Skip to main content

Physics with Music

Search Royal Holloway

Physics with Music

BSc
  • UCAS code F3W3
  • Option 3 years full time
  • Year of entry 2021

The course

Choose Physics with Music at Royal Holloway, University of London and you'll combine two of the subjects you love across three years of study. You’ll develop a wide range of skills including mathematics, experimental skills, computing, communication, composition and historical musicology, all while maximising your graduate employability with a desirable honours degree. 

You'll study in one of the University of London's major centres for physics teaching and research, with research strengths including Quantum physics, condensed matter and particle physics informing our teaching. Physics is studied as the major subject, and you'll learn the mathematical, conceptual and experimental skills expected of a graduate physicist.

This degree is run jointly with the Department of Music, where our expert academics have worked hard to build excellent industry connections. You'll learn about music composition, theory and analysis, together with historical musicology, and issues that shape contemporary music, including politics, urban development, gender and globalisation.

You'll graduate with excellent employability prospects across a range of sectors, with employers valuing graduates with the diverse skillset offered by this degree.

Our flexible degree programmes enable you to apply to take a Placement Year, which can be spent studying abroad, working or carrying out voluntary work. You can even do all three if you want to (minimum of three months each)! To recognise the importance of this additional skills development and university experience, your Placement Year will be formally recognised on your degree certificate and will contribute to your overall result. Please note conditions may apply if your degree already includes an integrated year out, please contact the Careers & Employability Service for more information. Find out more

  • Physics is studied as the major subject with the addition of music as a significant component.
  • This degree is run jointly with the acclaimed Department of Music at Royal Holloway (no. 5 in the UK, Complete University Guide, 2018).
  • You will learn about music composition, theory and analysis together with historical musicology and issues that shape contemporary music.

Core Modules

Year 1
  • In this module you will develop an understanding of how to solve problems involving one variable (either real or complex) and differentiate and integrate simple functions. You will learn how to use vector algebra and geometry and how to use the common probability distributions.

  • In this module you will develop an understanding of how to solve problems involving more than one variable. You will learn how to use matrices and solves eigenvalue problems, and how to manipulate vector differential operators, including gradient, divergence and curl. You will also consider their physical significance and the theorems of Gauss and Stokes.

  • In this module you will develop an understanding of good practices in the laboratory. You will keep a notebook, recording experimental work as you do it. You will set up an experiment from a script, and carry out and record measurements. You will learn how to analyse data and plot graphs using a computer package, and present results and conclusions including error estimations from your experiments.

  • In this module you will develop an understanding of how to apply the techniques and formulae of mathematical analysis, in particular the use of vectors and calculus, to solve problems in classical mechanics. You will look at statics, dynamics and kinematics as applied to linear and rigid bodies. You will also examine the various techniques of physical analysis to solve problems, such as force diagrams and conservation principles.

  • In this module you will develop an understanding of how electric and magnetic fields are generated from static charges and constant currents flowing through wires. You will derive the properties of capacitors and inductors from first principles, and you will learn how to analyse simple circuits. You will use complex numbers to describe damped harmonic oscillations, and the motion of transverse and longitudinal waves.

  • In this module you will develop an understanding of the macroscopic properties of the various states of matter, looking at elementary ideas such as ideal gases, internal energy and heat capacity. Using classical models of thermodynamics, you will examine gases, liquids, solids, and the transitions between these states, considering phase equilibrium, the van der Waals equation and the liquefaction of gases. You will also examine other states of matter, including polymers, colloids, liquid crystals and plasmas.

  • In this module you will develop an understanding of the building blocks of fundamental physics. You will look at Einstein’s special theory of relativity, considering time-dilation and length contraction, the basics of quantum mechanics, for example wave-particle duality, and the Schrödinger equation. You will also examine concepts in astrophysics such as the Big Bang theory and how the Universe came to be the way we observe it today.

Year 2
  • In this module you will develop an understanding of the mathematical representation of physical problems, and the physical interpretation of mathematical equations. You will look at ordinary differential equations, including linear equations with constant coefficients, homogeneous and inhomogeneous equations, exact differentials, sines and cosines, Legendre poynomials, Bessel's equation, and the Sturm-Liouville theorem. You will examine partial differential equations, considering Cartesian and polar coordinates, and become familiar with integral transforms, the Gamma function, and the Dirac delta function.

  • In this module you will develop an understanding of how computers are used in modern science for data analysis and visualisation. You will be introduced to the intuitive programming language, Python, and looking at the basics of numerical calculation. You will examine the usage of arrays and matrices, how to plot and visualise data, how to evaluate simple and complex expressions, how to sample using the Monte Carlo methods, and how to solve linear equations.

  • In this module you will develop an understanding of quantum mechanics and its role in and atomic, nuclear, particle and condensed matter physics. You will look at the wave nature of matter and the probabilistic nature of microscopic phenomena. You will learn how to use the key equation of quantum mechanics to describe fundamental phenomena, such as energy quantisation and quantum tunnelling. You will examine the principles of quantum mechanics, their physical consequences, and applications, considering the nature of harmonic oscillator systems and hydrogen atoms.

  • In this module you will develop an understanding of thermal physics and elementary quantum mechanics. You will look at the thermodynamic properties of an ideal gas, examining the solutions of Schrödinger’s equation for particles in a box, and phenomena such as negative temperature, superfluidity and superconductivity. You will also consider the thermodynamic equilibrium process, entropy in thermo-dynamics, and black-body radiation.

  • In this module you will develop an understanding of the physical properties of solids. You will look at their structure and symmetry, concepts of dislocation and plastic deformation, and the electrical characteristics of metals, alloys and semiconductors. You will examine methods of probing solids and x-ray diffraction, and the thermal properties of photons. You will also consider the quantum theory of solids, including energy bands and the Bloch theorem, as well as exploring fermiology, intrinsic and extrinsic semiconductors, and magnetism.

  • In this module you develop an understanding of the properties of light, starting from Maxwell’s equations. You will look at optical phenomena such as refraction, diffraction and interference, and how they are exploited in modern applications, from virtual reality headsets to the detection of gravitational waves. You will also examine masers and lasers, and their usage in optical imaging and image processing.

Year 3
  • Advanced Skills
  • Experimental or Theoretical Project
  • In this module you will develop an understanding of how James Clerk Maxwell unified all known electrical and magnetic effects with just four equations, providing Einstein’s motivation for developing the special theory of relativity, explaining light as an electromagnetic phenomenon, and predicting the electromagnetic spectrum. You examine these equations and their consequences, looking at how Maxwell’s work underpins all of modern physics and technology. You will also consider how electromagnetism provides the paradigm for the study of all other forces in nature.

Optional Modules

There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1
  • Theory and Analysis
  • Practical Musicianship
  • Creative Composition Techniques
  • Practical Composition Skills
  • A Very Short History of Music
  • Introduction to Historical Musicology
  • Introduction to World Music
  • Contemporary Debates in Music
Year 2
  • Composition Portfolio
  • Practical and Creative Orchestration
  • Choral Conducting
  • Composing with Technology 1
  • Introduction to Jazz: Theory, Practice and Contexts
  • Popular Music and Musicians in Post-War Britain and North America
  • Korean Percussion Performance
  • Practical Ethics
  • Musical Aesthetics
  • Mozart's Operas
  • Issues in Sound, Music and the Moving Image
  • Music and Society in Purcell's London
  • Music, Power and Politics
  • Ideas of German Music from Mozart to Henze
  • Music and Gender
  • Hearing the Orient: Critical and Practical Approaches to the Middle East
Year 3
  • Energy and Climate Science
  • Advanced Classical Physics
  • Further Mathematical Methods
  • Nonlinear Systems and Chaos
  • C++ and Object Oriented Programming
  • Signal Recovery and Handling
  • Quantum Theory
  • Particle Physics
  • Metals and Semiconductors
  • Superconductivity and Magnetism
  • Frontiers of Metrology
  • General Relativity and Cosmology
  • Particle Astrophysics
  • Special Study: Dissertation
  • Special Study: Theory and Analysis
  • Special Study: Composition
  • Musical Aesthetics
  • Mozart's Operas
  • Issues in Sound, Music and the Moving Image
  • Intercultural Performance: Theory and Practice
  • Music and Society in Purcell's London
  • Music, Power and Politics
  • Ideas of German Music from Mozart to Henze
  • Music and Gender
  • Hearing the Orient: Critical and Practical Approaches to the Middle East
  • Composing with Technology 2
  • Atomic Physics

The course has a modular structure, whereby students take 24 course units at the rate of eight per year. Some course units are compulsory while others are elective thereby offering flexibility and choice.  

Teaching in the Physics department takes place in lectures, seminars, laboratory practical classes and problem-solving sessions. Outside class-time students participate in group projects and guided independent study and have access to the college’s comprehensive e-learning facility, ‘Moodle’ where there is a variety of resources available for students.

Physics assessment is usually by two-hour examination at the end of the year. Coursework and in-class tests also contribute to the assessment of many course units. Experimental work is generally assessed by written reports or oral presentation. A minimum of six of the eight course units must be passed with a minimum score of 40 per cent each year.

Teaching in the Music department is through a combination of lectures, seminars, tutorials, or group instrumental/vocal lessons - performance modules that include individual instrumental or vocal lessons are not available on this course.

You will also have the opportunity to take part in a wide variety of musical activities supported by the department, including performances by orchestras, choirs and other ensembles. Private study and preparation are essential parts of every course, and you will have access to many online resources through Moodle. When you start with us, you are assigned a Personal Advisor to support you academically and personally.

Music assessment is carried out by a combination of examinations, which take place in the summer term, along with written papers, extended essays, assessed coursework, and a portfolio of practical work.

9th in the UK for student experience

Source: Times Good University Guide, 2020

92% overall student satisfaction (Physics)

Source: NSS, 2019

97% of our Physics graduates are in work or further study within six months of graduating

Source: DLHE, 2018

Explore Royal Holloway

All undergraduates starting with us in 2020 onwards have the opportunity to take a Placement Year, which will add even more value to your studies.

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones

Heading to university is exciting. Finding the right place to live will get you off to a good start

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help

Discover more about our 21 departments and schools

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’

They say the two most important days of your life are the day you were born, and the day you find out why

Discover world-class research at Royal Holloway

Discover more about who we are today, and our vision for the future

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today

We’ve played a role in thousands of careers, some of them particularly remarkable

Find about our decision-making processes and the people who lead and manage Royal Holloway today