Quaternary Tephrostratigraphy and Tephrochronology
The Royal Holloway tephra group has been one of the leading research groups in the study of distal tephra for well over a decade. The group works predominantly on ash layers that are not visible to the naked eye (cryptotephra) and many of the key techniques for the detection and extraction of cryptotephra from lacustrine and other minerogenic deposits were developed at Royal Holloway (e.g. Turney et al., 1997, Blockely et al., 2005). These are based on density separation of vitreous tephra from host minerogenic and organic sediment and have been used successfully in a number of projects to extract tephra for identification and chemical analyses for provenance purposes from lakes, peat deposits, caves and even fluvial systems. The technique usually works on tephra in the 15-125 µm size range and tephra are identified microscopically after flotation separation. Within the CQR we have a suite of dedicated laboratories for working on both abundant glass shards with several hundred to thousands of shards in a gram of sediment down to facilities that are able to identify just a few shards per gram.
Successful cryptotephra studies that CQR members are involved with include the use of tephra to provide a chronology for Neanderthal resilience to climate change as part of the RESET project (Lowe at al 2012), and act as key tools for underpinning past climate reconstruction, when coupled with a range of other dating techniques and palaeoenvironmental proxies (e.g. Matthews ABERNETHY). The CQR tephra group also plays an active role in integrating tephra as part of an overall event stratigraphic framework for understanding past climate change and is involved in the construction of the COST-INTIMATE group’s event stratigraphy for the North Atlantic region (Blockley et al., 2012) and also in developing new frameworks for the Mediterranean (Bourne et al., 2010) and Asian Pacific regions (Smith et al., 2011).
Blockley, S.P.E., Pyne-O’Donnell, S.D.F., Lowe, J.J., Matthews, I.P., Stone, A., Pollard, A.M., Turney, C.S.M., Molyneux, E.G. 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews. 24, 1952-1960.
Blockley, S.P.E., Lane, C.S., Hardiman,M., Rassmussen, S., Seierstad, I., Steffensen, J.P., Svenson, A., Lotter, A.F., Turney, C.S., Ramsey, C.B., – and INTIMATE members. 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews, INTIMATE Special issue 36. 2-10.
Bourne, A.J., Lowe, J.J., Trincardi, F., Asioli, A., Blockley, S.P.E., Wulf,S., Matthews, I.P., Piva, A., Vigliotti, L. 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews. 29, 3079-3094.
Lowe, J.J., Barton, N., Blockley, S.P.E., Bronk Ramsey, C., Cullen, V., et al. 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early Modern Humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America. 109, 13532-13537.
Smith, V., Mark, D., Staff, R., Blockley, S.P.E., Bronk-Ramsey, C., Bryant, C.S., Nakagawa, T., Kyu Han, K., Weh, A., Takemura, K., Danhara, T., Suigetsu 2006 Project Members. 2011. Toward establishing precise 40Ar/39Ar chronologies for Late Pleistocenepalaeoclimate archives: an example from the Lake Suigetsu (Japan) sedimentary record. Quaternary Science Reviews. 30, 2845-2850.
Turney, C S M, Harkness, D D, and Lowe, J J. 1997. The use of microtephra horizons to correlate Late-glacial lake sediment successions in Scotland. Journal of Quaternary Science 12 (6), 525–531.