropbox account, the IP address was not recorded for the login. It is
therefore feasible, but unlikely, that there were two separate people using the credentials at the exact same time.

57

sign into Dropbox but was not successful since 2FA SMS verification had been enabled on

that account. Despite using the password for the “ISG Project” email to facilitate the

Dropbox login, the intruder did not attempt to log into that email account (either using

Webmail or IMAP/POP3). Nor did they log into any of the other accounts that made up this

full honey identity.

Figure 5.5: User agent and IP address for the first intruder

It was possible to gain more information about the intruder by logging into the Gmail

account. The intruder used an IPv6 address (Figure 5.5) which related to Kentucky, USA

(Figure 5.6).

Figure 5.6: More user-friendly display of the same information

5.6 Additional leaks

The initial plan had been to publish paste 5 a few weeks after the initial leaks to see if the

backup file was discovered organically. However, due to the complexity of this paste and

limited events related to the others, it was thought that it would be unlikely to lead to any

results, especially in a shortened time frame. For these reasons, it was decided against

posting the paste. Instead two further pastes, containing plaintext passwords, were

published.

58

5.6.1 Preparation

Another partial honey identity was created; the details of which were used to register to

Gmail and Dropbox. Those accounts were prepared in the same manner as for all of the

other honey identities except that the Gmail address was used when registering for

Dropbox. The generated digital claims are shown in Table 5.5.

Table 5.5: The final honey identity

5.6.2 Pastes

Two new pastes were then created each containing a single pair of email address and

plaintext password along with the title “dropbox.com”. One paste contained the Gmail

address belonging to the latest honey identity and the other displayed the “ISG Project”

email address for a separate honey identity (initially included in paste 1 which had by then

expired). The contents of these pastes are shown in Figures 5.7 and 5.8.

Figure 5.7: The contents of paste 7

Whilst a paste containing a single email and password pair had been initially discounted for

this experiment, it was felt that the differences between the two may indicate if there was a

preference to private and public email accounts.

Figure 5.8: The contents of paste 8

5.6.3 Publication

The late publication of these credentials meant that the observation period could be no

longer than two weeks, but it was hoped that the plaintext passwords would reap similar

Title First name Last name Gender Date of Birth Password Type

13 Ms Katie Davies Female 27/02/1983 Lacrosse2018 Partial

59

results to paste 6. The two pastes were posted at a similar time on subsequent days and were

set to expire after one week (Table 5.6). This presented the option of repeating the

experiment with the same credentials/pastes at a different time in the day the following

week if necessary.

Paste Honey identity URL Date (2018) Time

7 9 https://pastebin.com/KNuqK0Sy 1 6th August 11:30

8 13 https://pastebin.com/Gpdxnnt1 1 7th August 12:15

Table 5.6: The final two pastes

5.6.4 Paste visibility

Pastes 7 was viewed significantly more times in the first 24 hours than paste 8 (Figure 5.9).

The most likely reason for this was that paste 7 was in the Pastebin search index almost

instantly. Conversely, paste 8 did not appear in the search results during the observation

period. The @Dumpmon twitter bot did not tweet links to either of the pastes.

Figure 5.9: Updated chart showing the number of views for each paste

1 Pastes have now expired.

60

5.7 More unauthorised access

5.7.1 Intruder #2 – 6th August 2018 at 12:30

The second security event came exactly one hour after paste 7 was published, alerted by a

new login notification email from Dropbox (Figure 5.10). Unfortunately, it was not possible

to learn anything more about the intruder. Despite checking the Security page for active web

sessions as soon as the email was received, the intruder had already logged out. It may be

that they instantly recognised the true nature of the account or a tool was being used to

validate the credentials. There were no attempts to log into the related email account.

Figure 5.10: New login notification email from Dropbox

5.7.2 Intruder #3 – 11th August 2018 at 15:49

The next case of unauthorised activity occurred on 11th August 2018 at 3:49 pm (Figure 5.11)

using the credentials leaked in paste 8 – almost 100 hours after the publication of it.

61

Figure 5.11: Another new login notification email from Dropbox

In this instance, it was possible to get the IP address for the intruder along with information

regarding the web session (Figure 5.12).

Figure 5.12: The IP address and browser details for intruder #3

The intruder did not log into the Gmail account nor did they attempt to access the “ISG

Project” website or email.

5.7.3 Intruder #4 – 13th August 2018 at 22:39

The fourth case of unauthorised access occurred using the Gmail credentials leaked through

paste 6. The details of this intruder are displayed in Figures 5.13 and 5.14.

Figure 5.13: User agent and IP address for the intruder #4

62

Figure 5.14: User-friendly display of the same information

As with intruder #1, there was no evidence to suggest that this person had viewed the email

containing the honeytoken. Nor did they log into the “ISG Project” email or any of the other

honey accounts. However, it was possible to see that the intruder had conducted a search

using Google whilst still signed into the Gmail account (Figure 5.15).

Figure 5.15: Google search activity by intruder #4

5.7.4 Intruder #5 – 14th August 2018 at 12:25

The final security event happened 12 hours later (Figure 5.16), on the last day of the

observation period. As in the previous case, the intruder used the credentials leaked in paste

6 to log into the Gmail account. Again, there was no evidence that they logged into any other

account and they did not visit the honeytoken URL in the email. Google did not list any

further activity for this account.

63

Figure 5.16: Location and browser details of the final intruder

The web server access logs revealed that a browser with the same IP address had viewed

the “ISG Project” website, navigating from the home page to that specific honey identity’s

profile page. An extract of the log file is displayed in Figure 5.17.

Figure 5.17: An extract of a log file showing intruder’s activity on the website

64

5.8 Summary

After six weeks, it was necessary to end the observation period to allow sufficient time for

to write up the project. A summary of all of the instances of the unauthorised activity and

the different intruders is displayed in Tables 5.7 and 5.8 respectively. The findings from this

experiment, along with potential improvements, are discussed in the next chapter.

Alert Service Date Time
Honey
identity Intruder

Login email Gmail July 18th 12:04 1 1

2FA SMS Dropbox July 18th 12:04 1 1

Login email Dropbox August 6th 12:30 9 2

Login email Dropbox August 11th 15:49 13 3

Login email Gmail August 13th 22:39 1 4

Activity Gmail August 14th 00:15 1 4

Login email Gmail August 14th 12:25 1 5

Table 5.7: All of the monitoring alerts in the observation period

Intruder
Source
paste

Hours
after leak Location OS Browser

1 6 0:36 Louisville, KY, USA Windows 7 Firefox 60

2 7 1:00 Conover, NC, USA Windows 10 Chrome

3 8 99:34 Bochum, Germany Windows 7 Firefox

4 6 635:09 Onalaska, WI, USA Windows 7 Firefox 61

5 6 648:55 Jessup, MD, USA macOS (High Sierra) Chrome 67

Table 5.8: Summary of intruders and time it took to get owned

65

6 Discussion

This chapter discusses the results and shortcomings of the experiment, improvements that

can be made to the framework and other future work.

6.1 The experiment

6.1.1 Results

There were five events of unauthorised logins during the observation period of the

experiment. The fastest occurred only 34 minutes after the credentials were published and

the slowest took 27 days. With a small result set, it is difficult to draw any conclusions, other

than speculative ones.

Use of credentials

It had been expected that each paste containing a plaintext password would result in at least

one event of unauthorised access. However, it was surprising that these were the only cases.

The most viewed paste was paste 3 which contained MD5 hashes. It would not have

required much work to recover the passwords. Indeed, just by using the hash as a search

term on Google1, it would have been possible to obtain the correct password. Despite the

visibility and the ease of recovery, the credentials from that paste were not used. That said,

there is no visible difference between the hash of a weak password and that of a strong one

other than the actual hash value. In other words, it would not have been possible for

someone to tell that the hashes would have been easy to crack just by looking at it. It is likely

that with a small data breach for a private website, the effort involved in cracking was not

considered worth the reward of (a maximum of) ten credentials.

It was also a surprise that there were no cases of a validated password being used to log into

another service. Even in the case of intruder #1, who used the password advertised for the

isgproject.org email to log into Dropbox, they had not previously validated it.

Intruder locations

The details of the user’s web browser and location were captured for each event, however,

these details should be considered with caution. The web browser is determined by the

1 For example, https://www.google.com/search?hl=en&q=79b5afeffc388a330c59aee934bc9163

66

User-Agent string in the HTTP header which can easily be spoofed. The location reported is

often inaccurate as it tends to relate to the ISP rather than the individual. It can also be

falsified through the use of proxies or VPNs. Onaolapo et al determined that cybercriminals

on paste websites exhibited a level of location malleability; masquerading their origins of

access to appear closer to the advertised location [23]. The locations were not provided in

this experiment’s pastes, but all had English sounding names. Therefore, it makes sense that

the intruders were “from” the US (i.e. the largest English-speaking country) in four of the

five cases. Figure 6.1 shows the reported locations of the intruders on a map.

Figure 6.1: A map showing the reported locations of the intruders

All of the available IP addresses were checked against the Spamhaus (www.spamhaus.org)

blocklists. The IP address for intruder #4 appeared on one list as part of a network of

malware-infected computers, displayed in Figure 6.2. This would suggest that the machine

was being used as a proxy to connect to the account and that their search activity was simply

a red herring rather than an actual interest in clogging.

Figure 6.2: Results of a search for an intruder's IP address on Spaumhaus

Intruder activity

There was no evidence of further activity after any of the intruders had gained access to an

account. With the exception of intruder #1, none of the intruders re-used the credentials to

log into another account. There were no login attempts (successful or otherwise) for any of

67

the private email or website accounts during the entirety of the observation period. Similar

activity was observed by Onaolapo et al [23] in their study. They named these types of access

as Curious and described them as follows:

These accesses constitute the most basic type of access to stolen accounts. After

getting hold of account credentials, people login on those accounts to check if

such credentials work. Afterwards, they do not perform any additional action.

They also acknowledged that this type of access includes those cybercriminals experienced

enough to quickly determine the purpose of the account and thus avoid interactions with it

after logging in.

Paste visibility

The initial visibility of the pastes relied on them being discovered on the “Archive” page.

This page displays the most 50 recently created pastes. If there was a lot of activity at the

same time that a paste was published, then it would only appear on this page for a short

time. This could explain why only one paste was spotted by the @dumpmon Twitter bot.

Another important variable in each paste’s visibility was the amount of time it took to

appear in the search index. This ranged from minutes to three days, and one paste was not

indexed at all. The fact that the credentials from that paste were used several days after it

left the “Archive” page, without any search visibility, is somewhat mystifying.

The final two logins occurred on the last two days of the observation period; roughly 27

days after the source paste was published. The view count jumped from approximately 200

to over 500 in that time. It is difficult to explain this since Pastebin does not offer more

detailed analytics. It was not possible to find any web pages that linked to this paste, so it

may have been that searches for pages containing Dropbox links had seen an increase. It

was surprising that the 300 views resulted in only two additional security events. It is

conceivable that potential intruders gave up after visiting the first two dead links. Equally

likely is that people viewing the Dropbox folder did not act on the plaintext credentials.

Another possibility is that this paste was discovered by search bots looking for Dropbox

URLs. However, the nature of this paste required a human (or a very advanced bot) to

actually obtain and use the credentials from the link.

68

Removal of pastes

There is a content restriction against material that “is unlawful or promotes unlawful

activities” in Pastebin’s acceptable use policy [47]. Even though the pastes were designed to

look as though they were of illicit nature, none of them were removed from the website.

Furthermore, none of the accounts that had their passwords published in plaintext were

disabled by the respective service provider. This would suggest that those service providers

do not search for the presence of credentials as a proactive means of protection.

6.1.2 Shortcomings of the experiment

Timescale

Given the timescale of this MSc project and the time taken for research and implementation,

the experiment phase was conducted over a relatively short period of just over six weeks. In

comparison, Onaolapo et al [23] monitored access to their Gmail accounts for seven months.

With more time, it would have been possible to generate a lot more (full) honey identities,

varied the methods used to publish the credentials and allowed for a longer period of

observation.

Publishing credentials

The success that other researchers [23] had leaking credentials through paste websites was

a big factor in the decision to take a similar approach. However, they did not reveal the exact

format of their pastes other than that they were email and password pairs. It is unknown

whether they had the ethical concerns regarding re-publishing previously leaked passwords

discussed in Chapter 5. Furthermore, their experiment took place over two years ago since

which time several of the paste websites that they used have ceased to exist. It may also be

the case that cybercriminals are aware that Pastebin’s popularity has led to its use by security

researchers and as such avoid it.

Pastes 2, 3, 4 and 6 were all configured so that they would never expire. This was done to

facilitate the marking of this project. However, an unforeseen downside to this was that

those credentials could not be re-used in any future pastes since it would have been

suspicious for the same credentials to appear in multiple pastes. Additionally, it would have

no longer been possible to link the credentials to their source paste. A better approach would

have been to configure them to expire after one or two weeks. This would allow for the

69

credentials (or even the entire paste) to be republished at a later date which would be

conducive for further experimentation.

Primary email account

A fictitious company was created to provide a “cover story” for the publishing of

credentials. It was acknowledged that it was easy to identify the company as a fictional one,

however, it was not considered that the stolen credentials for a private email address may

be less desirable than one from a public service. This was indicated by the results from paste

6 where the credentials for both the Gmail and the private email accounts were displayed in

plaintext. The Gmail account was accessed three times but there were no attempts to log into

the private email. This is by no means conclusive and further research would need to be

carried out to see whether this was a factor.

6.2 Future work

This section discusses the various work that can be carried out in the future. This includes

possible enhancements to the honey identities and monitoring infrastructure, further

experimentation and other research topics.

6.2.1 Improvements to the honey identities

Bigger digital footprints

The size of the honey identities was limited due to the various constraints discussed in

Chapter 3.2. This was, along with the timescale, the biggest restriction on the experiment.

DeBlasio et al did not have the same ethical concerns with breaking terms and conditions

when they developed Tripwire. They argued that the scientific merit of their work

outweighed the low legal risk [30].

It is hoped that the body of work presented in this project would assist in receiving

permission from service providers to create artificial accounts on their platform.

Furthermore, this could also lead to partnerships which would offer the prospect of

additional monitoring tools and bulk account creation.

70

Additional attributes

The honey identities generated had sufficient attributes to register on the websites chosen

in Chapter 3.3. With a bigger digital footprint, more attributes may be required. Some of these

could be problematic but others would be simple to generate. A few examples are as follows:

• Address. A randomly generated address would be of poor quality and would likely

be rejected by most web services. A better approach would be to use a real address

however this could be difficult. It would not be appropriate to use someone else’s

address without permission. The address of the University could be used but this

could then be used to distinguish honey identities. Another option could be to use a

different service address for each identity, but this would be expensive.

• Place of birth. Place of birth and other personal data, such as physical attributes and

marital status, could be randomly generated but other related attributes would need

to be considered in that process.

• Phone number. As mentioned with regards to 2FA SMS verification in Chapter 4.3.2,

a valid phone number could be provided using Twilio or a similar service.

• Bank account. Valid banking details and other financial data would require a

partnership with a bank.

More developed digital footprints

The honey identities used in the experiment were generated just one week prior to the

publication of their credentials. This was not an issue for some web services but on most

social networking websites the date the account was created is public information. An

example of this is shown in Figure 6.1. This information could help to distinguish a honey

identity from a real one. To avoid this, the identity would either have to be generated a long

time before any experiment or the date would need to be falsified through a partnership

with the service provider.

Similarly, none of the honey identities were active after the initial content was populated.

The credibility of the honey identities would be greatly enhanced if they were sufficiently

active on various social media platforms. Despite the availability of tools to automate the

posting of content, this would still be a large project in itself. Furthermore, it would probably

require, at the very least, approval from the service provider to avoid the accounts being

flagged as spam and disabled.

71

Figure 6.3: A public Twitter profile showing the "born" date

The email accounts were populated using a publicly available dataset. Even after certain

modifications, it would have been easy to trace the original source of these emails. It would

be better to create the dataset from scratch and to develop a system to send new emails to

the honey identities after the preliminary seeding.

6.2.2 Improvements to monitoring infrastructure

The monitoring infrastructure relied on the observation of a single email inbox and

manually recording any events. In some cases, for example Dropbox, it was important to

react quickly to gather further information on the intruder as it was only displayed for

current web sessions. With a single observer, this could have proved to be challenging if an

event had occurred in the middle of the night.

Whilst it may not be realistic to remove all manual processes there is a lot that could be

enhanced with automation. The incoming emails could be parsed and fed into a database.

This would, in turn, allow for easier tracking and analysis as well as triggering other

information gathering scripts. It would also lead to the possibility of a web application to

view and analyse the data along with additional alerting mechanisms such as SMS

messages.

6.2.3 Further experimentation

After addressing the shortcomings of the experiment and improving the honey identities,

there would be a lot of scope for further experimentation.

72

Comparing the desirability of different honey identities

With larger, more developed digital footprints, it would be possible to create multiple

genres of honey identities. The contents of the email account, as discussed in 6.2.1, would

also help to define the character of a honey identity. It would then be feasible to conduct an

experiment comparing these different genres. For example, Male vs Female, American vs

Chinese, Young professionals vs Gamers. An investigation of this nature would help to

identify the factors that make an identity desirable to cybercriminals. This, in turn, could be

used to further improve the honey identities.

Partial password re-use

Another aspect that could be studied is the partial re-use of passwords. In the experiment

conducted for this project, the same password was used for all of a honey identity’s account

(in most cases). Studies have shown that it is actually more common for users to partially

re-use a password rather than exactly re-use it. Partial re-use is when the same substring of

a password is used for multiple passwords, for example Arsenal123 and Arsenal2018. Wang

et al developed an algorithm that they claim can guess 30% of passwords modified in this

manner within 10 attempts [4].

Different means of publishing the credentials

In addition to underground forums, malware and phishing (see Chapter 5.2), “accidental”

means could be investigated. For example, there were a number of data breaches last year

involving Amazon Web Services (AWS). Misconfiguration of buckets meant that private data

was made public and, in one case, sensitive personal information for 123 million households

was publicly exposed [48].

Wait to be hacked

To fully answer the question posed in this project’s title, an experiment could adopt the

approach used for Tripwire and wait for a data breach [30]. This would require a significant

number of honey identities and a very long observation period however it would, arguably,

produce more accurate results than DeBlasio et al’s research. One weakness of their study

was that a data breach would go unnoticed should an attacker not use the credentials to log

into the respective honey email account. By using a honey identity, one can speculate that it

would be more likely that a login would occur in at least one of its accounts.

73

6.2.4 Other research topics

The author of this project was surprised by the speed with which the website started to

experience vulnerability scans and brute force attacks. Further research into this could make

an interesting project, with a similar title, in its own right.

6.2.5 Business use

Shabtai et al own a patent for a system that is designed to offer protection against

reconnaissance and APTs. It comprises of the generation of artificial profiles and accounts,

monitoring the activity of these accounts and reporting any suspicious activity from third

parties to contact the user accounts [49]. Their framework differs from the one in this project

in that they are only monitoring for incoming messages rather than any unauthorised

activity. Their theory is that any communication to these fake identities could indicate the

presence of a sophisticated and targeted attack.

A similar tactic could be utilised with honey identities and the monitoring infrastructure

proposed in this project. Since all incoming emails are forwarded to a single mailbox, it

would be straightforward to scan these emails for certain keywords, URLs, and malware. If

this was combined with the Tripwire approach for data breach detection, it could prove to

be an effective early warning system for a company.

Whilst the limited number of results was slightly disappointing, this was a known risk of

the project due to the short period of time available to conduct the experiment and,

furthermore, the objective of the experiment was to test the implementation framework and

monitoring infrastructure. In that regard, the experiment was a success. The five recorded

events of unauthorised access demonstrated that the monitoring infrastructure worked well,

and it would only need a small number of improvements for further research. By

additionally enhancing the honey identities and addressing the acknowledged

shortcomings of the experiment, there is a lot of scope for future work and a viable

commercial product could even be developed.

74

This page intentionally left blank

75

7 Conclusion

The objective of this study was to answer the question:

How long does it take to get owned?

To achieve this, it was first necessary to understand several background topics covering

identity, the use of honeypots and the illegal sharing of personal data. This was

supplemented with research into different methods for monitoring access to online

accounts. Using this preliminary research, a prototype framework for generating honey

identities was designed and implemented along with an infrastructure to monitor their

activity. Finally, an experiment was conducted to test the framework by publishing the

credentials for eleven identities on paste websites in several different formats. There were

five instances of unauthorised activity, related to three different pastes, with the fastest

occurring only 34 minutes after the leak of the relevant password.

It would be unwise to draw too many conclusions from the results of the experiment. With

just five intruders, the sample size is too small to analyse and identify trends. It was expected

that the presence of plaintext passwords would lead to unauthorised access, however, it was

a surprise that the pastes containing password hashes did not lead to any intruder logins. It

could be that the “right” people did not notice the pastes or that they considered the effort

in cracking was not worth the reward. Despite the small result set, the monitoring

infrastructure was proven to work and with improvements to the honey identities, this

could be an excellent platform for increased scope and further experimentation.

During the course of this project, the use of stolen credentials has been investigated but the

underlying issue is the prevalence of poor password behaviour. It would be easy to blame

the user, and expect them to accept any consequences, as better password practices have

been promoted for decades, but the regular mind simply cannot remember lots of strong

passwords. This problem is exacerbated by complex password restrictions and regular

password expiration [5]. There are also significant costs to service providers and

organisations in preventing, detecting and cleaning up compromised accounts [7]. As

shown in the case of Dropbox, one instance of password re-use can, in turn, lead to a

significant data breach [36].

76

Service providers could do more to prevent password re-use or encourage the use of

technology to mitigate the potential risk. For example, the Have I Been Pwned? API allows a

website to securely check for the presence of a password in a breach and thus reject them.

During the course of this project, GitHub have implemented a similar approach to warn

users should their password have appeared in a breach (Figure 7.1) [50].

Figure 7.1: A warning that is now displayed on GitHub

However, this tactic could just lead to an increase in partial password re-use or worse,

alienate a potential customer. To quote Grzegorz Milka, a Google software engineer [51]:

 It’s about how many people would we drive out if we force them to use

additional security.

Over half of Americans do not recognise the term two factor authentication [52]. It is therefore

not surprising that the adoption rate remains low decades after its inception. Milka revealed

that less than 10% of active Google accounts use 2FA [51]. Yet this is actually considered a

high percentage in comparison to other services. For example, Dropbox reported that their

adoption rate was less than 1% [53].

Password managers help users generate random, strong and unique passwords for every

account without the need to memorise them. However, like 2FA, usage remains low and it

tends to be a tool for the more security aware user [51].

A more radical solution to the problem of poor password behaviour would be to remove

passwords altogether. Their issues are well-known and have been a matter for debate since

1979 [54]. Numerous replacement schemes have been proposed in the intervening years,

such as graphical passwords, Passfaces, grids, and token-based credentials, but all have

failed to achieve widespread adoption. Unfortunately, users are familiar with passwords

and it is difficult to implement change [55].

77

The unfortunate truth is that, for the foreseeable future, passwords will remain as the main

form of authentication on most websites. Whilst this is the case, users will continue to

(re-)use weak passwords, websites will continue to be the source of data leaks,

cybercriminals will continue to extract and trade credentials from these, and those same

users will get owned.

78

This page intentionally left blank

79

8 Bibliography

[1] Verizon, “2018 Data Breach Investigations Report,” 2018.

[2] L. Ablon, Rand Corporation, and Institute for Civil Justice (U.S.), Consumer attitudes

toward data breach notifications and loss of personal information. 2016.

[3] T. Evans, “World’s Biggest Data Breaches,” information is beautiful, 2018. [Online].

Available: http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-

breaches-hacks/. [Accessed: 01-Aug-2018].

[4] C. Wang, S. T. K. Jan, H. Hu, and G. Wang, “Empirical Analysis of Password Reuse and

Modification across Online Service,” 2017.

[5] S. Pearman et al., “Let’s Go in for a Closer Look: Observing passwords in their natural

habitat,” Proc. 2017 ACM SIGSAC Conf. Comput. Commun. Secur. - CCS ’17, pp. 295–310,

2017.

[6] N. Mueller, “Credential stuffing,” OWASP, 2015. [Online]. Available:

https://www.owasp.org/index.php/Credential_stuffing. [Accessed: 08-Aug-2018].

[7] K. C. Wang and M. K. Reiter, “How to end password reuse on the web,” pp. 1–16, 2018.

[8] B. Parkinson, D. E. Millard, K. O’Hara, and R. Giordano, “The digitally extended self: A

lexicological analysis of personal data,” J. Inf. Sci., vol. 44, no. 4, pp. 552–565, 2018.

[9] R. Rodogno, “Personal Identity Online,” Philos. Technol., vol. 25, no. 3, pp. 309–328, Sep.

2012.

[10] R. Clarke, “The digital persona and its application to data surveillance,” Inf. Soc., vol. 10,

no. 2, pp. 77–92, 1994.

[11] S. Olshansky, “Online Identity: Who, Me?,” Internet Society, 2016. [Online]. Available:

https://www.internetsociety.org/resources/doc/2016/online-identity-who-me/.

[Accessed: 18-Feb-2018].

[12] L. Srivastava, T. Kelly, C. Yung Lu, and L. Yu, “ITU Internet Report 2006: digital.life,”

Geneva, 2006.

[13] S. Clauß and M. Köhntopp, “Identity management and its support of multilateral

security,” Comput. Networks, vol. 37, no. 2, pp. 205–219, 2001.

[14] M. Madden, S. Fox, A. Smith, and J. Vitak, “Online identity management and search in

the age of transparency,” Pew Internet Am. Life Proj., no. December, p. 50, 2007.

[15] J. Mellmer, R. T. Young, A. D. Perkins, J. M. Robertson, and J. Sabin, “Managing digital

identity information,” US8631038B2, 2000.

[16] L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE Secur. Priv., vol. 1, no. 2,

80

pp. 15–23, 2003.

[17] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder, “A Survey on

Honeypot Software and Data Analysis,” 2016.

[18] M. Burgess, “The Emmanuel Macron email hack warns us fake news is an ever-evolving

beast,” Wired, 2017. [Online]. Available: https://www.wired.co.uk/article/france-election-

macron-email-hack. [Accessed: 25-Feb-2018].

[19] C. Dickey, “Did Macron Outsmart Campaign Hackers?,” Daily Beast, 2017. [Online].

Available: https://www.thedailybeast.com/did-macron-outsmart-campaign-hackers.

[Accessed: 02-Feb-2018].

[20] M. Scott, “U.S. Far-Right Activists Promote Hacking Attack Against Macron,” The New

York Times, New York, 06-May-2017.

[21] L. Spitzner, “Honeytokens: The Other Honeypot,” Symantec, 2003. [Online]. Available:

https://www.symantec.com/connect/articles/honeytokens-other-honeypot. [Accessed:

01-Aug-2018].

[22] S. Thorpe, “SMS for 2FA: What Are Your Security Options?,” Authy, 2016. [Online].

Available: https://authy.com/blog/security-of-sms-for-2fa-what-are-your-options/.

[Accessed: 01-Aug-2018].

[23] J. Onaolapo, E. Mariconti, and G. Stringhini, “What Happens After You Are Pwnd :

Understanding The Use Of Leaked Account Credentials In The Wild,” Proc. ACM

SIGCOMM Conf. Internet Meas. Conf., pp. 65–79, 2016.

[24] B. Butler, B. Wardman, and N. Pratt, “REAPER: An automated, scalable solution for mass

credential harvesting and OSINT,” eCrime Res. Summit, eCrime, vol. 2016–June, pp. 71–80,

2016.

[25] E. Nunes et al., “Darknet and deepnet mining for proactive cybersecurity threat

intelligence,” IEEE Int. Conf. Intell. Secur. Informatics Cybersecurity Big Data, ISI 2016, pp.

7–12, 2016.

[26] T. Hunt, “Making Light of the ‘Dark Web’ (and Debunking the FUD),” 2018. [Online].

Available: https://www.troyhunt.com/making-light-of-the-dark-web-and-debunking-

the-fud/. [Accessed: 15-Feb-2018].

[27] J. Shakarian, A. T. Gunn, and P. Shakarian, “Exploring malicious hacker forums,” in Cyber

Deception: Building the Scientific Foundation, S. Jajodia, V. S. Subrahmanian, V. Swarup, and

C. Wang, Eds. Cham: Springer International Publishing, 2016, pp. 259–282.

[28] K. Thomas et al., “Data Breaches, Phishing, or Malware? Understanding the Risks of

Stolen Credentials,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

81

Communications Security, 2017, pp. 1421–1434.

[29] A. Shulman, “The underground credentials market,” Comput. Fraud Secur., vol. 2010, no.

3, pp. 5–8, 2010.

[30] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Snoeren, “Tripwire: Inferring Internet Site

Compromise,” Internet Meas. Conf., p. 14, 2017.

[31] T. Malderle, M. Wübbeling, S. Knauer, A. Sykosch, and M. Meier, “Gathering and

Analyzing Identity Leaks for a Proactive Warning of Affected Users,” in Proceedings of the

15th ACM International Conference on Computing Frontiers, 2018, pp. 208–211.

[32] T. Hunt, “Have I been pwned? Pastes,” Have I been pwned?, 2018. [Online]. Available:

https://haveibeenpwned.com/Pastes. [Accessed: 18-Feb-2018].

[33] S. Migliano, “Dark Web Market Price Index (UK Edition),” Top10vpn.com, 2018. [Online].

Available: https://www.top10vpn.com/privacy-central/cybersecurity/dark-web-market-

price-index-feb-2018-uk/. [Accessed: 01-Aug-2018].

[34] J. Swearingen, “Gmail Gets a Major Face-lift and Productivity Boost, Starting Today,”

New York Magazine, 2018. [Online]. Available: http://nymag.com/selectall/2018/04/how-

to-turn-on-google-gmail-redesign-and-new-features.html. [Accessed: 01-Aug-2018].

[35] “Celebrating half a billion users,” Dropbox, 2016. [Online]. Available:

https://blogs.dropbox.com/dropbox/2016/03/500-million/. [Accessed: 01-Aug-2018].

[36] S. Gibbs, “Dropbox hack leads to leaking of 68m user passwords on the internet,” The

Guardian, 2016. [Online]. Available:

https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-passwords-68m-

data-breach. [Accessed: 01-Aug-2018].

[37] M. Mazzilli, “Twitter warns fake account purge to keep erasing users, shares drop 19

percent,” Reuters, 2018. [Online]. Available: https://www.reuters.com/article/us-twitter-

results/twitter-beats-estimates-on-revenue-but-monthly-usage-falls-idUSKBN1KH17X.

[Accessed: 01-Aug-2018].

[38] J. Finkle, “Twitter urges all users to change passwords after glitch,” Reuters, 2018.

[Online]. Available: https://www.reuters.com/article/us-twitter-passwords/twitter-

urges-all-users-to-change-passwords-after-glitch-idUSKBN1I42JG. [Accessed: 01-Aug-

2018].

[39] C. Jones, “Twitter says 250,000 accounts have been hacked in security breach,” The

Guardian, 2013. [Online]. Available:

https://www.theguardian.com/technology/2013/feb/02/twitter-hacked-accounts-reset-

security. [Accessed: 01-Aug-2018].

82

[40] A. Yuhas, “Hacker who stole nude photos of celebrities gets 18 months in prison,” The

Guardian, 2016. [Online]. Available:

https://www.theguardian.com/technology/2016/oct/27/nude-celebrity-photos-hacker-

prison-sentence-ryan-collins. [Accessed: 01-Aug-2018].

[41] A. Balakrishnan and J. Boorstin, “Instagram says it now has 800 million users, up 100

million since April,” CNBC, 2017. [Online]. Available:

https://www.cnbc.com/2017/09/25/how-many-users-does-instagram-have-now-800-

million.html. [Accessed: 01-Aug-2018].

[42] C. Newton, “An Instagram hack hit millions of accounts, and victims’ phone numbers are

now for sale,” The Verge, 2017. [Online]. Available:

https://www.theverge.com/2017/9/1/16244304/instagram-hack-api-bug-doxagram-

selena-gomez. [Accessed: 01-Aug-2018].

[43] “Microsoft to acquire GitHub for $7.5 billion,” Microsoft News Centre, 2018. [Online].

Available: https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-

billion/. [Accessed: 01-Aug-2018].

[44] GitHub, “GitHub Security,” 2018. [Online]. Available:

https://help.github.com/articles/github-security/. [Accessed: 01-Aug-2018].

[45] S. Sharwood, “Uber quits GitHub for in-house code after 2016 data breach,” The Register,

2018. [Online]. Available:

https://www.theregister.co.uk/2018/02/07/uber_quit_github_for_custom_code_after_201

6_data_breach/. [Accessed: 01-Aug-2018].

[46] “Brute Force Attacks,” WordPress.org, 2018. [Online]. Available:

https://codex.wordpress.org/Brute_Force_Attacks. [Accessed: 01-Aug-2018].

[47] Pastebin, “Pastebin.com Terms of Service,” 2018. [Online]. Available:

https://pastebin.com/doc_terms_of_service. [Accessed: 01-Aug-2018].

[48] D. O’Sullivan, “Home Economics: How Life in 123 Million American Households Was

Exposed Online,” UpGuard, 2017. [Online]. Available:

https://www.upguard.com/breaches/cloud-leak-alteryx. [Accessed: 18-Feb-2018].

[49] A. Shabtai, R. Puzis, and Y. Elovici, “Social network honeypot,” US 9509716 B2, 2015.

[50] GitHub, “New improvements and best practices for account security and recoverability,”

The GitHub Blog, 2018. [Online]. Available: https://blog.github.com/2018-07-31-new-

improvements-and-best-practices-for-account-security-and-recoverability/. [Accessed:

08-Aug-2018].

[51] I. Thomson, “Who’s using 2FA? Sweet FA. Less than 10% of Gmail users enable two-

83

factor authentication,” The Register, 2018. [Online]. Available:

https://www.theregister.co.uk/2018/01/17/no_one_uses_two_factor_authentication/.

[Accessed: 01-Aug-2018].

[52] P. H. O’Neill, “Most Americans have never heard of multi-factor authentication,”

Cyberscoop, 2017. [Online]. Available: https://www.cyberscoop.com/two-factor-

authentication-duo-security-yubikey/. [Accessed: 01-Aug-2018].

[53] P. Heim, “An inside look at how we keep customer data safe,” Dropbox, 2016. [Online].

Available: https://blogs.dropbox.com/business/2016/02/dropbox-customer-data-safety/.

[Accessed: 01-Aug-2018].

[54] R. Morris and K. Thompson, “Password Security: A Case History,” Commun. ACM, vol.

22, no. 11, pp. 594–597, Nov. 1979.

[55] S. Aebischer et al., “Pico in the Wild: Replacing Passwords, One Site at a Time,” Proc. 2nd

Eur. Work. Usable Secur., no. April, pp. 1–13, 2017.

84

This page intentionally left blank

85

Appendix A

Further examples of monitoring alerts

This appendix displays screenshots of monitoring alerts from a variety of websites. They

have been included to show the different levels of detail that is provided by the different

service provider.

Login notification emails

Figure A.1 is an example of a new login notification email from Cloudflare. It displayed a

lot more information than was included in similar emails from any of the web services

selected for the experiment.

Figure A.1: A new login notification email from Cloudflare

Login history and recent activity

Figures A.2 to A.10 are screenshots taken of the login history and recent activity pages on a

number of websites.

Figure A.2: An extract of the login history page on Facebook

86

Figure A.3: Instagram only displayed the dates and times of logins

Figure A.4: LinkedIn displayed information about active web sessions only

Figure A.5: The device and location details on Netflix were nonspecific

87

Figure A.6: Airbnb did not provide the IP address but did include the session status

Figure A.7: Protonmail displayed the details of failed logins

Figure A.8: As well as a list of active sessions, GitHub displayed a full audit log of security-related actions

88

Figure A.9: Further information of one of the events displayed in A.8

Figure A.10: Hotmail displayed information about unsuccessful syncs

89

Appendix B

Source code

This appendix contains all of the source code for tools that were developed during the course

of the project.

Listing B.1: The Honey Identity generator source code

generate.py

import argparse
import os
from steps import *

def main():
 parser = argparse.ArgumentParser(description='Create a full honeypot identity')
 parser.add_argument('-r', dest='region', help='specify region')
 parser.add_argument('-f', dest='file', help='json file to load')

 args = parser.parse_args()

 # Check being run with root privileges
 if os.geteuid() != 0:
 exit('You need to have root privileges to run this script.')

 # step 1. load user profile
 if (args.file == None):
 # either from feed
 # make it is easy to specify different regions.
 # must be correct format (eg united-states, india, germany, spain)
 if (args.region == None):
 region = 'england'
 else:
 region = args.region

 user = step01.load_and_preview(region)
 else:
 # @TODO: load pre-generated profile from JSON file
 parser.print_help()
 exit(0)

 # step 2. create isgproject.org email
 step02.create_email_account(user['account'], user['displayname'],
user['base_password'])

 # step 3. create isgproject.org website account
 step03.create_wordpress_account(user['account'], user['displayname'],
user['base_password'])

if __name__ == '__main__':
 main()

90

step01.py

import json
import random
import urllib.request
import argparse

def load_and_preview(region):
 proceed = 'N'

 while proceed != 'Y':
 user = load_feed(region)
 print("[+] Generated the following user details:\n\n\
 Name: {0} {1} {2}\n\
 Date of Birth: {3}\n\
 Login: {4} / {5}\n".format(user['title'], user['firstname'], user['lastname'],
user['dob'], user['base_username'], user['base_password']))

 proceed = input("[+] Do you wish to proceed? [Y/N] ").upper()

 # save our new user to local JSON file
 filename = save_json(user)

 return user

def load_feed(region):
 # Load JSON feed from uinames
 response = urllib.request.urlopen('https://uinames.com/api/?ext&amount=1®ion=' +
region.replace(" ", "+") + '&gender=random')
 str_response = response.read().decode('utf-8')
 j = json.loads(str_response)

 # Convert to our own format
 user = {
 'title' : j['title'].title(),
 'firstname' : j['name'],
 'lastname' : j['surname'],
 'gender' : j['gender'].title(),
 'dob' : j['birthday']['dmy'],
 'account' : j['name'].lower() + '.' + j['surname'].lower(),
 'displayname' : j['name'].title() + ' ' + j['surname'].title(),
 }

 # create a "base" username and password. these may need to altered depending on
service limitations/restrictions

 # Basic username = firstnamelastname. This can easily have a prefix (eg isg) or a
suffix (eg 1) to be unique.
 user['base_username'] = j['name'].lower() + j['surname'].lower()

 # load a random real password
 # this file is based on
https://github.com/danielmiessler/SecLists/blob/master/Passwords/darkweb2017-top10K.txt
 # with first 1000 removed along and then only 9 character long passwords.
 user['base_password'] = random.choice(open('passwords.txt').readlines()).replace('\n',
"")

 return user

def save_json(user):
 filename = user['account'] + '.json'
 with open('./json/' + filename, 'w') as outfile:
 json.dump(user, outfile)

 return filename

91

def main():
 parser = argparse.ArgumentParser(description='Create a honeypot identity only')
 parser.add_argument('-r', dest='region', help='specify region')
 args = parser.parse_args()

 # make it is easy to specify different regions.
 # must be correct format (eg united-states, india, germany, spain)
 if (args.region == None):
 region = 'england'
 else:
 region = args.region

 load_and_preview(region)

if __name__ == '__main__':
 main()

92

step02.py

import pymysql
import argparse
import os
import datetime
from os import listdir
from os.path import isfile, join
import shutil
import imaplib
from base64 import b64encode
from hashlib import sha512
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

def generate_ssha512_password(p):
 p = str(p).strip()
 try:
 salt = os.urandom(8)
 pw = sha512(p.encode('utf-8'))
 pw.update(salt)
 return '{SSHA512}' + b64encode(pw.digest() + salt).decode()
 except ImportError as e:
 print('[-]' + e)

def create_email_account(user, display, password):

 try:
 cursor = pymysql.cursors.DictCursor
 connection =
pymysql.connect(host='localhost',user='vmailremote',password='<redacted>',db='vmail',cha
rset='utf8mb4',cursorclass=cursor)

 email = user + "@isgproject.org"
 hashed = generate_ssha512_password(password)

 # mailbox directory
 now = datetime.datetime.now()
 ts = str(now.year) + '.' + str(now.month).zfill(2) + '.' + str(now.day).zfill(2) +
'.' + str(now.hour).zfill(2) + '.' + str(now.minute).zfill(2) + '.' +
str(now.second).zfill(2)
 maildir = 'isgproject.org/' + user[:1] + '/' + user[1:2] + '/' + user[2:3] + '/' +
user + '-' + ts + '/'

 try:
 with connection.cursor() as cursor:
 # Create a new record
 sql = "INSERT INTO `mailbox` (`username`, `password`, `name`,
`storagebasedirectory`, `storagenode`, `maildir`, `quota`, `domain`, `active`,
`local_part`, `created`) VALUES (%s, %s, %s, '/var/vmail', 'vmail1', %s, '1024',
'isgproject.org', '1', %s, NOW())"
 cursor.execute(sql, (email, hashed, display, maildir, user))

 sql = "INSERT INTO `forwardings` (`address`, `forwarding`, `domain`,
`dest_domain`, `is_forwarding`) VALUES (%s, %s,'isgproject.org', 'isgproject.org', 1)"
 cursor.execute(sql, (email, email))

 # connection is not autocommit by default. So you must commit to save
 # your changes.
 connection.commit()

 print('[+] Created email account: ' + email)

 # creates maildir folder
 print('[+] Logging into new email account')

93

 test_email_login(email, password)

 # copy default emails
 default_inbox_emails(user, display, maildir)
 default_sent_emails(user, display, maildir)

 # set up BCC so all incoming email goes to special account
 with connection.cursor() as cursor:
 sql = "INSERT INTO `recipient_bcc_user` (`username`, `bcc_address`, `domain`,
`created`, `modified`) VALUES (%s, 'incoming@isgproject.org', 'isgproject.org', NOW(),
NOW())"
 cursor.execute(sql, (email))

 connection.commit()

 finally:
 connection.close()

 except pymysql.err.OperationalError as e:
 #print('[-] ERROR: Cannot connect to database. Please ensure IP has been
whitelisted')
 print('[-] ERROR: Cannot connect to database.')
 exit(0)

def test_email_login(email, password):
 # can't get chrome headless working on server so using deprecated phantomjs
 driver = webdriver.PhantomJS('phantomjs')
 driver.get("https://isgproject.org/mail/")

 assert "Roundcube Webmail :: Welcome to Roundcube Webmail" in driver.title

 element = driver.find_element_by_id('rcmloginuser')
 element.send_keys(email)

 element = driver.find_element_by_id('rcmloginpwd')
 element.send_keys(password)

 element = driver.find_element_by_id('rcmloginsubmit')
 element.click()

 # @TODO: Actually check that login has worked rather than assuming...
 assert "Roundcube Webmail :: Inbox" in driver.title

 driver.quit()

def default_inbox_emails(user, display, maildir):
 # this account has already been populated with modified enron emails
 baseDir = '/var/vmail/vmail1/isgproject.org/k/a/t/katie.davies-
2018.03.15.15.02.24/Maildir/.INBOX.ENRON/cur/'
 # copy + modify to this directory
 copyDir = '/var/vmail/vmail1/' + maildir + 'Maildir/new/'
 print('[+] Creating default inbox emails')
 copy_default_emails(user, display, baseDir, copyDir)

def default_sent_emails(user, display, maildir):
 # this account has already been populated with modified enron emails
 baseDir = '/var/vmail/vmail1/isgproject.org/k/a/t/katie.davies-
2018.03.15.15.02.24/Maildir/.Sent/cur/'
 # copy + modify to this directory
 copyDir = '/var/vmail/vmail1/' + maildir + 'Maildir/.Sent/new/'
 print('[+] Creating default sent emails')
 copy_default_emails(user, display, baseDir, copyDir)

def copy_default_emails(user, display, baseDir, copyDir):

94

 # get list of all files
 files = [f for f in listdir(baseDir) if isfile(join(baseDir, f))]

 filenum = 0

 # loop through all emails
 for file in files:
 # open + read file
 email = open(baseDir + file, 'r')
 emailLines = email.read().splitlines()
 email.close()

 output = []

 # loop through all lines in email + modify as necessary
 for line in emailLines:

 # get date that email was "sent" - needed for filename
 if line.startswith('Date: '):
 dateStr = line.replace('Date: ','')
 dateStr = dateStr.replace(' +0000', '')
 date = datetime.datetime.strptime(dateStr, '%a, %d %b %Y %H:%M:%S')

 else:
 # missed these dates when creating initial dataset
 line = line.replace('2002','2018')
 line = line.replace("'02","'18")
 line = line.replace('/02','/18')

 # replace all references of base user (Katie Davies) with new name
 names = display.split()
 line = line.replace('katie.davies',user)
 line = line.replace('Katie', names[0])
 line = line.replace('Davies', names[1])

 output.append(line)

 # basic numbering for filename
 filenum += 1
 m = 21500 + filenum
 p = 1800 + filenum

 filename = str(int(date.timestamp())) + '.M' + str(m) + 'P' + str(p) + '.ip-172-31-
24-31:2,S'

 # save modified email
 with open(copyDir + filename, 'w') as f:
 f.write('\n'.join(output))

 # change file owner + group to vmail
 shutil.chown(copyDir + filename, user='vmail', group='vmail')

def main():
 parser = argparse.ArgumentParser(description='Create an isgproject.org email account')
 parser.add_argument('-u', dest='user', help='specify username')
 parser.add_argument('-n', dest='display', help='specify display name')
 parser.add_argument('-p', dest='password', help='specify password')

 args = parser.parse_args()

 # Check being run with root privileges
 if os.geteuid() != 0:
 exit('You need to have root privileges to run this script.')

95

 if (args.user == None) | (args.display == None) | (args.password == None):
 parser.print_help()
 exit(0)
 else:
 user = args.user
 display = args.display
 password = args.password

 create_email_account(user, display, password)

if __name__ == '__main__':
 main()

96

step03.py

import argparse
import os
import subprocess

def create_wordpress_account(user, display, password):
 # simple python wrapper for WP Cli command
 email = user + "@isgproject.org"
 names = display.split()
 os.chdir("/var/www/html")
 subprocess.call("wp user create {0} {1} --display_name='{2}' --user_pass={3} --
first_name='{4}' --last_name='{5}' --role='isg' --allow-root".format(user, email,
display, password, names[0], names[1]), shell=True)

def main():
 parser = argparse.ArgumentParser(description='Create an isgproject.org WordPress
account')
 parser.add_argument('-u', dest='user', help='specify username')
 parser.add_argument('-n', dest='display', help='specify display name')
 parser.add_argument('-p', dest='password', help='specify password')

 args = parser.parse_args()

 if (args.user == None) | (args.display == None) | (args.password == None):
 parser.print_help()
 exit(0)
 else:
 user = args.user
 display = args.display
 password = args.password

 create_wordpress_account(user, display, password)

if __name__ == '__main__':
 main()

97

Listing B.2: Source code for script to update email timestamps

honey.timestamps.py

import pymysql
from os import rename,listdir
from os.path import isfile, join
import datetime
from dateutil.relativedelta import relativedelta
import shutil

def update_timestamps(path):

 files = [f for f in listdir(path) if isfile(join(path, f))]

 filenum = 0

 # loop through all files + update timestamp
 for file in files:
 email = open(path + file, 'r')
 emailLines = email.read().splitlines()
 email.close()

 output = []
 newDate = None

 for line in emailLines:
 # skip any emails that aren't "internal" ie message-id does not contain
JavaMail.evans@thyme
 #if line.startswith('Message-ID:') and "JavaMail.evans@thyme" not in line:
 # break

 # only update those with correct date format, more likely to be internal emails
 if line.startswith('Date: ') and "+0000" in line:
 dateStr = line.replace('Date: ','')
 dateStr = dateStr.replace(' +0000', '')
 date = datetime.datetime.strptime(dateStr, '%a, %d %b %Y %H:%M:%S')

 # add one day to the date
 newDate = date + relativedelta(days=1)

 # check if new date is in future
 if newDate > datetime.datetime.now():
 newDate = None
 break

 line = 'Date: ' + newDate.strftime('%a, %d %b %Y %H:%M:%S') + ' +0000'

 # only update those with correct date format, more likely to be internal emails
 if line.startswith('Date: ') and "+0100" in line:
 dateStr = line.replace('Date: ','')
 dateStr = dateStr.replace(' +0100', '')
 date = datetime.datetime.strptime(dateStr, '%a, %d %b %Y %H:%M:%S')

 # add one day to the date
 newDate = date + relativedelta(days=1)

 # check if new date is in future
 if newDate > datetime.datetime.now():
 newDate = None
 break

 line = 'Date: ' + newDate.strftime('%a, %d %b %Y %H:%M:%S') + ' +0100'

98

 output.append(line)

 if (newDate == None):
 continue

 # save file
 with open(path + file, 'w') as f:
 f.write('\n'.join(output))

 # rename file with new timestamp prefix
 newfile = str(int(newDate.timestamp())) + '.' + file.split('.', 1)[-1]
 rename(path + file, path + newfile)

def main():

 try:
 cursor = pymysql.cursors.DictCursor
 connection =
pymysql.connect(host='localhost',user='<redacted>',password='<redacted>',db='vmail',char
set='utf8mb4',cursorclass=cursor)

 try:
 with connection.cursor() as cursor:
 sql = "SELECT `maildir` FROM `mailbox` WHERE `username` NOT LIKE '%postmaster%'
AND `username` NOT LIKE '%incoming%'"
 cursor.execute(sql)
 results = cursor.fetchall()
 for result in results:
 path = '/var/vmail/vmail1/' + result['maildir'] + 'Maildir/cur/'
 update_timestamps(path)
 path = '/var/vmail/vmail1/' + result['maildir'] + 'Maildir/.Sent/cur/'
 update_timestamps(path)

 finally:
 connection.close()

 except pymysql.err.OperationalError as e:
 print('[-] ERROR: Cannot connect to database.')
 exit(0)

if __name__ == '__main__':
 main()

99

Listing B.3: Generic registration bot source code

register.generic.py

import json
import time
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import Select
from selenium.webdriver.support.ui import WebDriverWait
from selenium.common.exceptions import NoSuchElementException
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support import expected_conditions as EC

init driver
def init_driver():
 options = webdriver.FirefoxOptions()
 options.set_headless(True)
 driver = webdriver.Firefox(options=options)
 driver.wait = WebDriverWait(driver, 5)
 return driver

try to register
def register(driver, site, profile):
 register_attempt(driver, site, profile, 1)
 # take screenshot of final page regardless of success or not
 driver.save_screenshot('screenshot.png')
 return

def register_attempt(driver, site, profile, attempt):

 driver.get(site['url'])

 try:
 element = WebDriverWait(driver, 4).until(
 EC.presence_of_element_located((By.CSS_SELECTOR, site['wait_for']))
)

 # click some things that need clicking
 for selector in site['pre_clicks']:
 element = driver.find_element_by_css_selector(selector)
 element.click()

 # loop through text fields and fill with profile data
 for selector, map in site['field_mappings'].items():
 element = driver.find_element_by_css_selector(selector)
 element.send_keys(profile[map])

 # select elements are special
 for selector, value in site['select_fields'].items():
 select = Select(driver.find_element_by_css_selector(selector))
 select.select_by_index(value)

 # loop through extra text fields and fill with hardcoded data
 for selector, value in site['extra_fields'].items():
 element = driver.find_element_by_css_selector(selector)
 element.send_keys(value)

 # click some more things that need clicking
 for selector in site['extra_clicks']:
 element = driver.find_element_by_css_selector(selector)
 element.click()

100

 # submit form
 form = driver.find_element_by_css_selector(site['form'])
 form.submit()

 # check if register successful
 # try to find success text within 4 seconds
 try :
 element = WebDriverWait(driver, 4).until(
 EC.presence_of_element_located((By.PARTIAL_LINK_TEXT, site['success']['text']))
)
 print('[+] Success!')

 # click some more things that need clicking
 for selector in site['post_clicks']:
 element = driver.find_element_by_css_selector(selector)
 element.click()

 return
 except TimeoutException:
 if attempt == site['max_attempts']:
 # too many attempts, give up
 print('[+] Failed!')
 return
 else:
 # @TODO: try to work out what's gone wrong

 # @TODO: is username taken or incorrect format?

 # @TODO: is password incorrect format?

 # now let's try again
 attempt += 1
 register_attempt(driver, site, profile, attempt)
 return

 except TimeoutException:
 print('[-] ERROR: Could not load registration form')
 return

 return

def main():
 # load sites settings (JSON)
 with open('github.json', 'r') as f:
 site = json.load(f)

 # load user profile (JSON)
 with open('user.json', 'r') as f:
 profile = json.load(f)

 driver = init_driver()
 register(driver, site, profile)
 time.sleep(5)
 driver.quit()

if __name__ == '__main__':
 main()

101

Listing B.4: JSON configuration file for instagram.com

{
 "url" : "https://www.instagram.com/",
 "max_attempts" : 1,
 "form" : "form",
 "wait_for" : "input[name=emailOrPhone]",
 "pre_clicks" : [
 "input[name=emailOrPhone]"
],
 "field_mappings" : {
 "input[name=emailOrPhone]" : "email",
 "input[name=fullName]" : "displayname",
 "input[name=password]" : "base_password"
 },
 "select_fields" : {
 },
 "extra_fields" : {
 },
 "extra_clicks" : [
],
 "success" : {
 "url" : "",
 "text" : "Suggested for you"
 },
 "post_clicks" : [
]
}

102

Listing B.5: JSON configuration file for github.com

{
 "url" : "https://github.com/join",
 "max_attempts" : 1,
 "form" : "form",
 "wait_for" : "#user_password",
 "pre_clicks" : [
 "#user_login"
],
 "field_mappings" : {
 "#user_login" : "base_username",
 "#user_email" : "email",
 "#user_password" : "base_password"
 },
 "select_fields" : {
 },
 "extra_fields" : {
 },
 "extra_clicks" : [
 "#signup_button"
],
 "success" : {
 "url" : "",
 "text" : "Welcome to GitHub"
 },
 "post_clicks" : [
 ".setup-form button[type=submit]"
]
}

103

Listing B.6: Source code for automated credential check

heartbeat.py

import json
import time
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.common.exceptions import NoSuchElementException
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support import expected_conditions as EC

init driver
def init_driver():
 options = webdriver.FirefoxOptions()
 #options.set_headless(True)
 driver = webdriver.Firefox(options=options)
 driver.wait = WebDriverWait(driver, 5)
 return driver

try to login
def login(driver, site, profile):
 driver.get(site['url'])

 try:
 element = WebDriverWait(driver, 4).until(
 EC.presence_of_element_located((By.CSS_SELECTOR, site['wait_for']))
)

 # click some things that need clicking
 for selector in site['pre_clicks']:
 element = driver.find_element_by_css_selector(selector)
 element.click()

 # loop through text fields and fill with profile data
 for selector, map in site['field_mappings'].items():
 element = driver.find_element_by_css_selector(selector)
 element.send_keys(profile[map])

 # submit form
 form = driver.find_element_by_css_selector(site['form'])
 form.submit()

 # check if login successful
 # try to find success text within 4 seconds
 try :
 # SUCCESS!
 element = WebDriverWait(driver, 4).until(
 EC.presence_of_element_located((By.PARTIAL_LINK_TEXT, site['success']['text']))
)
 print('[+] Success!')

 return
 except TimeoutException:
 # OH NO!
 print('[+] Failed!')
 return

 except TimeoutException:
 print('[-] ERROR: Could not load login form')
 return

104

 return

def main():
 # load sites settings (JSON)
 with open('instagram-login.json', 'r') as f:
 site = json.load(f)

 # credentials hardcoded for proof-of-concept
 profile = {
 "username" : "emmafields5",
 "password" : "tacobell1"
 }

 driver = init_driver()
 login(driver, site, profile)

if __name__ == '__main__':
 main()

105

Listing B.7: JSON configuration file for instagram.com

{
 "url" : "https://www.instagram.com/accounts/login/",
 "form" : "form",
 "wait_for" : "input[name=username]",
 "pre_clicks" : [
 "input[name=username]"
],
 "field_mappings" : {
 "input[name=username]" : "username",
 "input[name=password]" : "password"
 },
 "success" : {
 "url" : "",
 "text" : "Suggested for you"
 }
}

106

Listing B.8: Script to scan email logs for logins

check email logs
import re

logins = []
fails = []

def scan_log(log):

 # ignore any line containing these IPs (and email address)
 safe_ips = re.compile('209.85.|217.155.33.122|127.0.0.1|incoming@isgproject.org')

 with open("/var/log/dovecot/" + log + ".log", 'r') as f:
 for line in f:
 if re.search(safe_ips, line):
 continue

 # if contains this text then successful login
 if "login: Login: user=" in line:
 logins.append(line)

 # if contains this text then failed login
 if "auth failed" in line:
 fails.append(line)

def main():

 # scan the imap log
 scan_log('imap')

 # scan the pop3 logo
 scan_log('pop3')

 # print results
 if logins:
 print("*** SUCCESS LOGINS ***\n")
 print("".join(logins))

 if fails:
 print("*** FAILED LOGINS ***\n")
 print("".join(fails))

if __name__ == '__main__':
 main()

107

Listing B.9: Twilio webhook

<?php
 require 'vendor/autoload.php';
 use Mailgun\Mailgun;

 /**
 * This section ensures that Twilio gets a response.
 */
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response></Response>'; // Left blank so no message sent in reply

 /**
 * This section actually sends the email.
 */
 # First, instantiate the SDK with your API credentials
 $mg = Mailgun::create('<redacted>');

 # Now, compose and send your message.
 $mg->messages()->send('mg.isgproject.org', [
 'from' => "postmaster@mg.isgproject.org",
 'to' => "david.wardle.2016@live.rhul.ac.uk,incoming@isgproject.org",
 'subject' => "New SMS message from: {$_REQUEST['From']}",
 'text' => "From: {$_REQUEST['From']}\n\nMessage: {$_REQUEST['Body']}"
]);

108

Listing B.10: PHP honeytoken

<?php
 require 'vendor/autoload.php';
 use Mailgun\Mailgun;

 // Get Token ID + info. on visit
 $identifier = $_GET['identifier'];
 $userAgent = $_SERVER['HTTP_USER_AGENT'];
 $srcIP = $_SERVER['REMOTE_ADDR'];

 /**
 * This section actually sends the email.
 */

 # First, instantiate the SDK with your API credentials
 $mg = Mailgun::create('<redacted>');

 # Now, compose and send your message.
 $mg->messages()->send('mg.isgproject.org', [
 'from' => "postmaster@mg.isgproject.org",
 'to' => "david.wardle.2016@live.rhul.ac.uk,incoming@isgproject.org",
 'subject' => "Homebrew token triggered",
 'text' => "Identifier: $identifier\nSource IP: $srcIP\nUser agent: $userAgent"
]);

 // Redirect user to 404 error
 http_response_code(404);
 header('Location: /404/');
 exit;

109

Listing B.11: WordPress hooks

// logs the incorrect password used in failed login attempt
// to be used in conjunction with sucuri plugin
function wp_authenticate_log($username, $password) {
 // make sure password not blank
 if (! empty($password)) {
 // and valid user
 $user = get_user_by('login', $username);
 if (! $user || ! wp_check_password($password, $user->user_pass, $user->ID)) {
 error_log("FAILED LOGIN: $username $password " . $_SERVER['REMOTE_ADDR']);

 // Special canary tokens - fake passwords for an administrator user
 $tokens = ['YW1lbGlhLmN!', 'amFtaWUuYmFrZX!', 'Z3JhY2llLmxld$', 'ZHlsYW4ud2F0c$'
];
 if ($username === 'administrator' && in_array($password, $tokens)) {
 wp_mail(
 ["david.wardle.2016@live.rhul.ac.uk", "incoming@isgproject.org"],
 "Homebrew token triggered",
 "Identifier: $password\nUse Sucuri for more info!"
);
 }
 }
 }
}
add_action('wp_authenticate' , __NAMESPACE__ . '\\wp_authenticate_log', 30, 2);

// if user is logged in, log page view
function loggedin_user_pageview() {
 $user = wp_get_current_user();
 if ($user->exists() && ! current_user_can('manage_options')) {
 error_log("PAGEVIEW: {$user->user_login} viewed " . get_permalink());
 }
}
add_action('template_redirect', __NAMESPACE__ . '\\loggedin_user_pageview');

110

Listing B.12: Roundcube plugin

<?php
/**
 * Login_notify
 *
 * Sends an email alert whenever a user logs into Roundcube
 *
 * @version 1.0
 * @author davewardle
 */

class login_notify extends rcube_plugin {

 public function init() {
 $this->add_hook('login_after', [
 $this,
 'login_after'
]);
 }

 function login_after() {
 $rcmail = rcmail::get_instance();
 $user = $rcmail->user;
 $username = $user->data['username'];
 $user_agent = $_SERVER['HTTP_USER_AGENT'];
 $remoteip = rcube_utils::remote_ip();

 $safe_ips = ['217.155.33.122'];

 if (! in_array($remoteip, $safe_ips)) {

 $mg = Mailgun\Mailgun::create('<redacted>');
 $mg->messages()->send('mg.isgproject.org', [
 'from' => "postmaster@mg.isgproject.org",
 'to' => "david.wardle.2016@live.rhul.ac.uk,incoming@isgproject.org",
 'subject' => "New Roundcube login",
 'text' => "User: $username\nSource IP: $remoteip\nUser agent: $user_agent"
]);

 }

 }

}

111

Appendix C

Paste files

All of the pastes created for the experiment are displayed in full in this Appendix.

Listing C.1: Paste 1

INSERT INTO `wp_users` VALUES
(1,'administrator','PBVLxjpxMno/PYMhgCO.n9YTlcRnY1b1','administrator','admin@isgprojec
t.org','','2016-07-02
13:29:20','',0,'administrator'),(2,'dylan.watson','PBqYVYm9BcK./kRioV/1ETc2jmksex5/','
dylan-watson','dylan.watson@isgproject.org','','2016-07-22 14:49:27','',0,'Dylan
Watson'),(5,'emma.fields','PBAs3bhdChkwidwb6Jpz.isOlZvxHuJ.','emma-
fields','emma.fields@isgproject.org','','2017-06-19 15:01:17','',0,'Emma
Fields'),(6,'amelia.coleman','PBPShuM7em.wkfQqQtj6rRzC0bUB3WC/','amelia-
coleman','amelia.coleman@isgproject.org','','2017-06-20 17:03:30','',0,'Amelia
Coleman'),(7,'charles.sutton','PBkRB6Q9iOp/9PWSClv./s2amk4UxVO.','charles-
sutton','charles.sutton@isgproject.org','','2017-06-20 17:07:03','',0,'Charles
Sutton'),(8,'jamie.baker','PBODbm9/h1nM69c/1YYUr5PpvbPnrGH/','jamie-
baker','jamie.baker@isgproject.org','','2017-10-13 12:31:45','',0,'Jamie
Baker'),(9,'brian.peterson','PBZQ4L/TxIEKSMPoLKrh3mChWuqZGHs1','brian-
peterson','brian.peterson@isgproject.org','','2018-03-16 14:09:22','',0,'Brian
Peterson'),(10,'gracie.lewis','PB8tZ9T1RYNkWCVlUXNxzAWjeuwOuHL/','gracie-
lewis','gracie.lewis@isgproject.org','','2018-03-16 14:46:54','',0,'Gracie
Lewis'),(11,'charlotte.baker','PBu3zr0Ly3BkkLAuThwKiY5EiDmjz8h/','charlotte-
baker','charlotte.baker@isgproject.org','','2018-04-07 14:48:36','',0,'Charlotte
Baker'),(12,'alex.baker','PBPhdPZzG/T9xEHPXoAilB1GHBpa5PD.','alex-
baker','alex.baker@isgproject.org','','2018-04-22 17:49:44','',0,'Alex
Baker'),(13,'isabel.griffiths','PBIb8sSAJklSOvOlXzB6AOs5aQS3N0o0','isabel-
griffiths','isabel.griffiths@isgproject.org','','2018-04-22 18:31:54','',0,'Isabel
Griffiths');

112

Listing C.2: Paste 2

+----+------------------+--
+------------------+---------------------------------+----------+---------------------+-
--------------------+-------------+------------------+
| ID | user_login | user_pass |
user_nicename | user_email | user_url | user_registered |
user_activation_key | user_status | display_name |
+----+------------------+--
+------------------+---------------------------------+----------+---------------------+-
--------------------+-------------+------------------+
| 1 | administrator | 1f30XNqFl$6wzPLXCgS.GSghapYLtrS1 |
administrator | administrator@isgproject.org | | 2014-07-02 13:29:20 |
| 0 | administrator |
| 4 | amelia.coleman | $1$7TVrXPDU$KCZ9c.QsmTahZ2oMmgJ4v. |
amelia-coleman | amelia.coleman@isgproject.org | | 2015-02-13 17:03:30 |
| 0 | Amelia Coleman |
| 5 | emma.fields | 1mH0scC7I$bsr54s/uk.e1JYnyz4v/d/ |
emma-fields | emma.fields@isgproject.org | | 2015-06-19 15:01:17 |
| 0 | Emma Fields |
| 7 | charles.sutton | 1e2Y9xCDk$Yo8W8gMhFzZShu7mFzq9v0 |
charles-sutton | charles.sutton@isgproject.org | | 2015-06-20 17:07:03 |
| 0 | Charles Sutton |
| 8 | jamie.baker | 1m4FfmGHK$T1/uPKYn/pPS1UmmHEubk0 |
jamie-baker | jamie.baker@isgproject.org | | 2015-06-20 17:31:45 |
| 0 | Jamie Baker |
| 9 | brian.peterson | 1IEPKoBZ6$VwNyGjb6gDHG0.iI1dX86. |
brian-peterson | brian.peterson@isgproject.org | | 2015-07-02 14:09:22 |
| 0 | Brian Peterson |
| 10 | gracie.lewis | 1xQ89n3Nh$91YrkA2sKaBbZelM/QR6t1 |
gracie-lewis | gracie.lewis@isgproject.org | | 2015-07-02 14:16:54 |
| 0 | Gracie Lewis |
| 11 | charlotte.baker | 1AQBsjBCU$eyIo/ZvOUGFTDhQR7SMWE. |
charlotte-baker | charlotte.baker@isgproject.org | | 2015-07-22 14:38:36 |
| 0 | Charlotte Baker |
| 12 | dylan.watson | 1DT92XJOr$7.DQ0Pev.PCAuTMSNCkqN1 |
dylan-watson | dylan.watson@isgproject.org | | 2015-07-22 14:44:27 |
| 0 | Dylan Watson |
| 13 | alex.baker | $1$5U42cogK$bnAwUxb//viMaNrhrj5XQ. |
alex-baker | alex.baker@isgproject.org | | 2015-07-22 14:56:44 |
| 0 | Alex Baker |
| 14 | isabel.griffiths | 1aTFVLwuD$vPVB774jrJMUlT3EJn7kK1 |
isabel-griffiths | isabel.griffiths@isgproject.org | | 2015-08-14 11:21:54 |
| 0 | Isabel Griffiths |
+----+------------------+--
+------------------+---------------------------------+----------+---------------------+-
--------------------+-------------+------------------+

113

Listing C.3: Paste 3

 :::::::::::HACKED BY 5N|P3R:::::::::::::::

#[Database: isg_website]
#[Table : admin_user]
#[Columns : admin_user_id,username,password]

1,admin,0c148356ead38c15a8d1760fc9e631d6

#[Database: isg_website]
#[Table : user]
#[Columns : user_id,username,password,email]

1,dylan,acfee3da5c432c1c7021f972eda60be7,dylan.watson@isgrpoject.org
2,lewis,2ba62da5c89bbc5965cb0434ffb62b90,lewis.clarke@isgproject.org
3,brian,79b5afeffc388a330c59aee934bc9163,brian.peterson@isgproject.org
4,joe,2b49a8c86865524892f0aae2e4309ec8,joe.cooper@isgproject.org
5,mo,3d3d4123cc9f79e4005b8ef7c78ac8e4,mo.johnson@isgproject.org
6,gracie,f5b677ff789127c17cbb3114903794c4,gracie.lewis@isgproject.org
7,alex,0fe6677f5901dfe64849674e15303ba0,alex.baker@isgproject.org
8,amy,dded7bc3d6198401c47a2d67c3f49cba,amy.lloyd@isgproject.org

114

Listing C.4: Paste 4

+----+------------------+--
+------------------+---------------------------------+----------+---------------------+-
--------------------+-------------+------------------+
| ID | user_login | user_pass |
user_nicename | user_email | user_url | user_registered |
user_activation_key | user_status | display_name |
+----+------------------+--
+------------------+---------------------------------+----------+---------------------+-
--------------------+-------------+------------------+
| 1 | administrator | 1f30XNqFl$6wzPLYCgS.GSghapYLtrS1 |
administrator | administrator@isgproject.org | | 2014-07-02 13:29:20 |
| 0 | administrator |
| 3 | jamie.baker | 1Js64PJ20$WP7YrgU5eT1ikELUaMXlh. |
jamie-baker | jamie.baker@isgproject.org | | 2015-02-13 17:31:45 |
| 0 | Jamie Baker |
| 5 | emma.fields | 1mH0scC7I$bsr54a/uk.e1JYnyz4v/d/ |
emma-fields | emma.fields@isgproject.org | | 2015-06-19 15:01:17 |
| 0 | Emma Fields |
| 7 | charles.sutton | 1e2Y9xCDk$Yo8W8fMhFzZShu7mFzq9v0 |
charles-sutton | charles.sutton@isgproject.org | | 2015-06-20 17:07:03 |
| 0 | Charles Sutton |
| 9 | brian.peterson | 1IEPKoBZ6$VqNyGjb6gDHG0.iI1dX86. |
brian-peterson | brian.peterson@isgproject.org | | 2015-03-02 14:09:22 |
| 0 | Brian Peterson |
| 10 | gracie.lewis | 1xQ89n3Nh$91TrkA2sKaBbZelM/QR6t1 |
gracie-lewis | gracie.lewis@isgproject.org | | 2015-03-02 14:16:54 |
| 0 | Gracie Lewis |
| 11 | charlotte.baker | 1YjznQIbb$hNAb4gV8ck.kdbQAL1cbZ/ |
charlotte-baker | charlotte.baker@isgproject.org | | 2015-04-22 14:38:36 |
| 0 | Charlotte Baker |
| 12 | dylan.watson | 1DT92XJOr$7.SQ0Pev.PCAuTMSNCkqN1 |
dylan-watson | dylan.watson@isgproject.org | | 2015-04-22 14:44:27 |
| 0 | Dylan Watson |
| 13 | alex.baker | $1$5U42cogK$bnWwUxb//viMaNrhrj5XQ. |
alex-baker | alex.baker@isgproject.org | | 2015-04-22 14:56:44 |
| 0 | Alex Baker |
| 14 | isabel.griffiths | 1aTFVLwuD$vPCB774jrJMUlT3EJn7kK1 |
isabel-griffiths | isabel.griffiths@isgproject.org | | 2015-08-14 11:21:54 |
| 0 | Isabel Griffiths |
+----+------------------+--
+------------------+---------------------------------+----------+---------------------+-
--------------------+-------------+------------------+

115

Listing C.5: Paste 5

 __ _______ _____
 \ \ / / __ \ / ____|
 \ \ /\ / /| |__) | (___ ___ __ _ _ __ ®
 \ \/ \/ / | ___/ ___ \ / __|/ _` | '_ \
 \ /\ / | | ____) | (__| (_| | | | |
 \/ \/ |_| |_____/ ___|__,_|_| |_|

 WordPress Security Scanner by the WPScan Team
 Version 2.9.4
 Sponsored by Sucuri - https://sucuri.net
 @_WPScan_, @ethicalhack3r, @erwan_lr, @_FireFart_

[i] It seems like you have not updated the database for some time
[i] Last database update: 2018-07-03
[?] Do you want to update now? [Y]es [N]o [A]bort update, default: [N] > y
[i] Updating the Database ...
[i] Update completed
[i] The remote host tried to redirect to: https://isgproject.org/
[?] Do you want follow the redirection ? [Y]es [N]o [A]bort, default: [N] >Y
[+] URL: https://isgproject.org/
[+] Started: Mon Jul 30 16:38:49 2018

[+] Interesting header: LINK: <https://isgproject.org/>; rel=shortlink
[+] Interesting header: SERVER: nginx
[!] SQL export file found: https://isgproject.org/backup.sql
[+] This site has 'Must Use Plugins' (http://codex.wordpress.org/Must_Use_Plugins)
[+] XML-RPC Interface available under: https://isgproject.org/xmlrpc.php [HTTP 405]

[+] Enumerating WordPress version ...

[i] WordPress version can not be detected

[+] WordPress theme in use: isgproject

[+] Name: isgproject
 | Location: https://isgproject.org/wp-content/themes/isgproject/
 | Style URL: https://isgproject.org/wp-content/themes/isgproject/style.css
 | Referenced style.css: wp-content/themes/isgproject/assets/css/style.css
 | Theme Name: ISG Project
 | Theme URI: https://isgproject.org/
 | Description: Bespoke WordPress theme for ISG Project

[+] Enumerating plugins from passive detection ...
[+] No plugins found passively

[+] Finished: Mon Jul 30 16:39:37 2018
[+] Elapsed time: 00:00:47
[+] Requests made: 397
[+] Memory used: 16.086 MB

116

Listing C.6: Paste 6

https://www.dropbox.com/sh/kqcznxcntx287ff/AAA78iHff8c6iQX-6rJdPGCSa?dl=0
https://www.dropbox.com/sh/dj54xx9sf79odzb/AAC2gAglYRgtloiQ5NZb2cA7a?dl=0
https://www.dropbox.com/sh/xi9td61gair0dem/AADf1jjph6VymNRfOhRIQf1Ia?dl=0
https://www.dropbox.com/sh/gjo2anm0lzqucwm/AABcJT5uVAXTOtkTKL2Vv6Cwa?dl=0
https://www.dropbox.com/sh/7zxm49mr6d8jn83/AADVRuKmBrSOnjXWxxYz2lTYa?dl=0

Listing C.7: Paste 7

Dropbox.com
alex.baker@isgproject.org:thomas123

Listing C.8: Paste 8

Dropbox.com
isgkatiedavies@gmail.com:Lacrosse2018

